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2D vs. 3D - Operative Visualization
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Microneurosurgery

in 4 Volumes

M.G.Yasargil

Stereoscopic Perspective

A few neurosurgical procedures such as microvas-
cular anastomoses and nerve repairs are performed
on the surface of the operating field, and in these
the magnification and depth of field are primary
considerations. However, most neurosurgical

operations take place in a small space at the base of
the brain through a narrow gap and 1n these cases it 1s
more important to the neurosurgeon that he
maintains well-lit hinocular vision_ in the recesses of
the field. This stereoscopic perspective is thus the
more useful function of the surgical microscope in
these situations (Fig 190A).The operating micro-
scope allows stereoscopic vision in small spaces by
reducing the necessary interpupillary distance
required for binocular vision. The distance between
the anterior lenses of the binocular tube of the
microscope 1s only 16 mm, whereas the average
interpupillary distance is around 60 mm. This
means that light reflected from deep basal struc-
tures towards the operating microscope during
surgical procedures employing fissure, sulci or
transcortical approaches, will result in a stereo-
scopic image when only a 16 mm image enters the
microscope aided eye. Even when assisted with
magnification loupes, the eyes are unable to maintain

stereoscopic vision in such a narrow space. Thus

the real importance ol the surgical microscope as
it relates to most neurological procedures 1s not the
magnification 1t supplies, but in the clear visual
perspective it provides. With this the surgeon can
avold excessive brain retraction and yet still reach
every point in the central nervous system,
adequately visualizing deep structures either along
the basal cisterns or through a transcerebral tunnel.
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2D vs. 3D - Microscopy

Fig 190 A Diagram of the difference |
pillary distance (PD) and interocular
erating microscope (a).

0° 60 mm (567 - 75 mm) 0

16-22 mm

D el

Fig190B The prototype counterbalanced Contraves Fig 190C H = hand-switch, M = mouth-switch, F =
— B stand for the operating microscope in use at the University photo- or movie camera, T = Hitachi colour TV camera
Hospital of Zurich since 1972. now available with three tubes.
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2D vs. 3D — Endoscopy in 2D

-> experienced surgeons compensate for lack of depth
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What if we could grant stereoscopic vision in endoscopy?
= without a 3D endoscope

- without specialized hardware, costs, etc.

- power of software / machine vision

13 MICN Lab

Approaches to the Problem:
— Multi-View Geometry such as Structure-From-Motion (SFM or SLAM algorithms) = photogrammetry
— Computationally expensive and difficult to execute in real time
— Photometry / "Depth-From-Shading” based on lighting changes
— Assumes stable lighting conditions
— Deep Learning-based methods
— Computationally expensive to develop but applicable in real-time
— Can deal with changing lighting conditions

Zanier, Serra, Staartjes; Real-time intraoperative depth estimation in transsphenoidal Page 6
surgery using deep learning: a pilot study, submitted (2025)
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DinoV2 in Action:
Still Images

Figure 1: Example frames of DinoV2 running on a surgical video.

A: mput frame, B: depth map as calculated by the model, C: overlay of A and B.

Zanier, Serra, Staartjes; Real-time intraoperative depth estimation in transsphenoidal
surgery using deep learning: a pilot study, submitted (2025)
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DinoV2 in Action:
Real-Time Render

Zanier, Serra, Staartjes; Real-time intraoperative depth estimation in transsphenoidal
surgery using deep learning: a pilot study, submitted (2025)
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How to get from a synthetic 3D image to binocular vision?
- e.g. EndoSurf 3D - 3D glasses or AR/VR

Reference Mesh Texture Normal Mesh

Reference Without Lyisiple  Without Leikonal Without Lgy¢ Without Lgnooth

PSNR/PCD 34.630/0.874 34.573/1.434 34.368/3.711 34.767/0.853

Zha et al. EndoSurf: Neural Surface Reconstruction of
Deformable Tissues with Stereo Endoscope Videos, arXiv 2023

Texture Normal

Complete model
35.004/0.841

Page 9



University of U sz Universitéts
Zurich™ Spital Zirich

Department of Neurosurgery

13 MICN Lab

How to get from a synthetic 3D image to binocular vision?
-=> 3D reconstructions from 2D endoscopy

Page 10

Zanier, Alakmeh, Arrockia, Regli, Serra, Staartjes, unpublished, 2025
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2. The Solution

Automatically detect anatomy in real-time:
- Eliminate preop dependence/brain shift
- Eliminate costs
- Eliminate logistics
- Enhanced user-variability/specificity problems

3. Our Approach
— Convolution Pooling Convolution Pooling Fully Fully Output

+RelU +RelU Connected ~ Connected perdictions

—

dog (0.01)
o

Cat (0.01)
Boat (0.94)
| ]Bird (0.94)
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FIGURE 1. A, Demonstrates an endoscopic view of the endonasal anatomy, specifically the middle and inferior turbinates as
well as the nasal septum. An experienced endoscopic pituitary surgeon labeled these 3 structures once each second with a single
pixel. B, Demonstrates the intended output of the machine vision model: anatomic structures in sight such as the septum and
inferior turbinate are identified and marked by the user interface. In the future, the model is intended to learn to anticipate

structures, eg, the middle turbinate hidden behind the cotton patty. MT, middle turbinate; IT inferior turbinate; ST, nasal
septum.

Staarties VE, Volokitin A, Regli L, Konukoglu E, Serra C.

Machine Vision for Real-Time Intraoperative Anatomic Guidance: A Proof-of-Concept Study in Endoscopic Pituitary Surgery. Page 14
Operative Neurosurgery. 2021;(opab187). doi:10.1093/ons/opab187
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BACKGROUND: Current intraoperative orientation methods either rely on preoperative
imaging, are resource-intensive to implement, or difficult to interpret. Real-time, reliable
anatomic recognition would constitute another strong pillar on which neurosurgeons
could rest for intraoperative orientation.

OBJECTIVE: To assess the feasibility of machine vision algorithms to identify anatomic
structures using only the endoscopic camera without prior explicit anatomo-topographic
knowledge in a proof-of-concept study.

METHODS: We developed and validated a deep learning algorithm to detect the nasal
septum, the middle turbinate, and the inferior turbinate during endoscopic endonasal
approaches based on endoscopy videos from 23 different patients. The model was trained
in a weakly supervised manner on 18 and validated on 5 patients. Performance was
compared against a baseline consisting of the average positions of the training ground
truth labels using a semiquantitative 3-tiered system.

RESULTS: We used 367 images extracted from the videos of 18 patients for training, as
well as 182 test images extracted from the videos of another 5 patients for testing the
fully developed model. The prototype machine vision algorithm was able to identify
the 3 endonasal structures qualitatively well. Compared to the baseline model based on
location priors, the algorithm demonstrated slightly but statistically significantly (P < .001)
improved annotation performance.

CONCLUSION: Automated recognition of anatomic structures in endoscopic videos by
means of a machine vision model using only the endoscopic camera without prior explicit
anatomo-topographic knowledge is feasible. This proof of concept encourages further
development of fully automated software for real-time intraoperative anatomic guidance
during surgery.

KEY WORDS: Machine vision, Anatomic recognition, Machine learning, Artificial intelligence, Anatomic guidance

Operative Neurosurgery 0:1-6, 2021 DOI:10.1093/ons/opab187

inferior turbinate

Weakly Supervised Deep Learning to
Generate Real-Time Anatomical Heatmaps

middle turbinate

Page 15
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Generation in Endoscopic Neurosurgery Using Machine Vision
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Received, October 08, 2024; Accepted, December 26, 2024; Published Online, April 28, 2025.

Operative Neurosurgery 00:1-7, 2025 10.1227; 1583

Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc on behalf of Congress of Neurological Surgeons. This is an open access article distributed under the terms
of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly
cited. The work cannot be changed in any way or used commercially without permission from the journal.

BACKGROUND AND OBJECTIVES: Artificial intelligence algorithms have proven capable of replicating cognitive
processes. Our aim was to replicate human roadmap generation for endoscopic neurosurgery with a live image-based
machine vision method.

METHODS: Surgical videos of a highly standardized surgical approach are labeled and used for algorithm training. After
object detection (YOLOv7) to generate bounding boxes for landmark anatomical structures, an autoencoder first
encodes the currently detected structures into an estimated position within this anatomical roadmap and then enables
extrapolation of structures that are expected to be encountered in forward or backward directions. Average precision of
the model applied to the test videos at an intersection-over-union threshold of 0.5 is reported.

RESULTS: In total, 166 anonymized endoscopic recording (3 x 10° labeled video frames) were included. We performed
model development using 146 videos and held out 20 videos for evaluation (test set). The performance regarding
bounding box detection among the 20 test set videos on average was 53.4. Evaluation of the performance of the
autoencoder model in detecting the current position within the roadmap of the surgical approach is evaluated
semiquantitatively, showing that the first detection of anatomical structures by the model corresponds well to their label
distribution along the latent variable encoding the anatomical roadmap. We also provide videos demonstrating the
mixed reality head'’s up display for anatomical navigation.

CONCLUSION: Our method enables reliable identification of key anatomical structures during endoscopic endonasal
trans-sphenoidal surgery in mixed reality. Through encoding detected landmark anatomical structures, a surgical
roadmap is encoded. This approach allows for detection of visible anatomical structures and enables extrapolation
toward the location of those yet to be dissected in deeper anatomical layers. Further development of such algorithms
may pave the way toward adding a mixed reality, real-time anatomical navigation software to the neurosurgeon’s
armamentarium.

KEY WORDS: Machine vision, Anatomical recognition, Machine learning, Artificial intelligence, Anatomical guidance

AENEAS: Roadmap Concept

MICN Lab
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YOLOv7 I:] ¢ \
Object Detection >
— — —_
O
Decoding
Position
—
Forward
Endoscopic Video Frames Bounding Boxes Roadmap Location Mixed-Reality

FIGURE 1. Representation of methodological approach. A sequence of video frames processed to detect bounding boxes relative to various anatomical structures. A neural
network then encodes the sequence of detections into a 1D latent variable corvelating with the position along the surgical path. Given the current position along the surgical
path, an estimation of anatomical structures in the forward or backward directions can be obtained, by extrapolating the current value of the latent variable.
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Sarwin G, Carretta A, Staartjes VE, Zoli M, Mazzatenta D, Regli L, Serra C, Konukoglu E
Live Image-Based Neurosurgical Guidance and Roadmap Generation Using Unsupervised Embedding Page 17
IPMI2023.
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Real-Time Anatomical Navigation in Endo-/Microscopic Brain & Spine Surgery
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Sarwin G, Konukoglu E, Serra C et al. — Pituitary Ryu, Staartjes, Serra et al. —- Endoscopic Spine
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Further Development: Application in Common Craniotomies & Spine

Pterional Retrosigmoid Percutaneous Transforaminal Microdiscectomy
Endoscopic Discectomy
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3D polyaxial movement — multiple surgical paths! Page 19
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-~ - Regli, Konukoglu, Serra,
: : . unpublished, 2025
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Imaging vs. Synthetic Imaging

— Based on physical measurement (+/- processing)
— X-Ray / Computed Tomography (CT): ionising radiation based radiodensity
Magnetic Resonance Imaging (MRI): Powerful magnetic field + RF pulses + complex computation

— Ultrasound: Sound waves reflected by differing tissue densities

Page 21
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1. Access/Availability - 2. Transport - 3. Costs - 4. Limitations

R e

== e

Page 22



University of U sz Universitéts
Zurich™ Spital Zirich

Department of Neurosurgery

19 MICN Lab

BoneMRI: Fast synthetic CT from MR of the lumbar spine

Page 23
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2. The Solution

Generate a synthetic CT from a MR to:
- Eliminate radiation
- Eliminate costs
- Eliminate logistics
- Enhanced diagnostics & planning

3. Our Approach

Convolution Pooling Convolution Pooling Fully Fully Output
+RelU +RelU Connected ~ Connected perdictions
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Magnetic resonance imaging—based synthetic computed
tomography of the lumbar spine for surgical planning: a
clinical proof-of-concept

Victor E. Staartjes, BMed,'-* Peter R. Seevinck, PhD,*> W. Peter Vandertop, MD, PhD,?
Marijn van Stralen, PhD,** and Marc L. Schréder, MD, PhD'

'Department of Neurosurgery, Bergman Clinics, Amsterdam; 2Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery,
Amsterdam Movement Sciences, Amsterdam; ‘image Sciences Institute, University Medical Center Utrecht; and *MRIguidance
B.V., Utrecht, The Netherlands; and *Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of
Neurosurgery, University Hospital Zurich, Clinical Neuroscience Centre, University of Zurich, Switzerland

OBJECTIVE Computed tomography scanning of the lumbar spine incurs a radiation dose ranging from 3.5 mSv to

19.5 mSv as well as relevant costs and is commonly necessary for spinal neuronavigation. Mitigation of the need for
treatment-planning CT scans in the presence of MR facilitated by MRI-based synthetic CT (sCT) would revolutionize
navigated lumbar spine surgery. The authors aim to demonstrate, as a proof of concept, the capability of deep learning—
based generation of sCT scans from MRI of the lumbar spine in 3 cases and to evaluate the potential of sCT for surgical
planning.

METHODS Synthetic CT reconstructions were made using a prototype version of the “BoneMRI" software. This deep
learning-based image synthesis method relies on a convolutional neural network trained on paired MRI-CT data. A spe-
cific but generally available 4-minute 3D radiofrequency-spoiled T1-weighted multiple gradient echo MRI sequence was
supplemented to a 1.5T lumbar spine MRI acquisition protocol.

RESULTS In the 3 presented cases, the prototype sCT method allowed voxel-wise radiodensity estimation from MRI,
resulting in qualitatively adequate CT images of the lumbar spine based on visual inspection. Normal as well as patho-
logical structures were reliably visualized. In the first case, in which a spiral CT scan was available as a control, a volume
CT dose index (CTDl,,) of 12.9 mGy could thus have been avoided. Pedicle screw trajectories and screw thickness were
estimable based on sCT findings.

CONCLUSIONS The evaluated prototype BoneMRI method enables generation of sCT scans from MRI images with
only minor changes in the acquisition protocol, with a potential to reduce workflow complexity, radiation exposure, and
costs. The quality of the generated CT scans was adequate based on visual inspection and could potentially be used for
surgical planning, intraoperative neuronavigation, or for diagnostic purposes in an adjunctive manner.
https://thejns.org/doi/abs/10.3171/2020.10.FOCUS20801

KEYWORDS lumbar spine; image conversion; imaging; deep learning; machine learning; artificial intelligence

TABLE 1. Exemplary measurements performed comparatively on

synthetic CT and spiral CT in case 1

Measurement

sCT

Spiral CT

Difference

L3

Anterior VBH

26.5

26.5

0.0

Posterior VBH

32.0

31.8

0.2

Spinal canal diameter

14.9

15.0

-0.1

L4

Anterior VBH

27.2

26.8

0.4

Posterior VBH

29.3

28.9

0.4

Spinal canal diameter

19.1

18.9

0.2

LS

Anterior VBH

29.1

291

0.0

Posterior VBH

1.8

12.0

-0.2

Spinal canal diameter

248

25.6

-0.8

Total (MAD = SD)

0.26 +0.24

MAD = mean absolute difference; VBH = vertebral body height.

Measurements are provided in millimeters.
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Case Lessons

J Neurosurg Case Lessons 6(2): CASE23120, 2023
DOI: 10.3171/CASE23120

Axial

Sagittal

Robot-assisted screw fixation in a cadaver utilizing magnetic resonance
imaging-based synthetic computed tomography: toward radiation-free spine
surgery. lllustrative case

*A. Daniel Davidar, MBBS," Brendan F. Judy, MD," Andrew M. Hersh, AB,' Carly Weber-Levine, MS," Safwan Alomari, MD,"
Arjun K. Menta, BS, BBA," Kelly Jiang, MS," Meghana Bhimreddy, BA," Mir Hussain, BS,? Neil R. Crawford, PhD,?
Majid Khan, MBBS, MD,® Gary Gong, MD, PhD,? and Nicholas Theodore, MD, MS'

Departments of 'Neurosurgery and *Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and 2Globus Medical, Inc, Audubon, Pennsylvania

BACKGROUND Synthetic computed tomography (sCT) can be created from magnetic resonance imaging (MRI) utilizing newer software. sCT is

yet to be explored as a possible altemative to routine CT (rCT). In this study, rCT scans and MRI-derived sCT scans were obtained on a TABLE 2. Screw precision measurements of sCT vs rCT
cadaver. Morphometric analysis was performed comparing the 2 scans. The ExcelsiusGPS robot was used to place lumbosacral screws with Tip Distance sCT  Tip Distance rCT  Tail Distance sCT  Tail Distance rCT ~ Angular Deviation ~ Angular Deviation
both rCT and sCT images. Level (mm) (mm) (mm) (mm) sCT (degrees) rCT (degrees)
OBSERVATIONS In total, 14 screws were placed. All screws were grade A on the Gertzbein-Robbins scale. The mean surface distance difference L1 05 1.1 1.1 2 21 21
between rCT and sCT on a reconstructed software model was —0.02 + 0.05 mm, the mean absolute surface distance was 0.24 + 0.05 mm, and the mean L2 11 1.7 21 23 3 3.7
absolute error of radiodensity was 92.88 + 10.53 HU. The overall mean tip distance for the SCT versus rCT was 1.74 + 1.1 versus 2.36 + 1.6 mm L3 1 0 08 22 22 25
(p = 0.24); mean tail distance for the sCT versus rCT was 1.93 + 0.88 versus 2.81 + 1.03 mm (p = 0.07); and mean angular deviation for the sCT L4 24 27 16 45 27 8
versus rCT was 3.2° + 2.05° versus 4.04°+ 2.71° (p = 0.53). LS 34 2.8 29 39 34 7.8

. . . . . S1 28 48 32 3 76 2.7
LESSONS MRI-based sCT yielded results comparable to those of rCT in both morphometric analysis and robot-assisted lumbosacral screw placement oAl ¥ 7y 13 m ™y 15
[l cacaier shky Mean + SD 1.74 £ 11 23616 1.93 +0.88 281 +1.03 32+205 4.04 £2.71
https:/thejns org/doi/abs/10.3171/CASE23120 ol s cl 05

KEYWORDS robotics; synthetic CT, bone MRI; screw fixation; lumbar; convolutional neural network Tip distance, tail distance, and angular deviation were measured using proprietary software where planned sCT screws were overlayed with postoperative CT. Images

were aligned in 3D axes and screw tip distance, tail distance, and angular deviation were measured.
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Fast MR- to CT-conversion for lumbar spinal diagnostics & navigation
using convolutional neural networks (“synthetic CT/BoneMRI”)
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BoneMRI
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Staartjes VE et al.

Magnetic resonance imaging-based synthetic computed tomography of
the lumbar spine for surgical planning: a clinical proof-of-concept.
Neurosurg Focus. 2021;50(1):E13. doi:10.3171/2020.10.FOCUS20801

Page 27


https://doi.org/10.3171/2020.10.FOCUS20801

Klinisches
Neurozentrum

University of Us Universitdts
Zurich™ Spital Zirich

MICN Lab

Department of Neurosurgery

Mild spondylotic
osseous deformation

v
o
c
@ O
V)
O ®©
g E
-Ge
C o
g'o

Staartjes VE et al.
Magnetic resonance imaging-based synthetic computed tomography of
the lumbar spine for surgical planning: a clinical proof-of-concept. Page 28
Neurosurg Focus. 2021;50(1):E13. doi:10.3171/2020.10.FOCUS20801
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Patient A

MR-only intraoperative robotic
pedicle screw placement workflow

FIG. 15.1 Patient A is depicted in the top panel. It demonstrates preoperative imaging in sagittal and axial multi-
planar reconstructions. T2-weighted MRI, conventional spiral CT, and synthetic CT (sCT) based on the BoneMRI
technique are shown. Patient B is depicted in the bottom panel. It demonstrates preoperative imaging in a sagittal
reconstruction. T2-weighted MRI, conventional spiral CT, and sCT based on the BoneMRI technique. In addition,
the preoperative lumbosacral x-ray and a 3D-volume render based on the synthetic CT demonstrates spondylolis-
thesis due to the bilateral L5 spondylolysis.

FIG. 15.2 The top panel (Patient A) demonstrates the planning process for an L3-L4 pedicle screw instrumen-
Veeravagu and Michael Y. Wang, 213-29. New Delhi: Elsevier, 2023. tation on the Mazor Robotics SpineAssist workstation. The bottom panel (Patient B) demonstrates the planning
hitps://doi.org/10.1016/B978-0-323-71160-9.00015-0. process for an L5-S1 pedicle screw instrumentation on the Mazor Robotics SpineAssist workstation.

Jin, Michael, Marc Schréder, and Victor E. Staartjes. “15 - Artificial Intelligence and Machine
Learning in Spine Surgery.” In Robotic and Navigated Spine Surgery, edited by Anand
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— Image Modality Conversion (MRI to CT, CT to MRI, Sonography to MRI)
— Dimensionality enhancement (Tomographic imaging from radiographic imaging, 3D from 2D)
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2. The Solution
Generate a synthetic 3D CT

from biplanar x-ray:

- Eliminate radiation

- Eliminate costs
- Eliminate logistics
- Enhanced and repeatable

diagnostics & planning

3. Our Approach
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Fast synthetic computed tomography (CT) generation from biplanar x-
ray of the skull and spine

A) synthetic CT

B) ground truth CT

Zanier O, Da Mutten R, Staartjes VH (October 2023)

work in progress




Klinisches
Neurozentrum

University of s Universitdts
Zurich™ 4 U z Spital Zirich

Department of Neurosurgery

TomoRay: Cranial

Original PSNR=26.547 PSNR=26.547 PSNR=26.547
SSIM=1 S§SIM=0.988  SSIM=0.840 SSIM=0.694

— Basic Principle: CNN-based GAN

DRRs or x-rays 2D-to-3D GAN sCT otCT

SSIM, PSNR

TomoRay Cranial: Synthesis of Cranial CT Imaging from Biplanar Radiographs using a Generative Adversarial Model
Olivier Zanier, Seung-Jun Ryu, Raffaele Da Mutten, Alessandro Carretta, Giorgio Palandri, Diego Mazzatenta, Luca Regli, Carlo Serra, Victor E. Staartjes Page 33
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TomoRay: Cranial
— Two models: Based on DRRs (Model 1) or based on x-rays (Model 2)

TomoRay Cranial: Synthesis of Cranial CT Imaging from Biplanar Radiographs using a Generative Adversarial Model
Olivier Zanier, Seung-Jun Ryu, Raffaele Da Mutten, Alessandro Carretta, Giorgio Palandri, Diego Mazzatenta, Luca Regli, Carlo Serra, Victor E. Staartjes
Submitted
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TomoRay: Cranial
— Two models: Based on DRRs (Model 1) or based on x-rays (Model 2)

True Saggital True Coronal True Axial

Generated Saggital Generated Coronal Generated Axial

TomoRay Cranial: Synthesis of Cranial CT Imaging from Biplanar Radiographs using a Generative Adversarial Model
Olivier Zanier, Seung-Jun Ryu, Raffaele Da Mutten, Alessandro Carretta, Giorgio Palandri, Diego Mazzatenta, Luca Regli, Carlo Serra, Victor E. Staartjes Page 35
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masking and
CcT mask Hounsfield windowing ~ ground truth CT

CT Plastimatch DRRs in two planes

TN

performance metrics

TomoRay: Generating Synthetic Computed Tomography of the Spine From Biplanar Radiographs

Klinisches
Neurozentrum

Table 2. Model performance on training and holdout sets

-
§

DRRs 2D to 3D GAN synthetic CT ground truth CT

Cohort PSNR (3D) [dB] SSIM (2D) Cosine similarity
Training (VerSe20) (n=209)

Mean + 5D 27.011 £2.955 0.9724 0.008 0.908 £0.081

Median (IQR) 26.743 (25.989-27.554) 0.973 (0.968-0.977) 0.927 (0.907-0.935)
Internal validation (VerSe20) (n=55)

Mean + 5D 22,206 £1.027 0.9532 0.009 0709 £0.195

Median (IQR) 22419 (21.458-22.801) 0.953 (0.948-0.961) 0779 (0.728-0.817)
External validation (CTSpine Lk subset) (n=56)

Mean + 5D 21139 £1.018 0.947 2 0.010 0671 £0.078

Median (IQR) 21273 (20.514-21.821) 0.948 (0.942-0.953) 0.691 (0.652-0.716)
SSIM is caleulated for each dimension individually and then averaged for each image. The final values reported are the mean and median over

the whale dataset.
PSNR, peak signal to noise ratio; SSIM, structural similarity index; 3D, 3-di i 2D, 2 i 5D, standard deviation; IQR, inter-

quartile range.

Olivier Zanier?, Sven Theiler!, Raffaele Da Mutten 1, Seung-Jun Ryu 2, Luca Reglil, Carlo Serra?, Victor E Staartjes 1

Neurospine, 2024 Mar 21

MICN Lab
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Zurich Machine Intelligence in Clinical Neuroscience
Symposium

“Towards the Horizon — and Beyond”

Thursday, June 19t 2025
Auditorium Monakow, USZ

9:00 a.m —4:30 p.m. UTC +2 (Zurich)
3:00 a.m. — 10:30 am. UTC -4 (New York)
5:00 pm. — 0:30 am. UTC +10 (Sydney)
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www.micnlab.com/symposium2025

Registration and participation (online or on-site) are completely free of charge! The event will be held in a hybnid format:
Online over Zoom and at the University Hospital Zurich, Haldenbach Building, Auditorium Monakow.
You will receive the Zoom link and further information in time and after registering using the abovementioned form.
A recording of the symposium will be made available on the MICN Lab website (www.micnlab.com)
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|0 Carlo Serra Luca Regli Victor Staartjes
>
s Machine in Clinical Ni & M: gical N (MICN) Laboratory
i Department of Neurosurgery & Clinical Neuroscience Center
{ University Hospital Zurich, University of Zurich
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Daniel Donoho (Washington, US) Online Alexandm Paunou (Zurich, CH) Live
Gary Sarwn (Zurich, CH) Live Julius Kernbach (Heidelberg, DE) Live
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Appropriate Data &
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Synthetic Imaging

ChatGPT 4o

Give me a definition of "synthetic imaging*

@ Synthetic imaging is the process of creating images using computational techniques rather than
capturing them directly through traditional optical methods. This can involve generating images
from data sets, simulations, or models. Synthetic imaging is widely used in fields such as
computer graphics, medical imaging, remote sensing, and scientific visualization. It often employs

algorithms to simulate gr_vzscal processes, reconstruct iw_es from incomgete dataI or enhance
image guality and detail beyond what is possible with direct imaging technigues.

A D ™ OO &8
P DV Y, .
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Synthetic Imaging

— Image Modality Conversion (MRI to CT, CT to MRI, Sonography to MRI)
— Dimensionality enhancement (Tomographic imaging from radiographic imaging, 3D from 2D)
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Synthetic Imaging - Primer
— Image Modality Conversion (MRI to CT, CT to MRI, Sonography to MRI)

— Dimensionality enhancement (Tomographic imaging from radiographic imaging, 3D from 2D)
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Strategies for generating tomography from radiographs

Fig. 2 Overview of studies included based on their date of publication and relative occurrence,

grouped by methodology
Strategies for generating synthetic computed tomography-like
MICNLab @
imaging from radiographs: A scoping review | :
Background Results s

Majority (50.8%) were published between 2010 4
and 2020

High cost u b J
Limited High radiation
isualizati Records identified i
Visualization dosage “Dataases (PubMog n = Adosiona ecords dentfed iuough

7040, Embase n = 6240, ather sources:

)%
.
o . = =
:‘Sf-".!% e ot Feetence screening (n = 6551 Anatomical areas of interest: Chest (18.6%), spine (15.3%), 3
[ n ) coronary arteries (11.9%), and head (11.9%), among others.
g
~

l 1 22% without medical data.

2018 I

2019 I
2020 I

2021 I

073 S——

2010 |
2012 —

2
20 Xray 030 CT R i s s . 2081} Main methodology: Deep learning 1
conversion _
methodologies l I I I I I I I I I B Deep Learning
Potential Benefits . 0
Records screened Records excluded Other methodologies: statistical shape models, iterative S o~ o - w - Mmoo W ~ W55M
Increased $ Decreased Decreased =108 h=11433} reconstruction algorithms, digital tomosynthesis and more. Qe § S § b= § § 2] 88388 o ) _ )
accesibility l} d costs radation l = AN NN NN ™ N N NN ~ Iterative reconstruction algorithm
Reports sought for retrieval Reports not retrieved 91.7% of studies reported validation of their methodology: T ot
(n=205) =g ‘ @ 47.2% validated their methods without using any initial data W Digital Tomosynthesis
l for training, 24.5% using external datasets, 15.1% using cross-
” B Others
M validation, and 15.1% did not specify the validation method. '
Reports assessed for eligibiity Reparts exciuded (n = 139)
. n=187) . e plane x-1ay
Search Date: e v o B
=1 rubMed v : Spamse ven recansinuction Conclusion
- __| Emb . Yo, + Non 2D source image B . .
= n;q ase o’ Despite promising results, the field encounters challenges.
ariv - There are a wide range of differing methodologies that
_— L — frequently lack proper validation. Additional research needs
o Eligibility Criteria: ’ . Sty inciuded postreview to address these challenges to establish the role of 2D to 3D
o @ Biplanar or 4-projection x-ray = 3D CT-like imagin; P =1
o proj \ aging =5 image conversion in the medical field.

Strategies for generating synthetic computed tomography-like imaging from radiographs: A scoping review
Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E. Staartjes
Under Review
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Strategies for generating tomography from radiographs

— Digital Tomosynthesis
— Mammography

— Multiple Projections acquired + filtered backprojection or iterative reconstruction

Standard stationary

Mammography Y Digital Breast 3 oceton ange
1 Tomosynthesis %,

(sDBT)

Rotating
x-ray source

[ r 4 AW |
T TR ".. —— Compression paddle
") —— Breast

—— Digital detector

z direction

Strategies for generating synthetic computed tomography-like imaging from radiographs: A scoping review
Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E. Staartjes
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Strategies for generating tomography from radiographs

— Statistical Shape Models (SSM)
— Bone Imaging, Chest Imaging

— Usually two projections + manual initialization + estimation of known shapes

- i ifi Mode 1 Mode 2 ¢) Personalised 3D
ﬂeﬁ - initialization Left - result \ / N (a) Chest X-Ray(s)  (b) Shape identified (c) Per:
n .‘ ﬁj{r

by SSAM (27% variance) (16% variance) ~ respiratory system
v n
1
-2S.D +

+ 2 S.D
(d) CT scan (e) Deep learning segmentation () Segmented labelmap

D AA-

: Calibrfat_ed X-Ray images & 3D distance and angle based SSM fitting 3D shape &
slatistical shape mOdOl \ 1o the Canny edae map j \ pose estimate / W r N —10 CM
. . . o . . . T TP v Lisatenns 25 CM ﬁff« 5 ‘lf
Strategies for generating synthetic computed tomography-like imaging from radiographs: A scoping review f1 ﬁ s
Daniel De Wilde, Olivier Zanier, Raffaele Da Mutten, Michael Jin, Luca Regli, Carlo Serra, Victor E. Staartjes Page 44
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Methods based on deep learning:

Project TomoRay
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X2CT-GAN: Reconstructing CT from Biplanar X-Rays with Generative
Adversarial Networks

Xingde Ying®-*, Heng Guo® 5, Kai Ma®, Jian Wu', Zhengxin Weng®, and Yefeng Zheng’

* YouTu Lab, Tencent T Zhejiang University % Shanghai Jiao Tong University
{kylekma, yefengzheng } @tencent.com {vingxingde, wujian2000} @ zju.edu.cn {ghgood, zxweng } @sjiu.edu.cn

' Generator

Reconstructed CT Ground Truth

Adversarial Loss

Discriminator

Figure 2. Overview of the X2CT-GAN model. RL and PL are
abbreviations of the reconstruction loss and projection loss.
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TomoRay: Cranial

— Two models: Based on DRRs (Model 1) or based on x-rays (Model 2)

Derive digitally reconstructed radiographs (DRRs)

TomoRay Cranial: Synthesis of Cranial CT Imaging from Biplanar Radiographs using a Generative Adversarial Model
Olivier Zanier, Seung-Jun Ryu, Raffaele Da Mutten, Alessandro Carretta, Giorgio Palandri, Diego Mazzatenta, Luca Regli, Carlo Serra, Victor E. Staartjes

Submitted Page 47
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TomoRay: Cranial

— Two models: Based on DRRs (Model 1) or based on x-rays (Model 2)

Table 3 Model | performance on training and holdout set. Final values reported are the mean and median over the Table 5 Model 2 performance on training and holdout set. Final values reported are the mean and median over the

whole dataset. whole dataset.

PSNR 3D (dB) SSIM PSNR 3D (dB) SSIM
Training (n = 150) Training (n = 1200)
mean & SD 2190+ L.18 (LET3 +0.024 mean + SD 17.13 + 1.05 (L8003 = 0.033,
median (IQR) 21.87 (21.22 - 32.53) 1 0.876 (0.855-0.890) median (1QR) 17.06 (16.42-17.69) 0806 (0. 782-0.821)
Internal Validation (n = 35) Internal Validation (n = 123)
mean + 5D 16.68 + 1.01 0.799 + 0.029 mean + 5D 14.69 + (.85 0.717 + 0.037
median (IQR) 16.39 (13.50 - 17.33) 1 0.806 (0.778 - 0.820) median (IQR) 14.77 (14.25 - 15.23) 0.720 (0,696 — 0.741)
External Validation (n = 50)

mean + 50

1561 =+ 1.02

(1.T82 + 0.030

median (1QR)

15.63 (1492 - 16.32)

0778 (00766 — (LA04)

8D, standard deviation; IQR, interquartile range

TomoRay Cranial: Synthesis of Cranial CT Imaging from Biplanar Radiographs using a Generative Adversarial Model

S0, standard deviation; IQR, interquartile range

Olivier Zanier, Seung-Jun Ryu, Raffaele Da Mutten, Alessandro Carretta, Giorgio Palandri, Diego Mazzatenta, Luca Regli, Carlo Serra, Victor E. Staartjes

Submitted
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What if we could grant stereoscopic vision in endoscopy?

-> with a 3D endoscope or akin to DaVinci steroscopic camera system
- requires hardware, costs, etc.

5. Conclusion

When examining the fairly standardized surgical procedure of
transphenoidal endoscopic pituitary adenomectomy, this prospec-
tive cohort study does not show obvious advantages of 3-D
endoscopy for patients using basic outcome parameters including
post-operative QoL. To our knowledge this is the first prospective
cohort study on the matter, thus corroborating previous retrospec-
tive studies of 3-D neuroendoscopy and 3-D endoscopy in general,
indicating that the clinical advantage of 3-D endoscopy is less than
that reported in preclinical simulator environments. The main
advantage of increased depth perception is more likely found in
more complex extended transphenoidal skull base procedures
though this remains to be proven.

- Advantages probably hard to show “evidence-based” as improved outcomes

- Added information: The more you know, the more you see & the more you see, the more you
know

Uvelius et al. 3-D endoscopy in surgery of pituitary adenomas, prospective evaluation Page 49
of patient gain using basic outcome parameters, J Clin Neuroscience 2020
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Some evidence of 3D endoscopy advantages ... from general surgery

Decrease in blood loss

Decrease in surgical time

Neurozentrum

» ) Mean Difference Mean Difference £ L) ) Mean Difference Mean Difference
Studyor Subgroup  Mean  SD Total Mean SD Total Weight IV, Random, 95%Cl IV, Random, 95% CI Study or Subgroup _Mean SD Total Mean SD Total Wei IV, Random, 95% Cl IV, Random, 95% CI
1.2.1 Cholecystectomy 2.2.1 Cholecystectomy
Bilgen 2013 3063 11 206 56 11 5B% 8404421438 - Zeng 2016 445 223 43 341 136 46 105% 1040266, 18.14) I+
Hanna 1998 517 198 30 517 164 30 62% 100[820,10.20 T Subtatal (95% CI) B 56 105% 10.40 [2.66, 18.14] ‘
Navarra 2015 40 B3 35 33 6 35 61%  200}0.88 488 r ‘ . : e
Zeng 2016 654 181 43 505 152 46 56% 1490[7.83,2167 - Heterogeneity: Not applicable
Subtotal (95% CI) 119 122 226%  6.81[0.58 13.03] . Test for overall efiect Z= 2.63 (P = 0.008)
Heterogeneity: Tau?= 30.80; Chi*= 15,62, df= 3 (P = 0.001), F= 81%
Testfor overall eflect: 2= 2.14 (F= 0.03) 2.2.2 Prostatectomy
122 Prostatectomy Aykan 2014 138 32 86 102 17 29 103%  36.00[2611,4589] -
Aykan 2014 190 31 B6 131 18 29 50% 59.00(49.06,69.94 - Bove 2014 532 450 43 383 100 43 07% 149.00[11.22,28678)
Bove 2015 41 50 43 162 175 43 30% 7900[63.17, 8483 - Hu 2015 2365 606 32 891 352 18 TA% 147.40(12084,173.96] —
Kinoghita 2015 148 43 57 150 53 59 36% -200[19.54,1554 -1 Subtotal (95% CI) 141 90 18.1%  103.62[8.02,199.21] -‘-
Xu 205 1802 691 32 1183 551 18 16% 61.90(26.96, 96.84) - - Ao . e '
Subtotal B5%CD 198 9 144% 491501500 8331] p— Heterogeneily Tau*= 597918, ChF = 61.35, df = 2 (P = 0.00001); = 87%
Heterogeneity Tau= 1102.03; Ch* = 40.79, df=3 (P < 0,00001); P = 84% Test for overall effeck Z= 212 (P =0.03)
Testfor overall eflect = 2.82 (P = 0.005)
2.2.3 Urological operations
12:3 Urologieal operations R 201;J " 1055 34 45 1503 556 45 B5% -5380[7354,-3408 -
Agrusa 2015 120 3% 28 110 275 13 32% 1000[10.1,30.11) T— uan o o : 5380 £73.54,-34.06) 1
Chen 2016 %5 15 20 M5 2 25 6% 200098300 )’S‘U;Uu:‘”%%cn 57 18 ;g Mo ;s 11'1];1& 24?3?&;2};35&}
Ruan 2015 922 145 45 875 138 45 57% -530[1115 058 - ubtota ! -24.76[-80.41, 30, -
éﬁﬂ:“”g%c" 4 H "1): 106 16 ;s 1‘;.3232 12';3?45;.53;;3 4r Heterogeneity. Tau*= 1547 73; Chi*= 24 67, df=1 (P = 0.00001); = 96%
otal b & -4.25, 9.1 - -
Heterogeneity Taut= 30.34; Chi*=11.25, di= 3 (P = 0.01); *= 72% Tes!for overall efiect Z= 0.87 (P = 0.38)
Testfor overall effect: 2= 0.78 (P = 0.44) o !
2.2.4 Digestive operations
1.2 Digestive operations Chen 2014 120 21 40 110 18 40 104%  10.00[143,1857] -
e oG R f;ggﬁ ;;gjﬂ I Hou 2015 127 267 76 124 358 78 103% 30016821282 T
Cu 20152 7288 0 69 78 M 566  400H15.915 L Velayutam 2016 252 349 40 204 226 20 06% 4A00}3BES, 19469 —
Curro 2016 M0O7E 25 105 B3 25 B0%  5.00[1.16,9.84 I~ Subtotal (95% CI) 156 138 21.3% 7.05[0.60, 13.51] J
Hou 2015 203 M5 76 176 277 78 61% 27.00[17.62,36.39) - Heterogeneity: Tau*= 0.00; Chi*=1.41,df=2 (P = 0.49); F= 0%
Ji2014 205 W5 0 206 26 16 36% 16.50[1.04,34.04) — Testfor overall effect Z= 214 (P = 0.03)
Velayutham 2016 B 7140 225 109 20 0B8% 59.00(6.41,111.59)
Subtotal (95% CI) pI 219 297% 14.01[6.20,21.83] *
Heterogeneity Tau?= 68.11: Chit= 26.35, df= 5 (P < 0.0001); F= 70% 3325‘;[0“9;‘1'995 T, 201252 1202
Testfor overall effect Z= 352 (P = 0.0004) hen 201 1201 4 2 10 F252,1292) r
125 Other types Usta 2014 68 40 9 56 36 56 98% 1200 051, 24.51) o
- | Zou 2014 83 23 30 a1 26 30 1.0% -0.80[2.04,0.44]
Chen 2015 875 13 34 889 238 26 46% -1.40[13.38,10.50) -1 '
Usta 2014 1342 618 91 1163 385 5 38% 17.90[1.69,3411] — Subtotal (95% Cl 155 2 314%  348[-338,1033]
Zou2014 628 107 30 457 82 30 59% 17.10[12.28,2192) - Heterogeneity. Tau*= 2399, Ch*=6.15, df= 2 (P = 0.05); F= 68%
Subtotal (95% C1) 155 112 143% 11.41[-0.90,23.71] . Test for overall effiect Z= 0.99 (p =0 31)
Heferogeneity. Tau?= 86,33, Chi*=B.04, df=2(P=002);F=75%
Testioroveral effect 2= 1.62 (= .07 Total (95% ) 555 447 1000%  1540[345,27.35]
Total (95% C1) 819 701 100.0% 15.44 [10.29, 20.50] ¢ Heterogeneity: Tau®= 337.19; Chi*= 221.22, df= 11 (P < 0.00001); F= 95% -2=UU _1“00 7 160 260
Heterogenelty. Tau= 111 72 Ch= 327.41, df= 21 (P < 0.00001), = 4% o S Testfor overall effect 7= 253 (P =0.01) Favours [20] Favours [30]

Testfor overall effect: Z= 5.88 (P < 0.00001)
Testfor subaroun diferances: Chi* = 10.36. df= 4 (P=0.03). F= 61 4%

Favours [20] Favours [30]

Uvelius et al. Two-dimensional versus three-dimensional laparoscopy in surgical
efficacy: a systematic review and meta-analysis, Oncotarget 2016

Test for suboroun differences: Chi*= 6.92. df= 4 (P = 014). F= 422%
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Comparison of methods

P
] oy

Input SC-SfMLeaner  Endo-SfM  Monodepth2 AF-SfMLeaner DINGV2  Surglcal-BING
fine-tuned (Ours)

Fig. 3: Qualitative depth comparison on the SCARED dataset.

Table 1: Quantitative depth comparison on the SCARED dataset of SOTA
depth estimation methods. The best results are in bold. The second-best results
are underlined.

Method AbsRel | SqRel] RMSE | RMSE log /| a1
SfMLearner [20] 0.079 0.879 6.896 0.110 0.947
Fang et al. [21] 0.078 0.794 6.794 0.109 0.946
Defeat-Net [22] 0.077 0.792 6.688 0.108 0.941
SC-SfMLearner [23] 0.068 0.645 5.988 0.097 0.957
Monodepth2 [24] 0.071 0.590 5.606 0.094 0.953
Endo-SfM [25] 0.062 0.606 5.726 0.093 0.957
AF-SfMLearner [17] 0.059 0.435 4.925 0.082 0.974
DINOv2 [6] (zero-shot) 0.088 0.963 7.447 0.120 0.933
DINOv2 [6] (fine-tuned) 0.060 0.459 4.692 0.081 0.963
. . . . . . Surgical-DINO SSL (Ours 0.059 0.427 4.904 0.081 0.974
Cui et al. Surgical-DINO: Adapter Learning of Foundation Models for Depth Estimation sirgica1-D1No (O(urs} ) 0.053 0.377 4.296 0.074 0.975

in Endoscopic Surgery, arXiv 2024
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How does DinoV2 work?

— Open-source base from Facebook Al (released 2023)

— Foundation model: learn generalized representations

— Self-supervised patch-based vision transformer — 142 million images w/o labels
— Huge model with 1 billion parameters «distilled» into several specialized models

— DinoV2-Depth: Base model (unchanged) as encoder + light decoder network

— Intuition:
— Experienced master surgeon who has not done this particular procedure before
— Learns to pick up cues in lighting, shading, movement, etc.

Zanier, Serra, Staartjes; Real-time intraoperative depth estimation in transsphenoidal Page 52
surgery using deep learning: a pilot study, submitted (2025)
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Quantitative Performance?

Figure 2: Illustration of the semi-quantitative validation process.
From left to right: Input image, model depth estimation in thresholded format, manual ground
truth.

A: well-performing example, B: inferior example

Zanier, Serra, Staartjes; Real-time intraoperative depth estimation in
transsphenoidal surgery using deep learning: a pilot study, submitted (2025)
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Qu antitative Performance? Figure 3: Distribution of DICE scores over the validation dataset.

60 -
Table 1: Semi-quantitative performance on evaluation dataset

50 4

mean + SD 033+0.10 "t

median (IQR) 031(0.25-0239) 3
maximum 0.62 30 1
minimum 0.12

20 1
SD: standard deviation, IQR: interquartile range

10 +

0.1 0.2 0.3 0.4 0.5 0.6
DICE scores

Zanier, Serra, Staartjes; Real-time intraoperative depth estimation in transsphenoidal

Page 54
surgery using deep learning: a pilot study, submitted (2025)
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How to get from a synthetic 3D image to binocular vision?
DinoV2 in action

Zanier, Serra, Staartjes; Real-time intraoperative depth estimation in
transsphenoidal surgery using deep learning: a pilot study, submitted (2025)
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