CEIS 114
Final Project Deliverables
PowerPoint

Name: Santiago Donohue
Professor: Mostafa Mortezaie
Session: CEIS114 — Week 8
Date: 06/28/2025

Final Project Deliverable for CEIS114

This presentation is a collection of all my final deliverables
for the DeVry CEIS114 - Introduction to Digital Devices

course. The last few slides are the challenges, take-aways
and conclusiton.

At the end you’ll find my published portfolio on my website.

CEIS 114
Module 2

Project Plan for loT Traffic Controller

Student: Santiago (James) Donohue
05/2025

ES P 3 2 (SC Feens h Ot) Microcontroller mounted and powered ON

WOKWI B save - ~ SHARE @ CEIS114-Module2-SantiagoDonohue-05-2025 2 Docs

£

sketc Simulation

()09:47.790 (#)98%

15
E EEEEEENEEEHN

AF OWD EQ 20 EL OND ZL Pk LE € . B P NA dA

e L
sesopp| [y E—

| [maaall T

333 PM
5/18/2025

ESP32 WIiFi Scan

Screenshot of Serial Monitor showing the
available networks

1 networks found
1: Wokwi-GUEST (-87)

Scanning...
Scan done!

1 networks found
1: Wokwi-GUEST (-89)

Scanning...

:D: Focus

@

\u\u\m'\

——B8—+ 100%

3331 PM
5/18/2025

CEIS 114
Module 3

Creating the Traffic Controller

Student: Santiago (James) Donohue

Picture of circuit
with working LEDs

ESP 32 Board

Colored LEDs: Red, Yellow and Green
Wires

Breadboard

)

u m =
@
= =l m:z Dz
nE CLK D0 D1 15 2 o 4 1B 17 5 18 19 GND 21 RX TX 22 23 GND
'L 000 00 000 OOGOOONOGOEOGONOOSTPSC

i - -
P ' wifi-scan.ino /

by

wifi-scan.ino e diagram.json e Library Manager ~

Screenshot of code

yellow LED1 = 12;

in the Code Editor

Screenshot of code in the Wokwi Code Editor O

showing your name in the comment
ellow_LED1,
(green_LED1,

0 A

(yellow_LED1 ,
(green_LED1,

(yellow_LED1 ,
(green_LED1,

(red_LED1,)
ellow_LED1 ,

digitalWrite(green_LED1,

(2000);

CEIS 114
Module 4

Creating a Multiple Traffic Light Controller

Student: Santiago (James) Donohue

Picture of circuit with working LEDs

ESP 32 Board

Colored LEDs: Red, Yellow
and Green (two sets)

Wires
Breadboard

1

10

15

20

25

30

35

40

45

50

55

60

dE EEEEEEENESESNEENESSNEENESESNESNESESENESSNESESESNESNESNESENESESENEESNESENESNEENESENESENESEEESEESENESEENEEEENEEENEENEEN
b mEEE EE EEEEEEEESEESESESESENESENENENESSESSNESNESSESNSSESSNESNESNSSNESSESSNESESNESEESESESEEENESEEEEENERER
Cm m e s S S S S 5 5 E S E S 5@ SN ESESE S S ESESSEENESESSESESE S S S S S S EESESESESESESE S S S S EEEEEEEEEN
dm m " " @ " @ 5B 5 @ @S E S =SSN E S NSNS S S SN S S SN NS SN NS S S NS SE SN SESESESE NSNS S EEEEEEEEEEEN
GO BN BN BN BN B BN B BN B BN BN B BN BN B BN BN BN BN B BN BN BN B BN BN BN BN BN B BN BN BN B BN B BN BN B BN BN B BN BN B BN BN B BN BN O BN BN BN BN BN B BN BN BN BN BN |

fe e e e e e EEEERSR
g @ EEEEEEEEEENEETBR
h H §E E E E EEEEEEEESBH
i mEE EEEEEEEEEENEEN
J

1

10

L 3]

e mE
20

!:::::N:::

P EEEEEJFOITEEN

[BN BIAN BN AN
25

mphamm

LI B]

.

EEEE
EEEn
HE B BN
EEEE
EEEnN
30

b

ZU

aund

-

>

25

.

i 7 N
i 1 mm

40

45

50

30

H EEEEEEEENEEENENEBNBRBND2Z3

55

60

a
b
c
d
e

f
g
h
i
J

Screenshot of code
in Wokwi

Screenshot of code Wokwi Code Editor
showing your name in the comment

W Wolwi - Online ESP32, STM32, X +

< C Mm@ 25 wokwi.com/projects/432599617115026433
WOKWI A SHARE @ CEIS114-Module04-SantiagoDonohue-2025 ,*
wifi-scan.ino diagram.json Library Manager ~

1 // === Santiago (James) Donchue ====

2 // Devry CEIS114 > Module #4 project Deliverable

3

4 // Define some labels

5 const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14

6 const int yellow_LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12

7 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13

8 const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25

9 const int yellow_LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
1e const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
11
12 // the setup function runs once when you press reset or power the board
13 void setup() {
14 pinMode(red_LED1, OUTPUT); // initialize digital pin GPIO14 (Red LED1) as an output.
15 pinMode(yellow_LED1, OUTPUT); // initialize digital pin GPIO12 (yellow LED1) as an output.
16 pinMode(green_LED1, OUTPUT); // initialize digital pin GPIO13 (green LED1) as an output.
17 pinMode(red_LED2, OUTPUT); // initialize digital pin GPIO25(Red LED2) as an output.
18 pinMode(yellow_ LED2, OUTPUT); // initialize digital pin GPIO26 (yellow LED2) as an output.
19 pinMode(green_LED2, OUTPUT); // initialize digital pin GPIO27 (green LED2) as an output.
20}
21
22 // the loop functicn runs over and over again forever
23 void loop() {
24
25 // The next three lines of code turn on the red LED1
26 digitalWrite(red_LED1, HIGH); // This should turn on the RED LED1l
27 digitalWrite(yellow_LED1 , LOW); // This should turn off the YELLOW LED1
28 digitalWrite(green_LED1, LOW); // This should turn off the GREEN LED1
29
30 delay(1eee); //Extended time for Red light#1 before the Green of the other side turns ON
31
32 // The next three lines of code turn on the green LED2 for 2 seconds
33 digitalWrite(red_LED2, LOW); // This should turn off the RED LED2
34 digitalWrite(yellow_LED2 , LOW); // This should turn off the YELLOW LED2
35 digitalWrite(green_LED2, HIGH); // This should turn on the GREEN LED2
36
37 delay(2000); // wait for 2 seconds

=l
20

CEIS 114
Module 5

Creating a Multiple Traffic Light Controller with a Cross Walk

Student: Santiago (James) Donohue

::::::::::[!:::::I\‘.:::[E:::: caldSaalSaciacannnnns
ScreenShOtOf H E B E EEEEEEHE IIIIIIIIIIIII lllIIIIIIIIIII[IIIIIIIIIII
° ° ° ° 5 10 1 20 25 30 35 40 45 50
CerUIt Wlth Worklng | | H BN n 1 B N H BN Hu H R | | H BB RN H BN
| || HE B B BN I | | IIII I | | | | I!III II[II H H B B E H H N
LEDs
+ £
ESP 32 Board
Colored LEDs: Red, Yellow and Green (two R
SetS) bmmm
220 Ohm Resistors (optional) B A S=I
Push Button
fmm
Wires ﬁ::
Breadboard Ll —
1
+ H Bu r
Count = 5 == Walk ==
Count = 4 == Walk ==
Count = 3 == Walk ==
Count = 2 == Walk ==
Count = 1 == Walk ==
== Do Not Walk ==

== Do Not Walk ==

Screenshot of code
in Wokwi

Screenshot of code in Wokwi Code Editor
showing your name in the comment

WOKWI [save A SHARE | € CEIS114-Module05-SantiagoDonohue-2025 ,*

wifi-scan.ino e diagram.json e Library Manager

1 // Module #5 project - Santiago (James) Donohue

2

3 const int red_LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14

4 const int yellow_LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12
5

6 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13

7 const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPIO25

8 const int yellow_LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
9 const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
18

11 int Xw_value;

12

13 const int Xw_button = 19; //Cross Walk button

14

15 // the setup function runs once when you press reset or power the board

16 void setup() {

17

18 pinMode (Xw_button, INPUT_PULLUP); // @=pressed, 1 = unpressed button

19 Serial.begin(1152080);

28 pinMode(red_LED1, OUTPUT); // initialize digital pin 14 (Red LED1) as an output.
21 pinMode(yellow_LED1, OUTPUT); // initialize digital pin 12 (yellow LED1) as an output.
22 pinMode(green_LED1, OUTPUT); // initialize digital pin 13 (green LED1) as an output.
23

24 pinMode (red_LED2, OUTPUT); // initialize digital pin 25(Red LED2) as an output.
25 pinMode(yellow_LED2, OUTPUT); // initialize digital pin 26 (yellow LED2) as an output.
26 pinMode (green_LED2, OUTPUT); // initialize digital pin 27 (green LED2) as an output.
27}

28

29 // the loop function runs over and over again forever

30 void loop() {

31

32 // read the cross walk button value:

33 Xw_value=digitalRead(Xw_button);

34

35 if (Xw_value == LOW){ // if crosswalk button (X-button) pressed

36

37 digitalWrite(yellow_LED1 , LOW); // This should turn off the YELLOW LED1

38 digitalWrite(green_LED1, LOW); // This should turn off the GREEN LED1

39 digitalWrite(yellow_LED2 , LOW); // This should turn off the YELLOW LED2
40 digitalWrite(green_LED2, LOW); // This should turn off the GREEN LED2
41
42 for (int i=l1e; i»e; i--)
43
a4 {

IS
vl

rst:@x1 (POWERON _RESET),boot:@x13 (SPI_FAST_FLASH BOOT)

configsip: ©, SPIWP:©Oxee

clk_drv:exee,q drv:0xee,d drv:exee,cse drv:0xe0,hd drv:0xee,wp drv:exee
mode :DIO, clock div:2

load:ex3fffee30,len:1156

load:ox40078000,1en:11456

ho @ tail 12 room 4

load:9x40080400,1en:2972

Screenshot of Serial

. . . == Do Not Walk ==
Monitor in Wokwi = Do Mot sl -
== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==

Screenshot of output in Serial Monitor

()]
]
=
=3
rt+
Il
H N W Rk U N 0W
Il
Il
=
V1]
=
~
Il
]

== Do Not Walk ==
== Do Not Walk ==
== Do Not Walk ==

CEIS 114
Module 6

Creating a Multiple Traffic Light Controller with a Cross Walk and an
Emergency Buzzer

Student: Santiago (James) Donohue

Picture of circuit
with working LEDs
and LCD display

ESP 32 Board

Colored LEDs: Red, Yellow and Green (two
sets)

220 Ohm Resistors (optional)

Push Button

LCD Unit with Message Display
Wires

Breadboard ------------ . sfess mEmmnm

Screenshot of code
in Code Editor

Screenshot of code in Code Editor showing
your name in the comment

WOKWI B save SHARE € CEIS114-Module06-SantiagoDonohue-2025 ,*

wifi-scan.ino @ diagram.json libraries.txt Library Manager ~
1 // === Santiago (James) Donohue ====
2 // Module #6 project #include <Wire.h> //lcd
3 #include <LiquidCrystal_I2C.h» //lcd
14
5 LiquidCrystal_I2C lcd(@x27,16,2); //set the LCD address to @x3F for a 16 chars and 2-line display
6 // if it does not work then try @x3F, if both addresses do not work then run the scan code below
7
8 const int bzr=32; // GPI032 to connect the Buzzer
9 ff==========ccccceeeeo | (D =======m==m=mmmoeeeo
10 const int red LED1 = 14; // The red LED1 is wired to ESP32 board pin GPIO14
11 const int yellow LED1 =12; // The yellow LED1 is wired to ESP32 board pin GPIO12
12 const int green_LED1 = 13; // The green LED1 is wired to ESP32 board pin GPIO13
13 const int red_LED2 = 25; // The red LED2 is wired to Mega board pin GPI025
14 const int yellow LED2 = 26; // The yellow LED2 is wired to Mega board pin GPIO 26
15 const int green_LED2 = 27; // The green LED2 is wired to Mega board pin GPIO 27
16
17 int Xw_value;
18 const int Xw_button = 19; //Cross Walk button
19
20 void setup()
21
22
23 Serial.begin(115200);
24 pinMode(Xw_button, INPUT_PULLUP); // @=pressed, 1 = unpressed button
25
26 led.init(); // initialize the lcd lcd.backlight();
27 lcd.setCursor(@,8); // column#4 and Row #1
28 led.print (™ === CEIS114 ===");
29 pinMode (bzr,OUTPUT);
30
31 pinMode(red LED1, OUTPUT); // initialize digital pin 14 (Red LED1) as an output.
32 pinMode(yellow LED1, OUTPUT); // initialize digital pinl2 (yellow LED1) as an output.
33 pinMode(green LED1, OUTPUT); // initialize digital pin 13 (green LED1) as an output.
34
35 pinMode(red LED2, OUTPUT); // initialize digital pin 25(Red LED2) as an output.
36 pinMode(yellow LED2, OUTPUT); // initialize digital pin 26 (yellow LED2) as an output.
37 pinMode(green_LED2, OUTPUT); // initialize digital pin 27 (green LED2) as an output.
38
1?9}
40
11 // the loop function runs over and over again forever
42 void loop()
43
44
45 // read the cross walk button value:
16 Xw_value=digitalRead(Xw_button);
47
48 if (Xw_value == LOW){ // if crosswalk button (X-button) pressed
49 digitalWrite(yellow LED1 , LOW); // This should turn off the YELLOW LED1
50 digitalWrite(green_LED1, LOW); // This should turn off the GREEN LED1
51 digitalWrite(yellow LED2 , LOW); // This should turn off the YELLOW LED2
52 digitalWrite(green_LED2, LOW); // This should turn off the GREEN LED2

w
v}

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)

configsip: @, SPIWP:Oxee
clk_drv:exee,q_drv:0xee,d_drv:exee,cse_drv:exee,hd_drv:exee,wp_drv:exee
mode:DIO, clock div:2

load:9x3fffe030,len:1156

SC reenShOt Of Se rial load:9x40078000,1len:11456

ho @ tail 12 room 4

1 load:6x40080400,1len:2972
I\/I O n Ito r entry ex4998@5d::

: . . == Do Not Walk ==
Screenshot of output in Serial Monitor Do Not Walk -
== Do Not Walk ==

Count = 10 == Walk ==

Count = 9 == Walk ==

Count = 8 == Walk ==

Count = 7 == Walk ==

Count = 6 == Walk ==

Count = 5 == Walk ==

Count = 4 == Walk ==

Count = 3 == Walk ==

Count = 2 == Walk ==

Count = 1 == Walk ==

Count = @ == Walk ==
== Do Not Walk ==

== Do Not Walk ==

CEIS 114
Week 7 Project

Creating a Multiple Traffic Light Controller with a Cross Walk and an
Emergency Buzzer with secured loT Control via Web

Student: Santiago (James) Donohue

Screenshot of circuit
with working LEDs

and LCD display
(Building/Operation)

ESP 32 Board

Colored LEDs: Red, Yellow and Green (two
sets)

One Blue LED — Emergency Light

Push Button
LCD Unit

Buzzer
Wires
Breadboard

Screenshot of code in
Code Editor (Testing

Screenshot of code in Code Editor showing
your name in the comment

WOKW/T B save A SHARE € CEIS114-Module07-SantiagoDonohue-2025 °

wifi-scan.ino @ diagram.json @ libraries.txt @ Library Manager ~
1 // === Santiago (James) Donohue ====
2 // Final Project Component, Option 1
3
4 #include <WiFi.h> // WiFi header file
5 #include <PubSubClient.h> // MQTT publish and subscribe header file
6 #tinclude <Wire.h> // I2C header file
7 #include <LiquidCrystal T2C.h» // TI2C lcd header file
8
9 const char* ssid = "Wokwi-GUEST"; // This is the access point to your wireless network.
10 const char* password = ""; // This is the password to the SSID. For the smart mini router
11 const char* mgttServer = "test.mosquitto.org"; // This is the free MQTT broker we will use.
12
13 int port = 1883; // MQTT brokers listen to port 1883 by detault
14 String stMac; // C string used for convenience of comparisons.
15 char mac[5@]; // C char array used to hold the MAC address of your ESP32 microconroller
16 char clientId[5@0]; // This client ID is used to identify the user accessing the MQTT broker.
17
18 // For our test.mosquitto.org broker, we just generate a random user client ID
19 WiFiClient espClient; // instantiate the WiFi client object
20 PubSubClient client(espClient); // instantiate the publish subscribe client object
21 LiquidCrystal I2C led(@x27,16,2); //set the LCD address to @x27 for a 16 chars and 2-line display
22 // it it does not work then try @x3F, if both addresses do not work then run the scan code
23
24 const int redLightNorthSouth = 14; // The red LED NS is wired to ESP32 board pin GPIO 14
25 const int yellowLightNorthSouth = 12; // The yellow LED NS is wired to ESP32 board pin GPIO 12
26 const int greenLightNorthSouth = 13; // The green LED NS5 is wired to ESP32 board pin GPIO 13
27 const int redLightEastWest = 25; // The red LED EW is wired to ESP32 pin GPIO 25
28 const int yellowLightEastWest = 26; // The yellow LED EW is wired to ESP32 board pin GPIO 26
29 const int greenLightEastWest = 27; // The green LED EW is wired to ESP32 board pin GPIO 27
30
31 int crossWalkButtonState = 1 ; // Variable will store the state of the crosswalk button
32 const int crossWalkButton = 19; // Cross Walk button pin 1s GPIO 19
33 const int emergencyBlueLED = 16; // The blue LED is wired to ESP32 board pin GPIO 16
34 const int buzzerPin = 32; // Active Buzzer pin is GPIO 32
35
36 int loopCount; // Variable will keep count of the number of times the light pattern repeats
37 int secondsLeft; // counter to keep track of number of seconds left for crossing intersection
38 int iotControl = ®; // Variable will be used to switch between emergency and normal operations of
39
40 // traffic controller
41 void setup() {
42
13 Serial.begin(115200); // set baud rate of serial monitor to 115200 bits per second
44 randomSeed(analogRead(@)); // seed the random() function
45 delay(10); // wait 1@ milliseconds

s
-

rst:0x1 (POWERON_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)

configsip: @, SPIWP:@xee
clk_drv:exe0,q_drv:0x00,d_drv:exee,cso_drv:oxe0,hd_drv:exee,wp_drv:exee
mode :DIO, clock div:2

load:ox3fffee30,len:1156

load:0x40078000,1len:11456

ho @ tail 12 room 4

load:0x40080480,1len:2972

Screenshot of Serial
Monitor (TeStI ng) (.Zc.mnecting to Wokwi-GUEST

Screenshot of output in Serial Monitor WiFi connected
IP address:

10.10.0.2
24:0A:C4:00:01:10

24 @A _C4 00 _01_10

Attempting MQTT connection...clientId-26@ connected
== Do Not Walk ==

= Emergency!

= Emergency! =
= Emergency! =
= Emergency! =
= Emergency! =
= Emergency! =
= Emergency! =
= Emergency! =
= Emergency! =
= Emergency! =
= Emergency! =
== Do Not Walk ==
== Do Not Walk ==

Challenges/Lessons Learned

Challenges:

Below I'll list some of the challenged that stood out to me while working on project modules throughout this course.

| was surprised to learn that not all data processing happens on the device. | thought everything was handled by the sensor itself, but
realizing that data often gets processed elsewhere made things feel more complicated.

Getting different devices to work together was harder than | expected. It took time to understand how sensors, actuators, and
communication systems all fit into one working system.

Working with real-time data was also challenging. | had trouble making sure the system reacted fast enough, and it wasn’t always clear
whether issues were from the code or the hardware.

Lessons Learned:

| came to understand that offloading data processing to the cloud or edge systems isn’t just a workaround—it’s a smart way to reduce
the load on devices and improve performance. It’s actually a core part of designing efficient loT systems.

Signal conditioning stood out as something | underestimated at first. Clean, accurate signals are essential if you want reliable results
from your sensors, and that step can make or break how well your system works.

Breaking the system into input, processing, and output made everything easier to troubleshoot and scale. It helped me think more like
a systems designer instead of just wiring things together.

DéeVry University

Career Skills

1. Systems thinking

| learned how to break down complex systems into parts like sensors and processors. This helps in jobs where you design or manage
technology projects with many connected components.

2. Working with data

| practiced collecting and cleaning sensor data to make it useful. This skill is important for analyzing information to improve systems at
work.

3. Problem-solving with devices

| gained experience troubleshooting hardware and software issues. This helps in jobs that require fixing technical problems and keeping
systems running.

4. Explaining technical work

| improved how | explain my projects and solutions clearly. This is useful for working with teams and communicating technical ideas to
others.

DéeVry University

CONCLUTION

The conclusion of my project, | was able to build and program an loT device that could improve
the security of my home or work location.

This course helped me develop a much clearer understanding of how digital devices and loT
systems connect and work together, especially around data processing and device integration.
Working through the hands-on projects gave me practical experience troubleshooting issues and
showed me why clear communication about technical problems is so important.

Overall, | feel more prepared to handle real-world challenges in technology roles, particularly
those involving embedded systems and loT.

DéeVry University

Personal website portfolio link referencing this course’s final project

https://santiagodonohue.com/

DéeVry University

https://santiagodonohue.com/

	Slide 1: CEIS 114 Final Project Deliverables PowerPoint
	Slide 2: Final Project Deliverable for CEIS114
	Slide 3: CEIS 114 Module 2
	Slide 4: ESP32 (Screenshot)
	Slide 5: ESP32 WiFi Scan
	Slide 6: CEIS 114 Module 3
	Slide 7: Picture of circuit with working LEDs
	Slide 8: Screenshot of code in the Code Editor
	Slide 9: CEIS 114 Module 4
	Slide 10: Picture of circuit with working LEDs
	Slide 11: Screenshot of code in Wokwi
	Slide 12: CEIS 114 Module 5
	Slide 13: Screenshot of circuit with working LEDs
	Slide 14: Screenshot of code in Wokwi
	Slide 15: Screenshot of Serial Monitor in Wokwi
	Slide 16: CEIS 114 Module 6
	Slide 17: Picture of circuit with working LEDs and LCD display
	Slide 18: Screenshot of code in Code Editor
	Slide 19: Screenshot of Serial Monitor
	Slide 20: CEIS 114 Week 7 Project
	Slide 21: Screenshot of circuit with working LEDs and LCD display (Building/Operation)
	Slide 22: Screenshot of code in Code Editor (Testing)
	Slide 23: Screenshot of Serial Monitor (Testing)
	Slide 24: Challenges/Lessons Learned
	Slide 25: Career Skills
	Slide 26: CONCLUTION
	Slide 27: Personal website portfolio link referencing this course’s final project

