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1. Introduction

The canonical New Keynesian (NK) model with an occasionally binding
constraint arising from the effective lower bound (ELB), with full information
and rational expectations (FIRE) and an active Taylor rule1 (TR), possesses
multiple minimum state variable (MSV) solutions. Thus, it is termed as
“incomplete”. Furthermore, when subjected to significant shocks, an MSV
solution may not exist, rendering it “incoherent”. These crucial findings
were demonstrated in seminal works by Ascari and Mavroeidis (2022) (AM)
in a stochastic environment with rational expectations and Holden (2023)
under perfect foresight.

This paper, maintaining FIRE, demonstrates that simple Ricardian fiscal
policy (FP) ensures coherency and completeness. This holds robustly across
shocks of varying sizes and supports. Our key finding reveals that persistent
and reactive FP to inflation and output fluctuations guarantees a unique
MSV solution, while also satisfying Blanchard-Kahn (BK) local determinacy
conditions. This paper identifies two critical properties for achieving unique-
ness of an MSV solution. Firstly, at the ELB, FP stabilises the economy when
monetary policy is constrained, establishing an equilibrium path. Secondly,
a countercyclical rule-based FP eliminates belief-driven equilibria when it
follows adequate persistence.

To underscore the significance of this paper – and the relevance of model
coherency and completeness – it is crucial to contextualise the primary
contributions of AM and the literature. While previous studies often em-
ployed simplified approaches regarding shocks in models with the ELB, such
as assuming a singular structural shock or imposing rigid assumptions on
shock duration, AM consider multiple structural shocks and their serial oc-
currences within a forward-looking dynamicmodel with FIRE. Although this
paper abstracts frommultiple structural shocks, it examines the recurring
structural shock scenario.

Building on the work of Gourieroux, Laffont, and Monfort (1980) (GLM),

1. An active Taylor rule is one which satisfies the Taylor principle.
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AM derive two main results using a linearised equation system and endoge-
nous regime switching. Firstly, they demonstrate that achieving coherency
in ELB-constrained NK models poses a nontrivial challenge, particularly
when the inflation coefficient in the TR exceeds unity or when optimal mon-
etary policy under discretion does not ensure coherency. Additionally, AM
identify conditions that restrict the support of stochastic shocks, necessary
to ensure model coherency. However, these support restrictions prove cum-
bersome, dependent on model structural parameters and past realisations
of state variables in backward-looking models. Secondly, even with support
restrictions to ensure coherency, the model might still exhibit multiple MSV
solutions, potentially up to 2k solutions, where k represents the number of
discrete shock states (Rouwenhorst, 1995).

This concern extends beyond the conventional scope of the ELB literature,
whichmainly examined sunspot shocks or belief-drivenfluctuations between
steady states.2 However, general conditions to ensure model coherency and
completeness in macroeconomic DSGE literature remain limited, although
recent papers have provided sufficiency conditions for MSV equilibrium
existence in NK models (Eggertsson, 2011; Christiano, Eichenbaum, and
Johannsen, 2018; Nakata, 2018; Nakata and Schmidt, 2019). Compared to this
strand of literature, this paper studies solution existence and uniqueness.

As highlighted in follow-up work,Ascari, Mavroeidis, and McClung (2023)
show that multiplicity of MSV solutions emerges from the interplay between
rational expectations and the inherently nonlinear nature of the ELB con-
straint.While they focus on relaxing FIRE assumptions, this papermaintains
the FIRE framework and proposes alternative mechanisms, specifically em-
phasising the role of simple Ricardian FP, to address issues identified by
AM.

Our objective is to offer qualitative results in resolving the problem of
MSV solution multiplicity using appropriate FP. Thus, our paper adds to the

2. See, for example, Eggertsson and Woodford (2003), Guerrieri and Iacoviello (2015),
Kulish, Morley, and Robinson (2017), Aruoba, Cuba-Borda, and Schorfheide (2018), Aruoba
et al. (2021), and Angeletos and Lian (2023).
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studies that explored fiscal policy, the ELB, and multiple equilibria interac-
tions. Seminal work by Benhabib, Schmitt-Grohé, and Uribe (2001) examined
how Ricardian FP with active monetary policy leads to unique convergence
to a steady state equilibrium. However, convergence was not always to a
unique steady state and could include an unintended liquidity trap steady
state. Benhabib, Schmitt-Grohé, and Uribe (2002) extended this to estab-
lish convergence to a non-liquidity trap steady state. Both studies assumed
perfect foresight environments, while this paper maintains FIRE.3

There is a vast literature exploring the interaction between FP and the
ELB. Prominent theoretical contributions include Schmidt (2016), Tamanyu
(2021), and Nakata and Schmidt (2022), which showcased how expectations-
driven liquidity traps could be avoided with appropriate FP, emphasising
fiscal rule variations. Meanwhile, an example of a more policy-focused con-
tribution is Correia et al. (2013) which showed that distortionary tax policy
can perfectly replicate the unique rational expectations equilibrium without
the ELB constraint. While these results were quantitatively demonstrated
in a perfect foresight environment with agents making expectation errors,
our work – using a textbook New Keynesian setup – encompasses the mech-
anisms of their basic model as a special case.

It is notable that the aforementioned literature on the ELB and FP pri-
marily focused on model completeness or the elimination of a liquidity trap
steady state, often assuming restrictions on the shock process or stochastic
environment. Our primary contribution is to simultaneously consider coher-
ence, completeness, and local determinacy (BK conditions) concerning the
ELB and FP instruments. Additionally, despite the paper delving into fiscal
and monetary policy interactions,4 it refrains from examining fiscal policy
potency or fiscal multipliers at the ELB.

The paper proceeds as follows: Section 2 provides an overview of CC

3. See Definition 3 and Propositions 5 and 6 of Benhabib, Schmitt-Grohé, and Uribe
(2001).
4. This literature is vast – see, for example, Galí, López-Salido, and Vallés (2007), Davig

and Leeper (2011), Eggertsson and Krugman (2012), Billi and Walsh (2022), and Hills and
Nakata (2018).
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conditions within the context of an ELB-bound NK model and describes
the methodology used to verify CC conditions. Section 3 demonstrates how
Ricardian FP restores coherency and completeness in a purely forward-
looking reference NK model constrained by the ELB. Section 4 assesses CC
conditions for an NK model with FP featuring policy inertia. Finally, Section
5 concludes the paper.

2. Verifying Coherency and Completeness of the New
KeynesianModel with the ELB

In this section, we provide a sketch of the AM’s methodology to verify co-
herency and completeness of systems of linear equations, applying the
methodology to the textbook NK model subject to the ELB. Further explana-
tion and derivation can be found in AM or Appendix A.

General Verification for Linear Models. Let Y t be a n × 1 vector of endogenous
variables, Xt be a nx × 1 vector of exogenous state variables, and st ∈ {0, 1} be
an indicator variable that is equal to 1 when some inequality constraint is
slack and 0 otherwise.5

Coherency requires that there exist some function f (·) such that an MSV
solution can be represented as Y t = f (Xt). Assume that the exogenous states
Xt are k-state stationary first-order Markov processes with transition kernel
K. Stack the possible states of Xt for states i = 1, .., k into a nx × kmatrix X.
Then, let ei denote the i-th column of the k×k identitymatrix Ik, such thatXei,
the i-th column of X, is the i-th state of Xt.6 Then define Y as an n × kmatrix
whose i-th column, Yei, corresponds to Xt = Xei along an MSV solution. For
Sections 2 and 3, we abstract from models that feature endogenous state

5. Additionally, let Ωt denote the information set, thus allowing us to write: Y t+1|t =
Et[Y t+1|Ωt] and Xt+1|t = Et[Xt+1|Ωt].
6. The elements of the transition kernel K are Ki j = Pr(Xt+1 = Xe j |Xt = Xei) and hence,

Et[Xt+1|Xt = Xei] = XK⊤ei.
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variables.7 Thus, along an MSV solution we have:

E[Y t+1|Y t = Yei] = Et[Y t+1|Xt = Xei] = YK
⊤ei. (1)

This allows us to write state-space models, and thus DSGE models, in the
form:

0 = (AsiY + BsiYK
⊤ + CsiX + DsiXK

⊤)ei,

si = 1
([
a⊤Y + b⊤YK⊤ + c⊤X + d⊤XK⊤

]
ei > 0

)
, i = 1, ..., k,

(2)

where Ast , Bst , Cst , and Dst are coefficient matrices with dimensions n × n,
n × n, n × nx, and n × nx, respectively; a, b, c, and d are coefficient vectors,
and 1(·) is an indicator function that is equal to 1 if its argument holds true
and 0 otherwise.

The system (2) relates Y to X, and can be expressed as F(Y) = λ(X), where
λ(·) is some function of X, and F(·) is a piecewise linear continuous function
of Y. If J ⊆ {1, ..., k}, then the piecewise linear function F(Y) can then be
expressed as:

F(Y) =
∑
J

AJSCJvec(Y), (3)

where CJ = {Y : Y ∈ Rn×k, si = 1(i ∈ J)} is given by a configuration of regimes
over the k states given by J, SCJ is a nk × nkmatrix of indicator elements,8

and vec(·) is the vector operator function.9 In words:AJ andCJ are such that
if F(Y) in (3) is invertible, then the linear system is coherent and complete.
Put another way, there exists a unique MSV solution, as stipulated in GLM,
if all the determinants of AJ, J ⊆ {1, ..., k} share the same sign. Failure
of this requirement implies that the model is generally incoherent and/or
incomplete:

7. We revisit CC conditions for models with endogenous states in Section 4, where we
study the baseline NK model with persistent FP rules.
8. Note that when Yn×k is vectorised, and if k = 2, the first n elements correspond to state

1 and the last n elements correspond to state 2. Thus, in essence, the elements of SCJ map
the entries of AJ for the k states to the vectorised set of endogenous variables in Y.
9. The transformation of (2) into (3) is generally non-trivial (in which the expressions

ofAJ require Kronecker product operations) as it presents a Sylvester equation in Y. See,
for example, Kolmogorov and Fomin (1957). However, there are two exceptions that allow
straightforward computation of theAJ : n = 1 and n = k > 1. We make use of this simplifying
assumption both in this example and the analytical derivation in Appendix A.
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THEOREM 1 (GLM). Suppose that the mapping F(·) defined in (3) is continu-
ous. A necessary and sufficient condition for F(·) to be invertible is that all the
determinants detAJ, J ⊆ {1, ..., k} have the same sign.

An application of GLM Theorem 1 to the simple Fisherian model in
Aruoba, Cuba-Borda, and Schorfheide (2018) can be found in Appendix A.1.
Below we provide an application to a textbook NKmodel.

A Reference New Keynesian Model with the ELB. Consider the canonical NK
model as set out in, for example, Galí (2015). The model in its log-linearised
formwith the ELB can bewritten in three equations, the dynamic IS equation
(DISE), New Keynesian Phillips Curve (NKPC), and the TR:10

DISE: ŷt = Et ŷt+1 –
1
σ
(̂it – Etπ̂t+1) + εt, (4a)

NKPC: π̂t = βEtπ̂t+1 + κ ŷt, (4b)

TR: ît = max
{
–µ,ϕππ̂t + ϕ y ŷt

}
, (4c)

and where εt is a demand shock. Furthermore, ŷt is the output gap, π̂t is
inflation, and ît is the nominal interest rate.11 The parameters of interest
in the model are: σ, the coefficient of relative risk aversion; β, the repre-
sentative household’s subjective discount factor; κ, the slope of the NKPC;
µ = log(rπ∗), the ELB of the nominal interest rate in deviation from the
steady state, where r = 1/β is the steady state gross real interest rate and
π∗ is the gross inflation target of the monetary authority; ϕ y, the monetary
authority’s response parameter to output fluctuations; andϕπ, the monetary
authority’s responsiveness to inflation.

When the constraint on ît is binding, the system can be rewritten as

10. To keep the analysis simple, we omit cost-push shocks in the NKPC and monetary
policy shocks in the TR.
11. Hatted variables denote a variable in terms of log deviations from steady state. In other

words, for any generic variable, say, X, we have:

x̂t = lnXt – ln X̄ ≈
Xt – X̄
X̄

,

where X̄ is the value of Xt in the non-stochastic steady state.
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follows (
1 –κ
0 1

)(
π̂t

ŷt

)
+

(
–β 0
– 1σ –1

)(
π̂t+1

ŷt+1

)
+

(
1 0
0 1

)(
ut
εt

)
= 0 (5)

Whilst when the constraint is slack the system is given by(
1 –κ
ϕπ
σ 1 + ϕ y

σ

)(
π̂t

ŷt

)
+

(
–β 0
– 1σ –1

)(
π̂t+1

ŷt+1

)
+

(
1 0
0 1

)(
ut
εt

)
= 0 (6)

Themodel can then be cast in the canonical form as in (2). To check whether
the model satisfies the CC conditions, it is sufficient to check the inverta-
bility of F(·) by ensuring that the signs of detAJ1 and detAJ4 are identical.
Assuming p = q = 1 yields

detAJ1 = det

(
1 – β –κ
ϕπ–1
σ

ϕ y
σ

)
=
(1 – β)ϕ y + κ(ϕπ – 1)

σ
> 0, (7)

detAJ4 = det

(
1 – β –κ
– 1σ 0

)
= –
κ

σ
< 0. (8)

We observe that the signs of |AJ1 | and |AJ4 | differ, which implies that the
model is not generally coherent under an active TR with ϕπ > 1 and ϕ y ≥ 0.

We can graphically represent the CC conditions for the canonical NK
model by first considering the absorbing state of the model for when εt = 0.
In the absorbing state we have π̂t = π̂t+1 = π̂ and ŷt = ŷt+1 = ŷ. Hence, the
NKPC can be written as the following aggregate supply (AS) relation:

π̂ =
κ

1 – β
ŷ AS. (9)

Meanwhile, the DISE can be written and rearranged to give a piecewise
aggregate demand (AD) relation:

π̂ =


κϕπ
1–β ŷ ADTR,

–µ ADELB.
(10)

Clearly, the model admits two absorbing states: a PIR equilibrium, {π̂, ŷ, î} =
{0, 0, 0}, and a ZIR equilibrium, {π̂, ŷ, î} = {–µ, –µ(1–β)κ , –µ}, which we can
graphically see by plotting (9) and (10) as in Figure 1.

The left plot of Figure 1 shows the incompleteness problem when the
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FIGURE 1. Absorbing State of the New Keynesian Model (εt = 0)

Note: Diagramon the left depicts equilibria when the Taylor principle is adhered to. Diagram
on the right shows the PIR absorbing state for an interest rate rule that does not satisfy the
Taylor principle.

NK model features an active TR; well studied in the literature. Absent of
any shocks, the model implies two equilibria as the slope of ADTR is steeper
than that of AS. By contrast, when ϕπ < 1, as in the right plot of Figure 1, a
unique equilibrium exists as the AD and AS curves intersect once. However,
as is well known, a passive TR leads to issues with local model dynamics
(Blanchard and Kahn, 1980).

Now consider the transitory state for when εt =
p
σ r̂

T . For simplicity, we
assume that the shock is transitory and occurs once, in other words q = 1.
As the model is completely forward looking, the economy remains in the
transitory state for some indefinite period of time after which it jumps to an
absorbing state – either a PIR or ZIR equilibrium.

PIR absorbing state. At time t the economy is in a transitory state. With
probability p the economy remains in the transitory state ( ŷT , π̂T); with
complimentary probability 1 – p the economy moves to the PIR absorbing

8



state. Thus, the AS and AD relations can be written as

π̂T =
κ

1 – pβ
ŷT AS, (11a)

πT =


σ(1– p)
p–ϕπ

ŷT – p
p–ϕπ

r̂T ADTR for π̂T ≥ – µϕπ
,

σ(1– p)
p ŷT – µp – r̂

T ADELB for π̂T ≤ – µϕπ
.

(11b)

ZIR absorbing state. Here we repeat the above exercise but for when the
absorbing state is a ZIR equilibrium. As before, at time t the economy is in a
transitory state, and with probability p it remains in the transitory state, and
with probability 1 – p it transitions to the ZIR absorbing state. As previously
mentioned, the absorbing state here now differs in value from the PIR case,
and as such, the AS and AD relations can be written as:

π̂T =
κ

1 – pβ
ŷT –

β(1 – p)
1 – pβ

µ AS, (12a)

π̂T =


σ(1– p)
p–ϕπ

ŷT + 1– p
p–ϕπ

[
(1–β)
κ + 1

]
µ – p

p–ϕπ
r̂T ADTR for π̂T ≥ – µϕπ

,
σ(1– p)
p ŷT + 1– p

p

[
(1–β)σ
κ + 1

]
µ – µp – r̂

T ADELB for π̂T ≤ – µϕπ
,

(12b)

respectively. To complete the description of this simple example, we define
θ as the ratio of the slopes of the ADELB and AS relations:

θ =
σ(1 – p)(1 – pβ)

pκ
. (13)

Figure 2 then plots the AS and AD when monetary policy adheres to the
Taylor principle (ϕπ > 1) for either a PIR or ZIR absorbing state when the
economy is subject to the shock term εt. The plots on the left hand side of
Figure 2 are for the case of θ < 1, i.e., when AD is flatter relative to AS. The
plots on the right in Figure 2 are for the case where θ > 1, i.e., when AD is
more steep than AS. The different values for θ correspond to different values
of p. Namely, the plots shown in Subfigure 2B with θ < 1 are for higher values
of p than those generated for the case where θ > 1. Additionally, the higher
value of p corresponds to a higher probability that the model remains in a
transitory state each period.
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FIGURE 2. Transitory States of the New Keynesian Model (ϕπ > 1)

A. PIR (top) and ZIR (bottom) absorbing
states (θ > 1)

B. PIR (top) and ZIR (bottom) absorbing
states (θ < 1)

As discussed by AM, and shown in Figure 2, for the case where θ > 1,
the only support restriction necessary for an MSV solution to exist in the
absorbing state is (rπ∗)–1 ≤ 1. But for when θ ≤ 1, the necessary support
restriction becomes:

1
rπ∗

= 1 and – r̂L ≤ log(rπ∗)
(
ϕπ – p
ϕπ p

+
θ

ϕπ

)
. (14)

To put it simply, these support restrictions ensure that a negative shock to
AD does not lead it shifting too far to the left or above of AS, as shown in
ADTR,ELB1 of Subfigure 2B.

Derivations and further explanation can be found in Appendix A, or
interested readers can refer to AM for more detail. We emphasise that non-
uniqueness of equilibria in the baseline NKmodel is driven by exogenous
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uncertainty captured by p. We proceed with analysing how simple Ricardian
FP can counteract the effects of uncertainty and restore coherency and
completeness.

3. Fiscal Policy and Coherency and Completeness

In this section, we show how Ricardian fiscal policy that consists of govern-
ment spending can render a baseline NK model subject to the ELB coherent
and complete.

Model. Weaugment the baselineNKmodelwith a simple FP setup following
Woodford (2011). The model is otherwise standard, and derivation is given
in Appendix B. In what follows, we show that under simple fiscal feedback
rules, the model can generate a unique MSV solution in the presence of the
ELB under certain restrictions on FP. The model is described by the DISE,
NKPC, TR, government budget constraint, and the natural rate given by:

x̂t = Et x̂t+1 –
c
σ
(̂it – Etπ̂t+1 – r̂nt ), (15a)

π̂t = βEtπ̂t+1 + κ yx̂t +
ϵ

Φ

(
Ψwτ̂wt – Ψ

cτ̂ct –
1
ϵ
τ̂st –

σ

c
ĝt
)
, (15b)

ît = max{–µ,ϕππ̂t + ϕ yx̂t}, (15c)

gĝt =
T
Y
τ̂t + τcc(τ̂ct + ĉt) + τ

s(τ̂st + x̂t) + τ
w(τ̂wt + l̂ t), (15d)

r̂nt = –Et∆τ̂
c
t+1 –

σg
c

Et∆ĝt+1 –
σ

c
Et∆ẑt+1, (15e)

where c = C/Y is the steady-state consumption-output ratio, g = G/Y is
the steady-state government expenditure-output ratio, and κ y and κg = ϵσ

cΦ
denote slopes of the NKPC and coefficient on government expenditure, gt,
respectively. Additionally, consumption taxes are τct , labour income taxes
are τwt , production taxes are τ

s
t, and zt are household preference shocks.

The model is closed with a rule for government expenditure of the form

Et ĝt+1 = ρg ĝt +ψππ̂t +ψ yx̂t, (16)

where ψπ and ψ y denote the degree of reaction of taxes to deviations of in-
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TABLE 1. Model Calibration

Parameter Value Description
σ 2 Coefficient of relative risk-aversion
φ 2/3 Frisch elasticity of labour supply
β 0.99 Discount factor
τc 1/4 Steady-state level of fiscal instrument
κ y 0.23 Slope of NKPC
Ψc 1/3 Coefficient on fiscal instrument
γ 3/4 Calvo probability
ϵ 10 Elasticity of substitution between goods
c 3/4 Fraction of consumption in output
g 1/4 Fraction of government spending in output
ϕπ 1.5 Weight on inflation, Taylor rule
ϕ y 0.2 Weight on output gap, Taylor rule

flation and the output gap, respectively. Throughout this section, we assume
that the rule is “fully inertial”, that is ρg = 1.12

Calibration. In what follows, for all quantitative results the model is cali-
brated according to the values in Table 1 unless specified otherwise. These
parameter values are standard in the NK DSGE literature.

3.1. Permanent Fiscal Policy Change

Assume that fiscal expenditure is financed by amix of labour income, output,
and lump-sum taxes such that the effects of fiscal policy are offset in the
NKPC: Ψwτ̂wt – 1

ϵ τ̂
s
t =

σ
c ĝt and τ̂

c
t = 0.13 Thus, government spending only

directly affects aggregate demand. We have the following proposition:

12. This assumption allows us to check if the model is coherent and complete analytically.
We relax this assumption in Section 4.
13. Absence of direct supply-side effects allows for analytical derivation of CC conditions.

Government expenditure in the NKPC could be offset using a different combination of taxes,
for instance τc = τw = 0 and –τ̂st/ϵ = (σ/c)ĝt. Equivalently, this would also be the case under
preferences as in Greenwood, Hercowitz, and Huffman (1988) or inelastic labour supply.

12



FIGURE 3. Coherency and Completeness Region for Inflation and Output Gap
Fiscal Rule
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Blue circles denote regions where coherency and completeness conditions are satisfied.
Red triangles denote region where the model is either incoherent or incomplete.

PROPOSITION 1. A baseline New Keynesian model with fiscal policy that consists
of government spending, output taxes, labour income taxes, and lump-sum taxes
as defined in (15), is generally coherent and complete when the reaction of fiscal
policy to inflation and the output gap, ψπ and ψ y, respectively, as described in
the fiscal rule Equation (16), is sufficiently strong.

Proof of Proposition 1 is provided in Appendix B.2. The region for which
the model satisfies the CC conditions as a function of the fiscal authority’s
reaction parameters, ψπ and ψ y, are shown in Figure 3. Using our baseline
calibration, we see that themodel generally satisfies the CC conditions in the
negative orthant of ψπ and ψ y space, R2–, and when ψπ is sufficiently large.
The intuition for this is that a strong enough reaction on the part of the fiscal
authority to inflation and output deviations leads to a uniqueMSV solution by
ensuring an intersection between AD and AS. We illustrate this for a simple
case in Figure 5. Furthermore, we note that the degree of reaction on the
part of the fiscal authority to the output gap is largely irrelevant as to whether

13



FIGURE 4. Coherency and Completeness Region for Simple Inflation Target-
ing Fiscal Rule (Equation (17))
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Blue circles denote regions where coherency and completeness conditions are satisfied.
Red triangles denotes region where the model is either incoherent or incomplete.

or not the model satisfies the CC conditions.
As such, in order to clarify our intuition and understand the mechanism

driving requirements of the CC conditions, we focus on a simplified version
of (16) where the fiscal authority strictly targets inflation (ψ y = 0) with the
following rule:

Et∆ĝt+1 = ψππ̂t. (17)

We then plot the region for which the model satisfies the CC conditions, for
parameters ofϕπ andψπ as shown in the Figure 4. We emphasise two points:
with the simple FP rule in Equation (17), themodel satisfies the CC conditions
despite the monetary authority adopting an active TR. This addresses one of
the major concerns surrounding NK models subject to the ELB as raised by
AM. Secondly, in order to satisfy the CC conditions, the fiscal authority must
respond strongly to inflation.

Consider the simple FP rule, Equation (17), and the absorbing state case

14



with εt = 0. The AS curve takes a similar form as in Equation (9), and the AD
curve is piecewise linear, giving us the following system:

π̂ =
κ y
1 – β

x̂ AS, (18a)

π̂ =

(ϕπ +ψ∗) κ y1–β x̂ ADTR for π̂ > –µ,

ψ∗ κ y
1–β x̂ – µ ADELB for π̂ < –µ,

(18b)

where
ψ∗ =

σψπg
c

. (19)

The PIR equilibrium is trivial and is given, as before, by {π̂, x̂, î} = {0, 0, 0}.
The ZIR equilibrium here is {π̂, x̂, î} =

{
µ

ψ∗–1 ,
(1–β)µ
κ y(ψ∗–1) , –µ

}
.

PIR absorbing state with active FP (ψ∗ > 1 and ψ∗ < –ϕπ). 14 If ψ∗ > 1 or
ψ∗ < –ϕπ, the economy cannot be at the ELB in the absorbing state. That
is, for an inflation level that is higher than the lower bound on the nominal
interest rate, π̂ > –µ, the nominal interest rate as per the TR is unconstrained,
and so the following equality – obtained by substituting (18a) into ADELB in
(18b) – implies an inflation rate that is higher than –µ:

π̂ =
µ

ψ∗ – 1
.

Thus, inflation cannot be at its ELB steady state level, and by implication the
nominal interest rate cannot be at the ELB. Hence, no ZIR equilibrium can
exist with an active FP rule as in Equation (17).

Absorbing states with passive FP (ψ∗ < 1 and 0 < ψ∗ + ϕπ < 1). Here, the ZIR
equilibrium is consistent with the ELB constraint on the nominal interest
rate since implied inflation is less than or equal to –µ. Passive FP also implies
that the slope ofADTR is flatter than that ofAS, hence there are two absorbing
– both the PIR and ZIR equilibria. Moreover, a passive FP rule implies that in

14. Our use of “active” and “passive” to describe FP should not be confused with the more
conventional use of these terms established by Leeper (1991) to describe monetary and
fiscal policy interactions.
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a ZIR equilibrium the inflation rate is lower than that of the ZIR equilibrium
with no fiscal rule. Figure 5 illustrates the two cases.

We proceed with analysing the transitory equilibria with εt =
p
σ r̂

T in
each of the cases. As before, the economy remains in a transitory state for
an indefinite amount of time, before transitioning to an absorbing state
thereafter.

Transitory states with active FP (ψ∗ ∉ (–ϕπ, 1)). With probability p, the
economy remains in a transitory state and jumps to the PIR absorbing state
with complimentary probability 1 – p. AS and AD are given by

π̂T =
κ y

1 – pβ
x̂T AS (20a)

π̂T =


σ(1– p)

c( p–ϕπ–ψ∗) x̂
T – p

c( p–ϕπ–ψ∗) r̂
T ADTR for π̂T ≥ – µϕπ

,
σ(1– p)
c( p–ψ∗) x̂

T – µ
p–ψ∗ – p

c( p–ψ∗) r̂
T ADELB for π̂T ≤ – µϕπ

.
(20b)

When ψ∗ > 1, ADTR and ADELB have negative slope. The model thus satisfies
theCCconditions.Whenψ∗ < –ϕπ, the slopes ofADTR andADELB are positive
and ADELB is flatter than AS. This implies a unique transitory equilibrium.

Transitory states with passive FP (ψ∗ ∈ (–ϕπ, 1)). In the case where ψ∗ ∈

(–ϕπ, 1), there are two potential absorbing states. In the PIR equilibrium, we
have the system as above. The slope of ADTR is negative, while the slope of
ADELB can either be positive or negative. Hence, for some values of p, the
slope of ADELB can be flatter than that of AS, which implies incoherency or
incompleteness in absence of support restrictions. This is the case when

θ =
∂ADELB/∂x̂
∂AS/∂x̂

=
σ(1 – p)(1 – pβ)
κ yc( p –ψ∗)

< 1. (21)

If the ZIR equilibrium is the absorbing state, the system takes the form

π̂T =
κ y

1 – pβ
x̂T +

β(1 – p)
1 – pβ

µ

ψ∗ – 1
AS, (22a)
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π̂T =


(1– p)σ

c( p–ϕπ–ψ∗) x̂
T – (1– p)µ

(ψ∗–1)( p–ψ∗–ϕπ)

[
(1–β)σ
cκ y + 1

]
– p
c( p–ϕπ–ψ∗) r̂

T ADTR,
(1– p)σ
c( p–ψ∗) x̂

T – (1– p)µ
(ψ∗–1)( p–ψ∗)

[
(1–β)σ
cκ y + 1

]
– µ
( p–ψ∗) –

p
c( p–ψ∗) r̂

T ADELB.

(22b)

Since FP is passive, the slope of ADTR is negative and the slope of ADELB can
be positive. In this case, the model can be incoherent or incomplete due to
ADELB being flatter than AS (θ < 1).

The four cases related to active and passive FP in both absorbing states
are illustrated in Figure 6.

Moreover, the rule in Equation (16) nests the special case where FP can
fully replicate monetary policy as in the simple case considered in Correia
et al. (2013), who termed this as “unconventional fiscal policy”. This is the
case if FP activates at the ELB, and its feedback coefficients are set such that
they exactlymirror the effects of the counterfactual unconstrainedmonetary
policy. Further details and derivations of this special case are provided in
Appendix B.4. Analogous results hold when monetary policy is conducted
optimally under discretion, which we provide analytical derivation for in
Appendix B.5.

Relationship to baseline NK model and importance of commitment. For the
baseline NKmodel considered in Section 2, Equation (13) summarises the
conditions under which the model possesses a unique MSV solution. It is
worth reiterating that unlike in the case of a model with FP, the baseline
NK model implies that the slope of ADELB is determined only by exogenous
uncertainty p and deep structural parameters.

Thus, one can argue that if the effects of uncertainty can be counteracted
by FP, themodel becomes coherent and complete. The condition on θ implies
that the probability of shockpersistence, p,must be low so that CC conditions
are satisfied. An analogous condition for the model with permanent fiscal
policy changes can be drawn from Equation (21); if θ > 1, the model is
coherent and complete. This condition shows that unlike in the baseline NK
model, FP can alleviate the effects of exogenous uncertainty on the slope of
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ADELB and, thus, ensures satisfaction of the CC conditions.
The importance of persistence implied by (17) cannot be overstated and is

a key point of this paper. To highlight this consider the case where the fiscal
targeting rule is given in deviations and not in growth rates; ĝt = ψππ̂t. This
will imply the following ADELB/AS slope ratio that is required to be greater
than unity to satisfy CC:

θ =
σ(1 – p)(1 – pβ)
p +ψ∗(1 – p)

> 1,

which does not hold if p is sufficiently large for any bounded value of ψ∗.
The key intuition for permanent policy changes can be drawn from the

fact that the FP instrument is present in the AD relationship in Equation
(15a) in expectation. Thus, any rule that targets contemporaneous deviations
would imply additional terms in expectation that add uncertainty to the
system. This highlights the importance of commitment to future changes in
policy that depend on contemporaneous deviations of endogenous variables
as in, for example, (17). The assumption that a fiscal authority needs to apply
a targeting rule to growth rates of the instrument and not to its deviations is
rather restrictive, however. We relax this assumption in Section 4.1 allowing
for an inertial rule with ρg < 1.

3.2. Equivalence of Simple Fiscal Policy Regimes

So far, we have considered a standard NKmodel augmented with a simple FP
setup where government spending targets inflation and output gap. The key
difference between this model, described by the system (15), and a standard
NK model as in Equations (4a)-(4c) is the presence of a fiscal instrument in
the DISE. As shown above, if FP uses this instrument to react to exogenous
disturbances aggressively enough, the model satisfies the CC conditions.
Existence of such an instrument in the DISE is, however, not exclusive to the
fiscal setup we have discussed.

For example, consider the case where the fiscal authority levies consump-
tion and wage taxes, τc and τw, respectively, and only redistributes the taxes
as lump-sum transfers, τt. Additionally, assume that there are no production
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subsidies, τst = 0,∀t. Then, if the following condition holds, the effects of FP
are offset in the NKPC in Equation (15b):

Ψwτ̂wt = Ψcτ̂ct . (23)

The natural interest rate in the DISE can then be written as:

r̂nt = –Et∆τ̂
c
t+1 –

σ

c
εt (24)

where ∆τ̂ct+1 is the consumption tax growth rate.
Thus, FP can replace activemonetary policywhen the latter is constrained

thus rendering the model linear and guaranteeing that the CC conditions
are satisfied. This is in line with the results in Correia et al. (2013). Under
this formulation, the strength of the fiscal instrument (in the DISE) may be
higher or lower than in (15), depending on the values of themodel’s structural
parameters. For example, under our calibration in Table 1, the coefficient
on the fiscal instrument (government expenditure) is g, while on the former
it is Ψc/σ. While qualitatively the role of the instruments in both cases is
identical, the degree of reaction of ∆τ̂ct+1 is required to be greater than that
of ∆ĝt+1 since the coefficient on the former is smaller.

Using this alternative setup, we show the CC regions in Figure 7 under: (i)
simple inflation targeting in Figure 7A and (ii) inflation and output targeting
in Figure 7B. The relevant coefficients of the canonical form are given in
Appendix B.6. As before, if the degree of reaction of differentials of consump-
tion tax to inflation is large enough, the model is coherent and complete.
The intuition for this case is simple and mirrors that in Section 3.1.
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FIGURE 5. Coherency and Completeness with Active and Passive Simple
Fiscal Rules (Absorbing State; εt = 0)

Figure illustrates uniqueness of the absorbing state under active fiscal policy (top-left and
bottom-right). If the fiscal policy is insufficiently aggressive, there are multiple absorbing
states (top-right and bottom-left).
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FIGURE 6. Transitory States under Active and Passive Fiscal Policy

Top row shows transitory state with a positive interest rate absorbing state with active fiscal
policy. Top left panel shows procyclical fiscal policy. Top right shows countercyclical fiscal
policy. Bottom panels shows passive procyclical fiscal policy regime. Passive fiscal policy in
general implies non-existence of solution or two solutions as a special case. Active fiscal
policy implies existence of unique solution.
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FIGURE 7. Coherency and Completeness Regions for Consumption Tax Fiscal
Policy Regimes

A. Simple Inflation Targeting FP (ψ y = 0)
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B. Inflation and Output Gap Rule

-10 -8 -6 -4 -2 0 2 4 6 8 10

A
:

-10

-8

-6

-4

-2

0

2

4

6

8

10

A
y

Blue circles denote regions where coherency and completeness conditions are satisfied.
Red triangles denote regions where the model is incoherent or incomplete. Consumption
tax rule is given by ∆τ̂ct+1 = ψππ̂t +ψ yx̂t.
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3.3. Contemporaneous Rules

Now, we assume that the rule in Equation (16) is replaced with a contempo-
raneous or non-inertial fiscal feedback rule of the form

ĝt = ψππ̂t +ψ yx̂t. (25)

We also assume that only lump-sum taxes are levied, so there is a one-to-one
mapping of lump-sum taxes to government spending. We then have the
following proposition:

PROPOSITION 2. A baseline New Keynesian model with a simple fiscal rule de-
scribed by (25) and (15), in which monetary policy adheres to strict inflation
targeting (ϕ y = 0) and the Taylor principle is satisfied (ϕπ > 1), fails to satisfy the
coherency and completeness conditions.

Rearranging the system of equations and obtaining the relevant matrices
from the canonical form with relevant coefficients provided in Appendix
B.3, CC conditions are satisfied if and only if the signs of |AJ1 | and |AJ4 | are
identical. This is not the case since

|AJ1 | = |A1 + B1I2|

=

∣∣∣∣∣ c
σ(1 – ϕπ) 0
β – 1 – κgψπ κ y – κgψ y

∣∣∣∣∣
=
c(1 – ϕπ)(κ y – κgψ y)

σ
,

|AJ4 | =
c(κ y – κgψ y)

σ
.

(26)

To put simply, the above gives |AJ1 | = |AJ4 |(1 –ϕπ), which implies that under
an active TR the NKmodel with FP rule (25) does not generally satisfy the
CC conditions.

As in the baseline NK model without FP, this can be seen graphically
in the case of the absorbing state (εt = 0) or the transitory state with a PIR
absorbing state. We illustrate the case of the absorbing state with ψ y = 0 by
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FIGURE 8. Strict Inflation Targeting Monetary Policy: Absorbing State

The absorbing state is described as the permanent state of the economy when εt = 0.
Monetary policy is conducted by adjusting the nominal interest rate to only close the
inflation gap, implying that ϕ y = 0.

rearranging the system of equations into AS and AD schedules:

π̂ =
κ y

1 – β + κgψπ
x̂ AS, (27a)

π̂ =


ϕπκ y

1–β+κgψπ
x̂ ADTR,

–µ ADELB.
(27b)

Notice that with the introduction of FP, both the AS and ADTR are aug-
mented and sensitive to two FP parameters: the NKPC coefficient of govern-
ment expenditure, κg, and the FP rule reaction parameter to inflation, ψπ.
Furthermore, notice that the slopes of AS and ADTR are dependent on the
relative sizes of these parameters. Namely, ifψπ > (1–β)/κg, then AS and AD
are diagrammatically similar to the case of the baseline NKmodel with no
FP (Figure 1), with two solutions – one PIR and one ZIR. This is illustrated in
the left diagram of Figure 8. However, if the condition ψπ < (1 – β)/κg holds,
then both AS and ADTR become downward sloping, and if ADTR is steeper
than AS then only one unique solution remains – the PIR equilibrium. This
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FIGURE 9. Strict Inflation Targeting Monetary Policy: Transitory State with
PIR Absorbing

In each period the economy is subject to a shock with probability p. With complementary
probability 1 – p, the economy transitions to the PIR absorbing state. Monetary policy is
conducted by adjusting the nominal interest rate to only close the inflation gap, implying
that ϕ y = 0.

case is illustrated in the right diagram of Figure 8.
But is the condition ψπ < (1 – β)/κg enough to ensure a unique solution

once the economy is subject to shocks? No. To see this diagrammatically we
consider the economy when it starts in the transitory state and is subject
to shocks with probability p in each period, and with probability 1 – p the
economy transitions to its PIR absorbing state.AS andAD can then bewritten
as follows:

π̂T =
κ y

1 – pβ + κgψπ
x̂T AS, (28a)

π̂T =


σ(1– p)

pc+(1– p)σgψπ–cϕπ
x̂T – p

c p+(1– p)gσψπ–cϕπ
r̂T ADTR,

σ(1– p)
pc+(1– p)σgψπ

x̂T – c
pc+gσψπ(1– p)

µ – p
c p+(1– p)gσψπ

r̂T ADELB.
(28b)

Figure 9 plots AS and AD from (28), where we can clearly see that re-
gardless of the relative size of κg and ψπ, the CC conditions are not satisfied
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and thus, in general, no solution exists or that two solutions exist. This re-
sult holds true even when the condition ψπ < (1 – β)/κg holds, which is the
condition needed to ensure a unique absorbing state.

Monetary policy targets inflation and output gap. Consider the case where
the monetary authority targets both the inflation and output gap, (ϕ y > 0).

As before, rearrange the model for the absorbing state where εt = 0, and
express the model in two equations, AS and AD:

π̂ = Θx̂ AS, (29a)

π̂ =


(
ϕπΘ + ϕ y

)
x̂ ADTR,

–µ ADELB,
(29b)

where
Θ =

κ y – κgψ y
1 – β + κgψπ

.

Note carefully that the slopes of AS and AD in (29) are potentially ambiguous.
In line with the calibration in Table 1 andwithψ y,ψπ being sufficiently large
in absolute value, the following assumptions on parameter values are made:

Θ < 0, ϕπΘ + ϕ y > Θ,

which then implies
Θ(1 – ϕπ) < ϕ y.

One can see that the LHS of the above inequality is always positive, and
that ϕ y must be sufficiently large for the inequality to hold. This inequal-
ity highlights the role of a TR that includes both inflation and the output
gap. If monetary policy follows a strict inflation targeting regime, the in-
equality would never be satisfied and, hence, no matter the fiscal policy
stance (captured by Θ), the existence of multiple absorbing states is never
ruled out. Hence, multiplicity of steady states in this case is only ruled out
under a particular configuration of fiscal-monetary mix. In other words,
should the slope of AS be positive then under conventional restrictions on
TR parameters, the slope of ADTR would also be positive and greater than
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FIGURE 10. Contemporaneous Fiscal Policy and Taylor rule with Inflation
and the Outgap Gap

A. PIR Absorbing State B. Transitory State with PIR Absorbing State

that of AS, creating the two – PIR and ZIR – absorbing states. With these
assumptions, AS and AD in (29) is plotted in Figure 10A, and we have the
following proposition:

PROPOSITION 3. A baseline New Keynesian model with a simple fiscal rule de-
scribed by (25) and (15), is coherent and complete if fiscal policy responds aggres-
sively enough to inflation and the output gap and monetary policy responds to
both inflation and the output gap.

Next we show analytical results for when the economy is in the transitory
state. As mentioned above, as the ZIR absorbing state is eliminated, we
restrict attention to the existence of a unique PIR absorbing state. Assume
that initially the economy is in a transitory state with εt ̸= 0 and it will remain
in this transitory state with probability p. The system can then be written as
follows

π̂T =
κ y – κgψ y

1 – pβ + κgψπ
x̂T AS, (30a)
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π̂T =


σ(1– p)(1–gψ y)+cϕ y
pc+(1– p)σgψπ–cϕπ

x̂T – p
c p+(1– p)gσψπ–cϕπ

r̂T ADTR,
σ(1– p)(1–gψ y)
pc+(1– p)σgψπ

x̂T – c
pc+gσψπ(1– p)

µ – p
c p+(1– p)gσψπ

r̂T ADELB.
(30b)

With ψπ sufficiently large and ψ y positive but not too large, AS is downward
sloping and ADTR is upward sloping. Since ADELB is also upward-sloping
( p < 1) or flat ( p = 1), there is a unique solution for any realisation of r̂T . The
system (30) is illustrated in Figure 10B.

Much like the case for the absorbing state, the downward slopingAS curve
is central to the uniqueness result. This is predicated on: (i) direct influence
of fiscal policy on aggregate supply, (ii) fiscal policy being procyclical, and
(iii) the TR also being a function of the output gap. Absent of either of the
aforementioned points, the model would imply a non-unique solution and,
thus, the policy stance presented above merely presents a special case that
is not applicable to a more general class of models. First, absent of direct
fiscal policy effects, the AS curve is always upward sloping as in a baseline
NK model. This is true, for example, if there is no income effect on the
household’s labour supply decision due to preferences such as in Greenwood,
Hercowitz, and Huffman (1988) (GHH), or if labour is supplied inelastically.
In such a case, fiscal policy would not directly affect AS and thus its slope
would remain positive. Second, even if fiscal policy had direct effects on AS,
it needs to react positively to deviations of inflation and output. If this were
not to hold, AS would be upward sloping, which would generate multiple
solutions.

However, the result is robust to the calibration of the government ex-
penditure share in output, g. To illustrate this, consider upper and lower
bounds on ψ y. The upper bound on ψ y can be inferred from the restriction
on ADELB being upward sloping or flat, which is the case if and only if

1 – gψ y ≥ 0 ⇒ ψ y ≤
1
g
.

The lower bound on ψ y can be inferred from the restriction on the slope of
AS which must be negative. This implies that

κ y – κgψ y < 0 ⇒ ψ y >
κ y
κg
.
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FIGURE 11. Coherency and Completeness Region for Inflation and Output
Gap Targeting Monetary Policy
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Blue circles denote regions where coherency and completeness conditions are satisfied.
Red triangles denotes region where the model is either incoherent or incomplete.

These conditions imply that the model is coherent and complete only if
κ y
κg

>
1
g

⇒ –ρg2 + (ρ + 1)g – 1 > 0,

where ρ = φ/σ. Thence, the relationship holds for g < min(1, 1/ρ), which
is always the case if the coefficient of relative risk aversion is greater than
inverse-Frisch elasticity of labour supply, σ > φ.

Finally, to visually see the need for procyclical fiscal policy – and the
upper and lower limits on ψ y – we numerically compute regions for which
CC conditions are satisfied in {ψπ,ψ y} space in Figure 11.

4. Coherency and Completeness with an Endogenous State

Thus far, we have only considered DSGE models that did not feature endoge-
nous state variables. In other words, in the canonical form representation of
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DSGE models,

0 = AstY t + BstY t+1|t + CstXt + DstXt+1|t +HstY t–1,

st = 1
(
a⊤Y t + b⊤Y t+1|t + c

⊤Xt + d⊤Xt+1|t + h
⊤Y t–1 > 0

)
,

we assumed that the coefficient matrix, Hst = O, and the coefficient matrix,
h = 0. This was to keep the computation and verification of the CC conditions
analytically tractable by omitting endogenous state variables. With these
assumptions, an MSV solution could be represented as Y t = f (Xt) by the
time-invariant matrix Y; and variables along an MSV solution satisfy the
condition (1).

However, this assumption is restrictive and makes assessment of CC
conditions in standard DSGE models limited, particularly in the literature
exploring the monetary and fiscal policy mix and ELB. In this section, we
loosen this assumption and consider a canonical NK-FP model with an en-
dogenous state variable, namely government expenditure.

With endogenous states, along an MSV solution we have

Et
[
Y t+1|Y t = Ytei,Xt = Xei

]
= Yit+1K

⊤ei, (31)

where Yit+1 gives the support of Y t+1 when Y t is in the i-th state. However,
this presents a non-trivial computational challenge: the support of Y t is
exponentially rising for a given initial condition Y0. Therefore, an MSV
solution cannot be characterised by a finite-dimensional system of piecewise
linear equations. This requires a different method of analysis to that of
Section 3.

In the fashion of AM, we solve the model recursively from some terminal
state t = T. For simplicity, assume that the endogenous state variable is
a scalar, HstY t–1 = hst yt–1, where hst is n × 1 and yt = g⊤Y t is a linear

combination of Y t and where g =
(
0 0 0 1

)⊤
.

For a date T whereby t ≥ T, the MSV solution f ( yt–1,Xt) can be written
as

Yt = G yt–1 + Z,

where G and Z are n × kmatrices. Z captures the portion of Y t that depends
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on exogenous variables Xt. In the case of no exogenous variables, we have
that G = O and so Yt = Z, yielding the standard case with a time invariant
Y and when the analysis of Section 3 applies. The columns of G return the
coefficients of yt–1 in the MSV solution, mapping it to different states of Xt.
Assume, as before, that k = 2, whereby the “bad state" corresponds to i = 1,
and the “good state" is given by i = 2. In other words, i = 1 is the ZIR state and
i = 2 is a PIR state. Then the endogenous dynamics in the bad state can be
different from the good state.

With no endogenous dynamics, where Y = Z, we can put the model in
k-state canonical form as in (2). With endogenous dynamics, the equivalent
expression is given by

0 =
(
Ast,iGei + hst,i + Bst,iGK

⊤eig
⊤Gei

)
yt–1

+
(
Ast,iZ + Bst,iGK

⊤eig
⊤Z + Bst,iZK

⊤ + Cst,iX + Dst,iXK
⊤
)
ei,

(32)

for all i = 1, ..., k. For a given regime J corresponding to the k states and
their transitions, {(PIR,PIR), (ZIR,PIR), (PIR, ZIR), (ZIR, ZIR)} (see (65)), a
slackness condition for the constraint st,i is determined which gives a system
of 2nk polynomial equations in the 2nk unknowns G and Z by equating
the coefficients on yt–1 and the constant terms to zero, respectively. As
these conditions are polynomial and not piecewise linear in G and Z, the
algorithm and theorem of Gourieroux, Laffont, and Monfort (1980) is no
longer suitable to check coherency. Instead, we build on the algorithm and
“brute force" numerical solution method of AM,15 which essentially goes
through all possible 2k J regime configurations to check if there are any
feasible solutions that satisfy the inequality constraints.

The model can be solved backwards starting from some terminal date T.
We know that at T, the solution to the model takes the following form

YT = GJ0 yT–1 + ZJ0, (33)

where J0 ∈ J, and where J defines the configuration of regimes in T. As we
explain in Appendix A.4, in order for CC conditions of a DSGEmodel with an

15. See Appendix A.5.2 of their paper.

31



endogenous state variable to be satisfied, the determinants,

|AJ0J1 | =
k∏
i

det
(
AsT–1,i + BsT–1,iGJ0K

⊤eig
⊤
)
, ∀t ≤ T, (34)

must all have the same sign. If this indeed the case, then the model solution
is given as:

YT–1ei = –
(
AsT–1,i + BsT–1,iGJ0K

⊤eig
⊤
)–1[(

BsT–1,iZJ0K
⊤ + CsT–1,iX + DsT–1,iXK

⊤
)
ei + hsT–1,i yT–2

]
,

Iterating the solutionbackwards implies that all thedeterminants ofAJ0,...,JT–t
must have the same sign. The recursive solution will be given by

Yt = GJ0,...,JT–t yt–1 + ZJ0,...,JT–t ,

where GJ0,...,JT–t and ZJ0...,JT–t can be computed recursively using

ZJ0...,JT–t,i = –
(
Ast,i + Bst,iGJ0,...,JT–t–1K

⊤eig
⊤
)–1(

Bst,iZJ0,...,JT–t–1K
⊤ + Cst,iX + Dst,iXK

⊤
)
ei,

(35)

GJ0,...,JT–t,i = –
(
Ast,i + Bst,iGJ0,...,JT–t–1K

⊤eig
⊤
)–1

hst,i. (36)

The recursive solution from terminal T solves the model backwards to t = 1
and implies up to 2(T–1)k solution paths. Given some initial condition, y0, and
conditional on satisfaction of CC conditions, the recursive solution is unique.
If the CC conditions are not satisfied, there can be either no or multiple
solutions.

We thus apply the following algorithm to check CC conditions assuming
that the shocks are two-state Markovian. First, calculate GJ0 and ZJ0 from
(63) and (64) for four possible regime configurations in J0. For each of the
four regime configurations in J1 compute |AJ0J1 |. If for some regime config-
uration J0, |AJ0J1 | have the same sign, a unique solution is possible; or else
we conclude that no unique solution exists. Second, for all configurations
of J0, where |AJ0J1 | have the same sign, compute GJ0J1 and ZJ0J1 using (35)
and (36). Third, continue solving backwards for each JT–t until t = 1. If t = 1
can be reached with: i) the condition on the signs of determinants being
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satisfied along the solution path; and ii) the model solution being consistent
with the implied st,i,∀t, then we can conclude that the model is coherent
and complete.

4.1. New KeynesianModel with Persistent Fiscal Policy

We have shown in Section 3.1 how a permanent change in fiscal policy can
ensure coherency and completeness. In this section, we generalise over
the fiscal rule in Equation (16) and allow for inertia, i.e. ρg < 1, instead of a
permanent policy change.

Consider the baseline NK-FP model described by (15). But assume that
there are no distortionary taxes (τ̂st = τ̂

c
t = τ̂

w
t = 0,∀t). We close the model by

augmenting the rule (25) to account for inertia in ĝt. Specifically, we replace
(25) with:

ĝt = ρg ĝt–1 +ψππ̂t +ψ yx̂t, (37)

where ρg ∈ (0, 1) is a persistence parameter. Thus, the system of equations
considered is:

x̂t = Et x̂t+1 –
c
σ

(
ît – Etπ̂t+1 – r̂nt

)
, (38a)

π̂t = βEtπ̂t+1 + κ yx̂t – κg ĝt, (38b)

ît = max{–µ;ϕππ̂t + ϕ yx̂t}, (38c)

ĝt = ρg ĝt–1 +ψππ̂t +ψ yx̂t, (38d)

with
r̂nt = –

σ

c
(gEt∆ĝt+1 + εt).

The system in (38) can be evaluated about two absorbing states, either PIR or
ZIR. About the PIR steady state, it must be the case that {x̂, π̂, î, ĝ} = {0, 0, 0, 0}.
The existence of the PIR steady state is trivial to reconcile. When policy is
effective, the inflation and output gaps are closed and the system of equa-
tions gives the solution in the PIR absorbing state. However, about the ZIR
absorbing state we have that î = –µ, thus giving a solution of the form

{x̂, π̂, î, ĝ} =
{
–
(1 – β)(1 – ρg) + κgψπ
κ y(1 – ρg) – κgψ y

µ, –µ, –µ,
ψ yx̂ +ψππ̂
1 – ρg

}
. (39)
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One can observe that under certain fiscal policy rules, the above ZIR equi-
librium is not consistent with the constraint on the TR and, thus, the ZIR
equilibrium is ruled out. Specifically, we require that x̂ be sufficiently large
such that the ELB constraint on ît is not binding:

–µ < –ϕπµ + ϕ yx̂ ⇒ –
µ(1 – ϕπ)
ϕ y

< x̂, ϕ y ̸= 0.

This implies
1 – ϕπ
ϕ y

>
(1 – β)(1 – ρg) + κgψπ
κ y(1 – ρg) – κgψ y

,

with the LHS being negative under conventional restrictions on TR coeffi-
cients. As ρg tends to unity, we get

lim
ρg→1

(1 – β)(1 – ρg) + κgψπ
κ y(1 – ρg) – κgψ y

= –
ψπ

ψ y
<
1 – ϕπ
ϕ y

,

which holds under countercyclical fiscal policy, ψ y < 0, ψπ < 0 with ψπ
sufficiently large in absolute value. Thus, under countercyclical fiscal policy,
if ρg is sufficiently large there cannot exist a ZIR absorbing state. This anal-
ysis highlights two points made earlier in Section 3. First, if the monetary
authority targets the output gap, a ZIR equilibrium can be ruled out. Second,
if the fiscal rule is sufficiently persistent, the ZIR absorbing state is ruled out
under countercyclical fiscal policy.

As the model contains an endogenous state, it cannot be represented as
a finite-dimensional piecewise linear function and the GLM result does not
apply. We are limited in using analytical expressions to exhibit intuition; the
CC conditions cannot be verified analytically. Thus, we have the following
proposition that we verify numerically using an algorithm that is based on
the work by AM:16

PROPOSITION 4. A New Keynesian model subject to an occasionally binding ELB
constraint on interest rates and with fiscal policy as described in (38) satisfies the
coherency and completeness conditions if fiscal policy is sufficiently persistent and

16. AM developed an algorithm to verify the CC conditions for baseline New Keynesian
model subject to the ELB on interest rates, active TR, and whereby the TR exhibited persis-
tence.
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countercyclical.

The system of equations in (38) can be cast in the canonical form (32)
with relevant coefficients given in Appendix B.7.

We plot regions where CC and BK local determinacy conditions are sat-
isfied in Figure 12 for different values of ρg. As fiscal policy becomes more
persistent, the CC region becomes larger. Moreover, the figure shows that
the parameter space where CC conditions are satisfied largely corresponds
to regions where the model satisfies BK conditions (blue circles).

To satisfy CC, the fiscal policy is required to be sufficiently persistent and
aggressive. First, the intuition for persistence can be drawn from the model
considered in Subsection 3.1. There, we considered the special case where
ρg = 1, which implied that the fiscal authority commits to a permanent policy
change in reaction to deviations of inflation and the output gap. Committing
to the policy change in this case can be seen as a form of expectations man-
agement as the fiscal authority promises to change spending permanently in
response to low inflation. This promise can be seen as a factor that reduces
fundamental uncertainty in the system. Second, the policy is required to be
sufficiently aggressive to guarantee that its effect on the system is sufficiently
large to eliminate multiplicity of equilibria. Much like the Taylor principle
requires the monetary authority to react by more than one-to-one to infla-
tion, we require that fiscal policy is sufficiently aggressive to guarantee a
unique solution.

Other approaches in the literature (price level targeting (PLT) in Holden
(2023) andunconventionalmonetarypolicy (UMP) inAMand Ikeda et al. (2021))
rely on a similar mechanism to guarantee uniqueness. As argued in Holden
(2023), PLT rules can restore uniqueness in the presence of an occasionally
binding ELB constraint as such a policy implies a promise about future infla-
tion given inflation today. If monetary policy is committed to a given price
level path, the monetary authority promises that a period of low inflation
today will be followed by a period of high inflation in the future. Thus, agents
expecting high prices in the future increase their consumption in periods of
low inflation and, by implication, the system has a unique solution around
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the PIR absorbing state. The commitment to higher inflation in the future
delivers sufficient information about the expected dynamics of the system
that alleviates uncertainty that would otherwise engender multiplicity and,
by implication, pins down the unique solution much like persistent fiscal
policy.

As shown in AM, the baseline NK model with UMP as in Chen, Cúrdia,
and Ferrero (2012) satisfies the CC conditions if UMP is effective enough. This
result is consistent with the logic presented above. When the ELB is binding,
the effect of UMP on model dynamics needs to be sufficiently strong to pin
down a unique solution. In this case, UMP is used to alleviate the effects of
exogenous uncertainty and ensure that the solution is unique around the
PIR absorbing state. This is in line with the restrictions we establish for FP
such that it guarantees a unique solution.
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FIGURE 12. Coherency and Completeness Region with Persistent Fiscal Rule
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Note: Figure shows regions where both coherency and completeness and Blanchard-Kahn
conditions are satisfied (blue circles) for different values of policy inertia, ρg.
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5. Conclusion

This paper explores whether fiscal policy can restore coherency and com-
pleteness in a baseline NK model subject to an occasionally binding con-
straint on the interest rate that is generally incoherent in absence of FP.
Our findings suggest that simple Ricardian FP can restore coherency and
completeness thus guaranteeing a unique solution that is also locally deter-
minate. We establish that, to guarantee MSV solution uniqueness and local
determinacy, FP needs to be sufficiently persistent and aggressive.

First, we analytically verify that if the fiscal authority is able to credibly
commit to a sufficiently strong countercyclical permanent policy change in
response to an exogenous disturbance, coherency and completeness of the
model is restored. This conclusion is rationalised by the fact that fiscal policy
is not constrained by the ELB and provides an active policy response when
monetary policy is constrained. Moreover, by committing to a permanent
policy change, the fiscal authority is able to alleviate the fundamental uncer-
tainty that engenders multiplicity of equilibria in the baseline NK model.

Second, we find that the fiscal response need not imply a permanent
policy change but rather it has to be sufficiently persistent to guarantee
existence and uniqueness of an MSV solution. The persistence property of
the policy rule, coupled with it being sufficiently countercyclical, are needed
to eliminate belief-driven equilibria and pin down a unique solution. By
showing this, we address the main concerns raised by Ascari andMavroeidis
(2022) about NK models featuring occasionally binding constraints.
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A. Verification of Model Coherency and Completeness

This appendix provides an overview of the canonical NK model subject to the ELB, and
conditions required to adhere to the CC conditions. In other words, we illustrate the
conditions that the model must satisfy to have a unique MSV solution in the presence
of occasionally binding constraints.

A.1. Methodology of Ascari andMavroeidis (2022)

As stated in AM, many solution methods of log-linearised models which feature the
ELB, such as Eggertsson and Woodford (2003), Guerrieri and Iacoviello (2015), Kulish,
Morley, and Robinson (2017), Eggertsson and Singh (2019), and Holden (2023), can be
verified for coherency in a simple manner. DSGEmodels can be written in the following
canonical form:17

0 = AstY t + BstY t+1|t + CstXt + DstXt+1|t +HstY t–1,

st = 1
(
a⊤Y t + b⊤Y t+1|t + c

⊤Xt + d⊤Xt+1|t + h
⊤Y t–1 > 0

)
,

(40)

The key contribution of the paper by AM is that it analyses (40) with rational expecta-
tions and Markovian shocks with discrete support. This was as opposed to GLM which
analysed the coherency of a system like (40) when Bst = Hst = O and b = h = 0. In
other words, with no endogenous state variables and no expectations on future realisa-
tions of the endogenous variables. If the model features endogenous state variables,
Hst ̸= O,h ̸= 0, the canonical form (40) is not piecewise linear and, thus, the standard
approach presented by GLM does not apply.

Coherency requires that for the system (40) there exists some function f (·) such that
an MSV solution can be represented as Y t = f (Xt). Assume that the exogenous states Xt
are k-state stationary first-order Markov processes with transition kernel K. Stack the
possible states of Xt for states i = 1, .., k into a nx × kmatrix X. Then, let ei denote the
i-th column of the k × k identity matrix Ik, such that Xei, the i-th column of X, is the i-th
state of Xt.18 Then define Y as an n × kmatrix whose i-th column, Yei, corresponds to
Xt = Xei along an MSV solution. Thus, along an MSV solution we have:

E[Y t+1|Y t = Yei] = Et[Y t+1|Xt = Xei] = YK
⊤ei.

Substituting this into (40), yields Equation (2) in the main text.

17. Here Hst is an n × n coefficient matrix and h is a coefficient vector.
18. The elements of the transition kernel K are Ki j = Pr(Xt+1 = Xe j |Xt = Xei) and hence, Et[Xt+1|Xt =

Xei] = XK⊤ei.
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Example: Simple Fisherian Model. To demonstrate the methods of AM and GLM, con-
sider the simple model taken from Section 2 of Aruoba, Cuba-Borda, and Schorfheide
(2018), which consists of the Euler equation,

1 = Et

[
Mt,t+1

1 + it
πt+1

]
, (41)

and a TR that only targets inflation,

1 + it = max
{
1, rπ∗

(πt
π∗

)ϕπ
}
, ϕπ > 1, (42)

where Mt,t+1 is the stochastic discount factor and the steady value of the gross real
interest rate is given by r = 1/M = (1 + i)/π. The law of motion ofMt,t+1 is given by a
2-state Markov process with a transitory state r–1 exp(–rL) > r–1 and an absorbing state
r–1 with transition probabilities p and q, respectively.19

Combine the two equations above and log-linearise about the non-stochastic steady
state to get

Etπ̂t+1 = EtM̂t,t+1 + max {–µ,ϕππ̂t} ,

which can be cast in canonical form (2) as follows:

0 =

–ϕπ (π̂1t π̂2t

)
+
(
π̂1t+1 π̂2t+1

)
K⊤ +

(
–1 0

)exp(–rL)
r 0
1 1

K⊤

 ei,

if st = 1({ϕππ̂t + µ > 0}). However, if st = 1({ϕππ̂t + µ < 0}) then we have

0 =

(π̂1t+1 π̂2t+1

)
K⊤ +

(
0 µ

)exp(–rL)
r 0
1 1

 +
(
–1 0

)exp(–rL)
r 0
1 1

K⊤

 ei,

where the transition matrix K is

K =

(
p 1 – p

1 – q q

)
, (43)

and where Yt = π̂t and Xt+1 =
(
M̂t,t+1 1

)⊤
. The coefficient matrices20 are given as

A0 = 0, A1 = –ϕπ, B0 = B1 = 1, C0 =
(
0 µ

)
, C1 =

(
0 0

)
, and D0 = D1 =

(
–1 0

)
. The

coefficient vectors are given as a = ϕπ, b = 0, c =
(
0 µ

)⊤
, and d =

(
0 0

)⊤
.

19. rL < 0 is a simple negative real interest rate shock, representing a temporary liquidity trap.
20. In this example, since n = 1, some of the coefficient matrices are scalars.
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The coefficient matricesAJ in (3) are given by

AJ1 = A1I2 + B1K, J1 = {1, 2},

AJ2 = e1e
⊤
1 AJ4 + e2e

⊤
2 AJ1, J2 = {2},

AJ3 = e2e
⊤
2 AJ4 + e1e

⊤
1 AJ1, J3 = {1},

AJ4 = A0I2 + B0K, J4 = ∅.

(44)

As J ⊆ {1, ..., k} and k = 2 – and J contains all configurations of combinations of the k
states – we can think of the above equations as transitions between positive and negative
states. Specifically, positive (PIR) and zero interest rate (ZIR) states:AJ1 and J1 = {1, 2} is
associated with being in the PIR state and remaining in the PIR state,AJ2 and J2 = {2} is
associated with being the ZIR state and transitioning to the PIR state,AJ3 and J3 = {1} is
associated with being in the PIR state and transitioning to the ZIR state, andAJ4 and
J4 = {∅} is associated with being in the ZIR state and remaining in the ZIR state.

Substituting the coefficient matrices into (47), the determinants of theAJ are:

|AJ1 | = (ϕπ – 1)(1 – p – q + ϕπ),

|AJ2 | = p(1 – ϕπ) + q – 1,

|AJ3 | = p – 1 + q(1 – ϕπ),

|AJ4 | = p + q – 1.

(45)

Since ϕπ > 0 (satisfaction of the Taylor principle), and 0 ≤ p, q ≤ 1, it is straightforward
to see that |AJ1 | > 0 and |AJ2 |, |AJ3 | < 0, and so this is a violation of the CC conditions
according to Theorem 1 of GLM.

A.2. Coherency and Completeness of the Canonical New KeynesianModel

Below, we provide a sketch of the insight of AM as applied to the canonical NK model,
(4), but for simplicityϕ y = 0. Then assume as before that k = 2 and the transition kernel
is given by

K =

(
p 1 – p

1 – q q

)
. (46)

The coefficient matricesAJ in (3) are given by

AJ1 = A1I2 + B1K, J1 = {1, 2} (PIR,PIR),

AJ2 = e1e
⊤
1 AJ4 + e2e

⊤
2 AJ1, J2 = {2} (ZIR,PIR),

AJ3 = e2e
⊤
2 AJ4 + e1e

⊤
1 AJ1, J3 = {1} (PIR,ZIR),

AJ4 = A0I2 + B0K, J4 = ∅ (ZIR,ZIR).

(47)
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As J ⊆ {1, ..., k} and k = 2 – and J contains all configurations of combinations of the k
states – we can think of the above equations as transitions between positive and negative
states. Specifically, positive (PIR) and zero interest rate (ZIR) states:AJ1 and J1 = {1, 2} is
associated with being in the PIR state and remaining in the PIR state,AJ2 and J2 = {2} is
associated with being the ZIR state and transitioning to the PIR state,AJ3 and J3 = {1} is
associated with being in the PIR state and transitioning to the ZIR state, andAJ4 and
J4 = {∅} is associated with being in the ZIR state and remaining in the ZIR state. The
relevant coefficient matrices of the canonical form (2) are given by

A0 =

(
1 –κ
0 1

)
, A1 =

(
1 –κ
ϕπ
σ 1

)
, B0 = B1 =

(
–β 0
– 1σ –1

)
.

Observe that, in the special case where p = q = 1, the determinants ofAJ1 andAJ4 are:

|AJ1 | =

∣∣∣∣∣1 – β –κ
ϕπ–1
σ 0

∣∣∣∣∣ = κ(ϕπ – 1)σ
> 0, |AJ4 | =

∣∣∣∣∣1 – β –κ
– 1σ 0

∣∣∣∣∣ = –κσ < 0. (48)

Thus, we observe that with an active TR (ϕπ > 1) the function F(Y) is not invertible and,
hence, the model is generally incomplete. Additionally, in Appendix A.3 we show an
analytical derivation of the CC conditions. Denoting ϕ∗

π as

ϕ∗
π = p + q – 1 –

σ

κ
[1 – β( p + q – 1)](2 – p – q),

then the model satisfies the CC conditions when

ϕπ < ϕ∗
π, if ϕ∗

π > 0, (49a)

ϕπ < 1, if ϕ∗
π < 0. (49b)

A.3. Analytical Derivation of CC Conditions

To attain an analytical expression for the CC conditions for the baseline New Keynesian
model, we first look for a solution of the form π̂t = f π(εt) and ŷt = f y(εt). Let εt denote
the vector k states of the shock and similarly for the solutions π and y. Denote K as
the transition kernel of the Markov chain for εt. Then, with some abuse of notation,
define Etπ̂t+1 = Kπ and Et ŷt+1 = K y, then rewrite the model equations (4a)-(4c) as the
following:

K y = y +
1
σ
(i – Kπ) – ε,

π = βKπ + κ y,

i = max {–µι,ϕππ} ,
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where for ease of exposition we have assumed that ut = 0 and ϕ y = 0. To clarify the
notation: symbols in bold are either vectors or matrices, and ι is a k-length unit vector.

The DISE can be written as:

(I – K) y = –
1
σ
(max {–µι,ϕππ} – Kπ) + ε.

Then, premultiply the NKPC by (I – K) to get

(I – K)π = κ(I – K) y + β(I – K)Kπ.

Then, substitute the expression for (I–K) y from theDISE anddo some slight rearranging
to write: [

I – K –
κ

σ
K – β(I – K)K

]
π = –

κ

σ
max {–µι,ϕππ} + κε.

Continue rearranging this expression:[
I – K –

κ

σ
K – β(I – K)K

]
π =

κµ

σ
ι –
κ

σ
max {0,ϕππ + µι} + κε[

I – K –
κ

σ
K – β(I – K)K

]
π = (1 – 1)

[
I – K –

κ

σ
K – β(I – K)K

] µ
ϕπ
ι

+
κµ

σ
ι –
κ

σ
max

{
0,ϕπ

(
π +

µ

ϕπ
ι

)}
+ κε[

I – K –
κ

σ
K – β(I – K)K

](
π +

µ

ϕπ
ι

)
=
[
I – K –

κ

σ
K – β(I – K)K

] µ
ϕπ
ι

+
κµ

σ
ι –
κ

σ
max

{
0,ϕπ

(
π +

µ

ϕπ
ι

)}
+ κε.

But since
[
(I – K) – aK – b(I – K)K

]
ι = –aι for generic scalars a and b, we can write:[

I – K –
κ

σ
K – β(I – K)K

](
π +

µ

ϕπ
ι

)
= –
κ

σ

µ

ϕπ
ι +
κµ

σ
ι + κε

– max
{
0,
κϕπ

σ

(
π +

µ

ϕπ
ι

)}
[
I – K –

κ

σ
K – β(I – K)K

](
π +

µ

ϕπ
ι

)
=
κµ

σ

(
ϕπ – 1
ϕπ

)
ι + κε

– max
{
0,
κϕπ

σ

(
π +

µ

ϕπ
ι

)}
[
K – I +

κ

σ
K + β(I – K)K

](
π +

µ

ϕπ
ι

)
=
κµ

σ

(
1 – ϕπ
ϕπ

)
ι – κε

+ max
{
0,
κϕπ

σ

(
π +

µ

ϕπ
ι

)}
.

The above system can be generically written as

Bv = b + max {0,Dv} , (50)
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where

B = K – I +
κ

σ
K + β(I – K)K,

v = π +
µ

ϕπ
ι,

b =
κµ

σ

(
1 – ϕπ
ϕπ

)
ι – κε,

D =
κϕπ

σ
I.

The CC conditions can be analytical derived in the case that k = 2. We thus have a
piecewise linear system in four orthants that can be written as:R1 = {(v1, v2) : v1 ≥ 0, v2 ≥ 0},

A1 = B – D,
R2 = {(v1, v2) : v1 ≥ 0, v2 < 0},

A2 = B –

κϕπ
σ 0

0 0

 ,

R3 = {(v1, v2) : v1 < 0, v2 < 0},

A3 = B,
R4 = {(v1, v2) : v1 < 0, v2 ≥ 0},

A4 = B –

0 0

0 κϕπ
σ

 .

Let K be defined as:

K =

(
p 1 – p

1 – q q

)
.

Theorem 1 of Gourieroux, Laffont, andMonfort (1980) states that the systemof equations
(50) is coherent and complete if and only if all the determinants of the matrices below
have the same sign:

detA1 =
κ(1 – ϕπ)

σ

[
( p + q – 1)

κ

σ
+ a( p + q – 2) –

κϕπ

σ

]
,

detA2 =
κ

σ

[
a( p – 2) + (aσ – κϕπ)

q
σ
– a(q – 1)ϕπ + ( p + q – 1)

κ

σ

]
,

detA3 =
κ

σ

[
( p + q – 1)

κ

σ
+ a( p + q – 2)

]
,

detA4 =
κ

σ

[
a(q – 2) + (aσ – κϕπ)

p
σ
– a( p – 1)ϕπ + ( p + q – 1)

κ

σ

]
,
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where a = (1 – β( p + q – 1)). Alternatively, we could write the above matrices more
compactly as:

detA1 = (1 – ϕπ)

(
detB –

κ2ϕπ
σ2

)
, (51)

detA2 = detB +
κϕπ

σ

[
(1 – q)(1 + β(1 – p – q)) –

κ

σ
q
]
, (52)

detA3 = detB, (53)

detA4 = detB +
κϕπ

σ

[
(1 – p)(1 + β(1 – p – q)) –

κ

σ
p
]
. (54)

It is evident that the CC conditions will crucially depend on the sign of detB, which we
can write as:

detB =
κ

σ

[
( p + q – 1)

κ

σ
– (1 – β( p + q – 1))(2 – p – q)

]
. (55)

Observing this quantity, we know that κσ > 0 and that (1 –β( p + q – 1))(2 – p – q) > 0. Thus,
we need to check the relative value of ( p + q – 1)κσ to see if detB is greater or less than
zero. We thus need to check two cases:

Case 1: ( p + q – 1)κσ > (1 – β( p + q – 1))(2 – p – q). The RHS of the inequality is always
greater than 0, thus implying:

p + q – 1 > 0 ⇒ detB > 0.

Given this, what does it mean for detAi for i = {1, 2, 4}? First, rearrange the quantities
for detA1 > 0 in Equation (51) to write:

ϕπ <
σ2

κ2
detB,

as in detA1 > 0 if and only if

0 < (1 – ϕπ)(detB –
κ2

σ2
ϕπ),

∴ ϕπ < min

{
1,
σ2

κ2
detB

}
⇔ ϕπ > max

{
1,
σ2

κ2
detB

}
.

For detA2 we need
κϕπ

σ

[
(1 – q)(1 – β( p + q – 1)) –

κ

σ
q
]
+ detB > 0.

If the term in the square brackets is greater than zero, then detA2 > 0,∀ϕπ ≥ 0, so long
as detB > 0 (which was shown above). But what if this bracketed quantity is less than
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zero? Then, write detA2 as:

0 <
κϕπ

σ

(1 – q)(1 – β( p + q – 1)) – κσq︸ ︷︷ ︸
<0


+
κ

σ

[
( p + q – 1)

κ

σ
– (1 – β( p + q – 1))(2 – p – q)

]
,

where we can write:

ϕπ <
( p + q – 1)κσ – (1 – β( p + q – 1))(2 – p – q)

κ

σ
q – (1 – q)(1 – β( p + q – 1))︸ ︷︷ ︸

>0

< 1.

Use (A.3) to then write:

ϕπ <
σ2

κ2
detB

< p + q – 1 –
σ

κ
((1 – β( p + q – 1))(2 – p – q).

A symmetric argument holds for detA4.

Case 2: ( p + q – 1)κσ < (1 – β( p + q – 1))(2 – p – q). This case now assumes that detB < 0,
so we need all the other determinants to be negative too.

For detA1, clearly for any 0 ≤ ϕπ < 1, detA1 < 0.
detA2 is negative ∀ϕπ ≥ 0 if and only if

(1 – q)(1 + β(1 – p – q)) –
κ

σ
q < 0.

But if
(1 – q)(1 + β(1 – p – q)) –

κ

σ
q > 0,

then we have

0 > detB +
κϕπ

σ

[
(1 – q)(1 + β(1 – p – q)) –

κ

σ
q
]

ϕπ < –
σ

κ

detB[
(1 – q)(1 + β(1 – p – q)) – κσq

] < 0.
Denote ϕ∗

π as
ϕ∗
π = p + q – 1 –

σ

κ
(1 – β( p + q – 1))(2 – p – q),

thenwe canwrite the region for which the baseline NKmodel satisfies the CC conditions
as: ϕπ < ϕ∗

π, if ϕ∗
π > 0,

ϕπ < 1, if ϕ∗
π < 0.
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These are the conditions in (49).

A.3.1. Derivation for Graphical Representation

First consider the absorbing state when ε = 0, and also when ϕ y = 0, ut = 0. From
(4a)-(4c), we can write AS as:

π̂ =
κ

1 – β
ŷ. (56)

Meanwhile, from the DISE we have:

π̂ =

ϕππ̂ TR,

–µ ELB.

Substituting AS into the above expression gives AD:

π̂ =


κϕπ
1–β ŷ ADTR,

–µ ADELB.
(57)

We plot AS and AD in Figure 1.
Next, consider the transitory state when ε = ρσ r̂

T ̸= 0.

PIR absorbing state. At time t the economy is in a transitory state. With probability p
the economy remains in the transitory state, and with (1 – p) the economy moves to the
PIR absorbing state. From (4b), we can write:

π̂T = κ ŷT + pβπ̂T ,

where the second term on the RHS comes from the fact that in period t + 1 you may be
in a transitory state where π ̸= 0. Thus, AS is:

π̂T =
κ

1 – pβ
ŷT . (58)

For AD, begin by writing the DISE as:

ŷT = p ŷT –
1
σ
(̂i – pπ̂T) + ε.

Rearrange and substitute in (4c) and ε = p
σ r̂

T to get AD:

π̂T =


σ(1– p)
p–ϕTπ

ŷT – p
p–ϕπ

r̂T ADTR for π̂T ≥ – µϕπ
,

σ(1– p)
p ŷT – µp – r̂

T ADELB for π̂T ≤ – µϕπ
.

(59)

ZIR absorbing state. Here in period t the economy is in a transitory state. With probably
p the economy can remain in a transitory state, and with (1 – p) it can move to a ZIR
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absorbing state. Therefore, from (4b), AS can be written as:

π̂T = β[ pπ̂T + (1 – p)(–µ)] + κ ŷT

=
κ

1 – pβ
ŷT –

β(1 – p)
1 – pβ

µ.
(60)

To find AD, first begin by writing the DISE as:

ŷT =
[
p ŷT + (1 – p)

(
–µ(1 – β)

κ

)]
–
1
σ

[̂
i –
(
pπ̂T + (1 – p)(–µ)

)]
+ ε,

then substitute in (4c) and the ε to get AD:

π̂T =


σ(1– p)
p–ϕπ

ŷT + 1– p
p–ϕπ

[
(1–β)
κ + 1

]
µ – p

p–ϕπ
r̂T ADTR for πT ≥ – µϕπ

,
σ(1– p)
p ŷT + 1– p

p

[
(1–β)σ
κ + 1

]
µ – µp – r̂

T ADELB for π̂T ≤ – µϕπ
.

(61)

To find θ simply divide the slop of ADTR by the slope of AS:

θ =
∂ADELB/∂ ŷT

∂AS/∂ ŷT

=
1
p – σ
κ

1– pβ

=
σ(1 – p)(1 – pβ)

pκ
.

We plot AD and AS for when the economy is in the transitory state and with PIR and
ZIR absorbing states for θ > 1 and θ < 1 in Figure 2.

A.3.2. Proof of Support Restrictions

For the case of θ > 1, the two solutions imply that
1
rπ∗

≤ 1

is a necessary support restrictions. Why? If rπ∗ < 1, then either the gross real interest
rate, the gross target rate of inflation, or their product is less than one. But this cannot
be the case as we define µ = log(rπ∗).

For the case of θ < 1, we need further support restrictions to ensure coherency. This
can be found by finding the point at which AD and AS intersect at the kink of AD. The
case with a PIR absorbing state is analytically more tractable, so we focus on that.

AD = AS when πT = – µϕπ
, and when we wish to find shock size r̂T = r̄T such that the

equations have a solution for all –r̂T ≤ –r̄T . Hence, the cutoff can be found by setting AS
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and ADTR equal:

AS : ŷT =
(1 – pβ)
κ

π̂T

ADTR ŷT =
(ϕπ – p)
σ(1 – p)

π̂T +
p

σ(1 – p)
r̂T .

Substitute in π̂T = – µϕπ
and rearrange to get:

–r̂T = µ
(
θ

ϕπ
+
ϕπ – p
pϕπ

)
. (62)

A.4. Coherency and Completeness with an Endogenous State

We no longer assume that Hst = O and h = 0 in (40), but maintain the assumption that
Xt follows a k-state stationary Markov process. This implies that, as before, the i-th
column of X gives the value of Xt for a given state i. However, as stipulated by AM,
with endogenous states the support of Y t will vary endogenously over time along the
MSV solution given by Y t = f (Y t–1,Xt). This implies that the solution can no longer
be characterised by a time invariant matrix Y. In other words, despite the variables Xt
being time invariant (by definition as they are purely forward looking), the support of
Y t must now be a function of Y t–1, too. With endogenous states, along an MSV solution
we have:

Et
[
Y t+1|Y t = Ytei,Xt = Xei

]
= Yit+1K

⊤ei,

Starting from terminal date, T, the model solution is:

YT = GJ0 yT–1 + ZJ0,

where GJ0 and ZJ0 can be solved from (32):

0 = Ast,iGei + hst,i + Bst,iGK
⊤eig

⊤Gei, (63)

0 =
(
Ast,1Z + Bst,iGK

⊤eig
⊤Z + Bst,iZK

⊤ + Cst,iX + Dst,iXK
⊤
)
ei, (64)

∀i = 1, ..., k.
YT is a function ofGJ0 and ZJ0, which are both treated as known.

21 Thus, YT is known
and we can solve for YT–1 from

0 =
(
AsT–1,i + BsT–1,iGJ0K

⊤eig
⊤YT–1ei

)
+
(
BsT–1,iZJ0K

⊤ + CsT–1,iX + DsT–1,iXK
⊤
)
ei + hsT–1,i yT–2.

21. In practice GJ0 and ZJ0 are precalculated as they are not time-varying per-se but are state dependent.
For example, if J0 always corresponds to the PIR case, then the ELB is never binding and GJ0 and ZJ0 can
easily be obtained from the model policy function (Blanchard and Kahn, 1980).
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For every t ≤ T the determinants relevant for CC conditions are given by

|AJ0J1 | =
k∏
i

det
(
AsT–1,i + BsT–1,iGJ0K

⊤eig
⊤
)
.

If k = 2, the determinants can be rewritten as

|AJ0J1 | = det
(
A1 + B1GJ0K

⊤e1g⊤
)
det
(
A1 + B1GJ0K

⊤e2g⊤
)
, J1 = {1, 2} (PIR,PIR),

|AJ0J1 | = det
(
A0 + B0GJ0K

⊤e1g⊤
)
det
(
A1 + B1GJ0K

⊤e2g⊤
)
, J1 = {2} (ZIR,PIR),

|AJ0J1 | = det
(
A1 + B1GJ0K

⊤e1g⊤
)
det
(
A0 + B0GJ0K

⊤e2g⊤
)
, J1 = {1} (PIR,ZIR),

|AJ0J1 | = det
(
A0 + B0GJ0K

⊤e1g⊤
)
det
(
A0 + B0GJ0K

⊤e2g⊤
)
, J1 = {∅} (ZIR,ZIR).

(65)
If the model is coherent and complete, use (33), with (63) and (64), to solve for YT–1

as a function of yT–2:

YT–1ei = –
(
AsT–1,i + BsT–1,iGJ0K

⊤eig
⊤
)–1[(

BsT–1,iZJ0K
⊤ + CsT–1,iX + DsT–1,iXK

⊤
)
ei + hsT–1,i yT–2

]
,

∀i = 1, ..., k.
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B. A New KeynesianModel with Fiscal Policy

Households.. The economy is populatedwith households indexedwith i on a continuum
of measure one. The households gain utility from consumption, dislike labour, and
have access to one-period risk free bonds. The optimisation problem of the households
is thus:

max
{Ct,Lt,Bt}∞t=0

E0

∞∑
t=0
βt
(
C1–σt
1 – σ

–
L1+φt
1 +φ

)
Zt,

subject to the [nominal] period budget constraint is given by

(1 – τct )PtCt + Bt = (1 – τ
w
t )WtLt + Rt–1Bt–1 + Tht ,

where Ct is consumption, Lt is labour supply, Bt denotes bonds, Rt is nominal interest
rate, Pt is the price level, τct is the consumption tax rate, τ

w
t is the wage tax rate, and T

h
t

are lump-sum taxes.
The consumption bundle Ct consists of a continuum of differentiated goods, and is

bundled by a CES aggregator of the form:

Ct =

[∫ 1

0
Ct( j )

ϵ–1
ϵ d j

] ϵ
ϵ–1

.

The utility maximisation problem of the household results in the following intertempo-
ral Euler equation:

βEt
Rt
Πt+1

(
Ct+1
Ct

)–σ Zt+1
Zt

= Et
1 – τct+1
1 – τct

.

The labour supply condition gives the following intratemporal Euler equation:
1 – τwt
1 – τct

wtC–σt = Lφt .

The intratemporal household problem of choosing a consumption bundle results in the
following demand for good j :

Ct( j ) =
(
Pt( j )
Pt

)–ϵ
Ct.

Production.. Producers use labour as an input to produce differentiated consumption
goods according to the following production technology:

Yt( j ) = AtLt( j ).
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The price-setting problem of an individual firm j follows Rotemberg (1982) where firm
j maximises the discounted value of profits,

max
{Pt(i)}

Et

∞∑
T=t

Qt,T

[
(1 – τst)Pt( j )Yt,T( j ) – wTLT( j ) –

Φ

2

( Pt,T( j )
Pt–1,T( j )

– 1
)2

Yt,T

]
,

subject to:

Yt,T( j ) =
(
Pt( j )
Pt

)–ϵ
Yt,

whereΦ denotes a price adjustment cost parameter for the firms.22 Yt,T( j ) denotes de-
mand at time T conditional on the price unchanged since period t. The firmmaximises
infinite discounted stream of profits, with revenues given by the first term and costs
given by the second term. The revenues of the firm are taxed with tax level denoted
by τst. Households own firms, thus their revenues are discounted with the households’
discount factor, Qt,T :

Qt,T = β
Pt
PT

(
CT
Ct

)–σ ZT
Zt
.

The solution to the firm problem results in the following equation for inflation:23

Πt(Πt – 1) =
1
κ

[
ϵmct + 1 – ϵ + τstϵ – τ

s
t
]
+ Et

[
Qt,t+1(Πt+1 – 1)Πt+1

Yt+1
Yt

]
.

Monetary authority.. The monetary authority uses the [gross] nominal interest rate,
Rt, as its policy instrument and sets it according to a TR of the form:

Rt
R̄
= max

{
1,
(
Πt
π∗

)ϕπ
(
Yt
Ȳ

)ϕ y
}
,

whereϕπ andϕ y is the degree of reaction to contemporaneous inflation and the output
deviations, respectively.

Fiscal authority.. The nominal flow budget constraint for the government is

τctCt + τ
s
tYt + τ

w
t wtLt + Tt = Gt. (66)

We make clear which taxes are enabled or disabled in each section of the paper, as
we explore different tax regimes. An additional equation – a rule fiscal policy rule – is

22. We calibrateΦ to the following:
Φ =

ϵγ

(1 – γ)(1 – βγ)
,

where γ is the probability of firm j being unable to optimally adjust its price in any given period as in a
model with Calvo (1983) pricing.
23. Gross inflation is defined as Πt = Pt/Pt–1
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needed to close the model. In what follows we explore different specifications of such
rules.

Market clearing.. Markets clear, hence all output is consumed or used for government
expenditure,

Yt = Ct + Gt +
Φ

2 (
Πt – 1)2 Yt.

Note that as we assume Rotemberg adjustment costs, the natural level of output, Ynt ,
coincides with headline output whenΦ = 0.

B.1. Log Linearised Equilibrium Conditions

Log linearising the non-linear model equations about a non-inflation deterministic
steady state yields the following: Intertemporal Euler equation:24

ĉt = Et ĉt+1 –
1
σ

(
ît + Et

[
∆ẑt+1 + Ψc∆τ̂ct+1 – π̂t+1

])
. (67)

Labour supply condition:25

ŵt = σĉt +φl̂ t + τ̂wt Ψ
w – Ψcτ̂ct . (68)

Output:
ŷt = ât + l̂ t. (69)

Inflation:
π̂t =

1
Φ
(ϵm̂ct – τ̂st) + βEtπ̂t+1. (70)

Marginal cost:
m̂ct = ŵt – ât. (71)

Taylor rule:
it = max

{
–µ,ϕππ̂t + ϕ y ŷt

}
. (72)

Government budget constraint

gĝt =
T
Y
t̂t + τcc(τ̂ct + ĉt) + τ

s(τ̂st + ŷt) + τ
wwL
Y
(τ̂wt + ŵt + l̂ t).

Aggregate resource constraint:
ŷt = cĉt + gĝt. (73)

To get an expression for ŷnt in terms of ât, start by noting that wages are equal to the

24. We define Ψc = τ̄c

1–τ̄c and ∆τ̂
c
t+1 = τ̂

c
t+1 – τ̂

c
t .

25. We define Ψw = τ̄w

1–τ̄w .
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marginal product of labour:
ŵnt = ât, (74)

and then combine with (68) to write:

ât = σĉnt +φl̂
n
t .

Note that we assume that in the natural allocation, taxes and government spending do
not fluctuate. Then use (73) to substitute in for ĉnt , and use (69) to substitute in for l̂

n
t :

ât =
σ

c
ŷnt +φ( ŷ

n
t – ât).

Rearrange the above to write:
ŷnt = ψ yaât, (75)

where ψ ya = 1+φ
φ+σc

.
Then, using (67) and (73), the DISE is given by

ŷt = Et ŷt+1 –
c
σ
(̂it – Etπ̂t+1 + Et∆ẑt+1 + Et∆τ̂

c
t+1) – gEt∆ĝt+1.

We now turn to the NKPC. From (71), (68), and (73), marginal cost is given by

m̂ct =
σ

c
( ŷt – gĝt) +φ ŷt + τ̂

w
t Ψ

w – Ψcτ̂ct – ât(1 +φ).

Plug this into the relationship for inflation implied by Rotemberg pricing (70)

π̂t = βEtπ̂t+1 +
ϵ

Φ

(
σ

c
( ŷt – gĝt) +φ ŷt + Ψ

wτ̂wt – Ψ
cτ̂ct –

1
ϵ
τst – (1 +φ)ât

)
,

to then yield the NKPC:

π̂t = βEtπ̂t+1 + κ y ŷt +
ϵ

Φ

(
Ψwτ̂wt – Ψ

cτ̂ct –
1
ϵ
τ̂st –

σ

c
ĝt – (1 +φ)ât

)
,

where κ y = ϵ
Φ(
σ
c +φ).

NKPC can be rewritten in terms of output gap, x̂t = ŷt – ŷ
n
t as follows

π̂t = βEtπ̂t+1 + κ yx̂t +
ϵ

Φ

(
Ψwτ̂wt – Ψ

cτ̂ct –
1
ϵ
τ̂st –

σ

c
ĝt
)
.

The model is thus given by

x̂t = Et x̂t+1 –
c
σ
(̂it – Etπ̂t+1 – r̂nt ), (76)

π̂t = βEtπ̂t+1 + κ yx̂t +
ϵ

Φ

(
Ψwτ̂wt – Ψ

cτ̂ct –
1
ϵ
τ̂st –

σ

c
ĝt
)
, (77)

ît = max{–µ,ϕππ̂t + ϕ yx̂t}, (78)

gĝt =
T
Y
τ̂t + τcc(τ̂ct + ĉt) + τ

s(τ̂st + x̂t + ŷ
n
t ) + τ

w(τ̂wt + ŵt + l̂ t), (79)

r̂nt =
σψ ya
c

∆Et ât – Et∆τ̂
c
t+1 –

σg
c

Et∆ĝt+1 –
σ

c
Et∆ẑt+1, (80)
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which are equations (15) in the main text.
As mentioned, in order to close the model, tax rules and fiscal policy rules for ĝt, is

required. In the text and subsequent appendix chapters, we describe the set of rules
and assumptions we make to close the model.

B.2. Proof of Proposition 1

Use the NK-FP system in (15) with the following government spending rule:

Et∆ĝt+1 = ψππ̂t +ψ yx̂t.

The constraint on ît can be either binding (ZIR) or slack (PIR). Substitute and rearrange
the above system of equations to get the following:

x̂t =

Et x̂t+1 – c
σ

(
ϕππ̂t + ϕ yx̂t – Etπ̂t+1

)
– gψππt + εt,

Et x̂t+1 – c
σ (–µ – Etπ̂t+1) – gψππt + εt,

π̂t = βEtπ̂t+1 + κ yx̂t.

The vector of exogenous disturbances is denoted by Xt =
(
εt 0

)⊤
and is assumed to

follow a two-state first-order Markov process with transition kernel K defined as

K =

(
p 1 – p

1 – q q

)
,

where p, q ∈ [0, 1] are transition probabilities. This allows to write the model in the
canonical form as in (2), and can be cast in the form F(Y) = λ(X). Following Gourieroux,
Laffont, and Monfort (1980), it is sufficient to check that the mapping F(X) is invertible
formodel coherency. Themapping is as in (3) and (47). The relevant coefficientmatrices
are given by

A1 =

(
1 + c

σϕ y + gψ y
c
σϕπ + gψπ

κ y –1

)
, A0 =

(
1 + gψ y gψπ
κ y –1

)
,

B0 = B1 =

(
–1 – cσ
0 β

)
.

AJ1,AJ2,AJ3, andAJ4 are then given by:

AJ1 = AJ3 =

(
1 + c

σϕ y + gψ y – p – c
σ(1 – q)

c
σϕπ + gψπ – 1 + p –

c
σ(1 – p)

κ y + β(1 – q) βq – 1

)
,
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AJ2 = AJ4 =

(
gψ y + 1 – p – c

σ(1 – q) gψπ – 1 + p – c
σ(1 – p)

κ y + β(1 – q) βq – 1

)
.

Below we show that when ψπ → ∞, sign(AJ1) = sign(AJ2) = sign(AJ3) = sign(AJ4) and
the model thus satisfies the CC conditions. We start withAJ1, determinant of which is
given by

|AJ1 | = |AJ3 | = (βq – 1)
[
1 +

c
σ
ϕ y + gψ y – p –

c
σ
(1 – q)

]
– (κ y + β(1 – q))

[ c
σ
ϕπ + gψπ – 1 + p –

c
σ
(1 – p)

]
If ψπ tends to infinity and ψ y is bounded, the second term on the RHS is positive and,
thus, |AJ1 | < 0. We have that

lim
ψπ→∞

|AJ1 | = lim
ψπ→∞

|AJ3 | = –∞ (81)

We proceed with |AJ2 | = |AJ4 |, which is nothing but

|AJ2 | = |AJ4 | =
[
gψ y + 1 – p –

c
σ
(1 – q)

]
(βq – 1)

– (κ y + β(1 – q))
[
gψπ – 1 + p –

c
σ
(1 – p)

] (82)

As previously, the second term on the RHS is positive if ψπ tends to infinity and ψ y is
bounded. Hence, we have that

lim
ψπ→∞

|AJ2 | = lim
ψπ→∞

|AJ4 | = –∞ (83)

Thus, we have that if ψπ → ∞, the determinants ofAJ j , j ∈ {1, 2, 3, 4}, are negative. If
ψπ → –∞, the same logic applies. In this case, the determinants ofAJ j , j ∈ {1, 2, 3, 4},
are positive. This completes the proof.■

Lower bound forψπ. We now find the lower bound for ψπ that guarantees the satisfac-
tion of the CC conditions. For ease of exposition, we assume that ψ y = 0. The model is
coherent and complete, when |AJk | < 0. Hence ψπ must satisfy:
[
1 + c

σϕ y – p – c
σ(1 – q)

]
(βq – 1) – (κ y + β(1 – q))

[ c
σϕπ + gψπ – 1 + p –

c
σ(1 – p)

]
< 0,[

1 – p – c
σ(1 – q)

]
(βq – 1) – (κ y + β(1 – q))

[
gψπ – 1 + p – c

σ(1 – p)
]
< 0.

Rearrange to get
[
1 + c

σϕ y – p – c
σ(1 – q)

]
(βq – 1) < (κ y + β(1 – q))

[ c
σϕπ + gψπ – 1 + p –

c
σ(1 – p)

]
,[

1 – p – c
σ(1 – q)

]
(βq – 1) < (κ y + β(1 – q))

[
gψπ – 1 + p – c

σ(1 – p)
]
.
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Rearrange to get the system that ψπ must satisfy. Note that depending on the values of
monetary policy feedback parameters, ϕπ and ϕ y, one of the conditions is redundant

[
1+ cσϕ y– p– cσ (1–q)

]
(βq–1)

(κ y+β(1–q))
< c
σϕπ + gψπ – 1 + p –

c
σ(1 – p),[

1– p– cσ (1–q)
]
(βq–1)

(κ y+β(1–q))
< gψπ – 1 + p – c

σ(1 – p).

If the monetary authority follows strict inflation targeting (ϕ y = 0), given the second
inequality, the first one is redundant with respect to ψπ. Thus inspecting the second
inequality we have:{[

1 – p – c
σ(1 – q)

]
(βq – 1)

(κ y + β(1 – q))
+ 1 – p +

c
σ
(1 – p)

}
1
g
= ψπ < ψπ,

where ψπ denotes the lower bound for ψπ.

B.3. Canonical form coefficients, Proposition 2

The relevant coefficient matrices for the proof of proposition 2 are:

A1 =

(
–cσ–1ϕπ + gψπ –1 + gψ y – cσ–1ϕ y

–1 – κgψπ κ y – κgψ y

)
,

A0 =

(
gψπ –1 + gψ y

–1 – κgψπ κ y – κgψ y

)
,

and

B0 = B1 =

(
cσ–1 – gψπ 1 – gψ y

β 0

)
.

B.4. The Unconventional Fiscal Policy Case

The first fiscal rule we inspect is what we term the “unconventional fiscal policy” (UFP)
rule that replicates monetary policy at the ELB and mirrors the approach in Correia
et al. (2013). Assume that the government expenditure growth rate, Et∆ĝt+1, responds
to contemporaneous inflation and the output gap when the interest rate is at the ELB:

Et∆ĝt+1 = 1
(
{̂it = –µ}

)
(ψuππ̂t +ψuyx̂t), (84)

where ψuπ and ψuy denote the coefficients of reaction to inflation and the output gap,
respectively.

The presence of the FP instrument in the DISE allows the piecewise linear system to
satisfy the CC conditions, despite the presence of the ELB constraint on ît and an active
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TR. The instrument Et∆ĝt+1 has the same effect in the NKmodel as the monetary policy
instrument and, hence, it governs the linearity of the DISE (15a). The CC conditions are
satisfied so long as:

ψuπ =
c
gσ
ϕπ, ψuy =

c
gσ
ϕ y, (85)

which also allows (15c) to follow an active TR (ϕπ > 1). It is straightforward to see that
since the model is now linear, it is generally coherent and complete. The UFP rule
embeds the mechanism of the simple model in Correia et al. (2013), which showed
that a set of tax instruments can replicate monetary policy when the interest rate
subject to the ELB constraint. This rule also applies to models where monetary policy is
strictly inflation targeting, whereby if ϕ y = 0 then ψ y = 0. Thus, we have the following
proposition:

PROPOSITION 5. A baseline New Keynesian model with fiscal policy that consists of gov-
ernment spending, lump-sum, and output taxes as defined in (15), is generally coherent and
complete when the sensitivity parameters of the fiscal instrument, ψuπ and ψuy, allow fiscal
policy to replicate monetary policy at the ELB as described in the “unconventional fiscal rule
in Equation (84).

Coherency and completeness in this case is illustrated in Figure 13 for the special
case where ϕ y = ψuy = 0 . We plot AD and AS for both the absorbing (steady state)
case where εt = 0 (Subfigure 13A) and the transitory state with a PIR absorbing state
(Subfigure 13B).

In the absence of active FP, the AD curve is illustrated, as before, with a piecewise
red line, which may not intersect AS as shown with ADELB,TR in Subfigure 13A and AD1
in Subfigure 13B. Once FP is activate at the ELB, as in the UFP fiscal rule (84), it fully
mimicsmonetary policy as if the latter were unconstrained. Thus,AD is a linear relation
composed of the red ADTR line and the purple ADu line. In other words, in the presence
of active FP stemming from the UFP rule, the model always has a unique solution.

B.5. Optimal Monetary Policy with Discretion

We now consider the case where the monetary authority operates optimal monetary
policy under discretion (OP), as in Nakata (2018) and Nakata and Schmidt (2019). The
optimal policy condition, when ît is unconstrained, is:

α y ŷt + κ yπ̂t = 0, (86)
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FIGURE 13. Coherency and Completeness with Unconventional Fiscal Policy Rule

A. Absorbing State B. Transitory State with PIR Absorbing

Note: Left panel illustrates the steady-state equilibrium. Right panel illustrates the transitory state
equilibrium with a PIR absorbing state.

whereα y is the relative weight that the policymaker attaches to the output gap in its loss
function. When the ELB is non-binding, the model is given by condition (86), together
with the NKPC given by

π̂t = βπ̂t+1 + κ yx̂t, (87)

and the fiscal rule is as before given by Equation (16):

Et∆ĝt+1 = ψππ̂t +ψ y ŷt.

When the ELB is binding the model is given by the following set of equations:

ŷt = Et ŷt+1 –
c
σ
(–µ – Etπ̂t+1) – gEt∆ĝt+1 + εt, (88)

π̂t = βEtπ̂t+1 + κ yx̂t. (89)

We thus have the following proposition

PROPOSITION 6. A baseline New-Keynesian model with fiscal policy that consists of govern-
ment spending, lump-sum taxes, and output taxes as defined in (86)-(89) is generally coherent
and complete when the reaction of fiscal policy to deviations of inflation is sufficiently strong.
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Proof of proposition. The model can be cast in the canonical form with the relevant
matrices given by

A1 =

(
α y κ y

κ y –1

)
, A0 =

(
1 gψπ
κ y –1

)
,

B1 =

(
0 0
0 β

)
, B0 =

(
–1 – cσ
0 β

)
.

AJ1,AJ2,AJ3,AJ4 are given by

AJ1 = AJ3 =

(
α y κ y

κ y + β(1 – q) βq – 1

)
,

AJ2 = AJ4 =

(
1 – p – c

σ(1 – q) gψπ – 1 + p – c
σq

κ y + β(1 – q) βq – 1

)
.

We start with |AJ1 | = |AJ3 |:

|AJ1 | = |AJ3 | = α y(βq – 1) – κ y(κ y + β(1 – q)) < 0.

Since |AJ1 | = |AJ3 | < 0, we require that ψπ is such that |AJ2 | = |AJ4 | < 0

|AJ2 | = |AJ4 | = (1 – p –
c
σ
(1 – q))(βq – 1)

– (κ y + β(1 – q))(gψπ – 1 + p –
c
σ
q)

If ψπ → ∞, the determinants are negative. This completes the proof.■

Lower bound forψπ. ψπ must satisfy that |AJ2 | = |AJ4 | < 0

(1 – p –
c
σ
(1 – q))(βq – 1) < (κ y + β(1 – q))(gψπ – 1 + p –

c
σ
q)

which yields the lower bound for ψπ{
(1 – p – c

σ(1 – q))(βq – 1)
(κ y + β(1 – q))

+ 1 – p +
c
σ
q
}
g–1 = ψπ < ψπ

We plot the region for where the model satisfies the CC conditions as a function of
ψπ and ψ y in Figure 14.

To illustrate the intuition of our findings, consider the absorbing state of the model
with εt = 0.

π̂ =
κ y
1 – β

ŷ AS, (90a)
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FIGURE 14. Coherency and Completeness Region for Optimal Monetary Policy and
Inflation and Output Gap Fiscal Rule
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Blue denotes regions where coherency and completeness conditions are satisfied. Red denotes regions
where the model is incoherent or incomplete.

π̂ =

–
α y
κ y
ŷ ADOP for π̂ ≥ –µ,

ψ∗ κ y
1–β ŷ – µ ADELB for π̂ ≤ –µ.

(90b)

We plot this system of equations for the case of passive and active FP in Figure 15.
We underline the following when observing Equation (90). First, note that ADELB in

this regime is identical to ADELB in Equation (18). This makes intuitive sense as when
facing the ELB constraint, the monetary authority is no longer able to conduct optimal
monetary policy. Secondly, as seen in Figure 15,ADOP has a negative slopewhich implies
that there always exists a PIR equilibrium. The ZIR equilibrium can only exist below
the ADOP line when FP is passive (ψ∗ < 1). Additionally, in the case whereψ∗ < 1, ADELB

is bound from above by the ELB on the interest rate, –µ, whereby ψ∗ = 0. Hence, we
can rule out multiple PIR equilibria, and the system in Equation (90) nests the NK-OP
system as described in Ascari and Mavroeidis (2022).

Next, consider the transitory state with εt =
p
σ r̂

T < 0. Here the economy starts off in
a transitory state for an indefinite period of time before jumping to an absorbing state.
Below we describe the MSV for both PIR and ZIR absorbing states, which we plot in
Figure 16.
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FIGURE 15. Absorbing State with Optimal Discretionary Monetary Policy (εt = 0)

Plot on the left depicts the positive interest rate absorbing state with an active fiscal policy regime. Plot
on the right shows the equilibria for a passive fiscal policy regime.
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FIGURE 16. Transitory States with Optimal Discretionary Monetary Policy under Active
or Passive Fiscal Policy

Top row plots are with a positive interest rate absorbing state. Bottom row plots are with a zero interest
rate absorbing state. Top left plot is with an active fiscal policy regime (ψ∗ > 1). Top right and bottom
plots are with passive fiscal policy regimes (ψ∗ < 1).
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OP transitory state with PIR absorbing. This implies that the system takes the following
form:

π̂T =
κ y

1 – β p
ŷT AS, (91a)

π̂T =

–
α y
κ y
ŷT ADOP,

σ(1– p)
c( p–ψ∗) ŷ

T – µ
p–ψ∗ – p

c( p–ψ∗) r̂
T ADELB.

(91b)

With active FP, ADOP and ADELB are both downward sloping. Analogously, as in the
absorbing state where εt = 0, ADELB in Equations (20) and (91) are identical. Thus, the
model is coherent and complete. However, this is not true for passive FP, whereby
the acutely kinked AD-curve implies the presence of a ZIR absorbing state. Thus, we
conclude that when ψ∗ < 1, the NK-OP model fails to satisfy the CC conditions.

OP transitory state with ZIR absorbing. A ZIR absorbing state is unfeasible with an active
FP regime (ψ∗ > 1), as shown in Equation (90) and Figure 15. Thus, for ψ∗ > 1, a system
in a transitory state will eventually move to a PIR absorbing state as described above.

As mentioned, when ψ∗ < 1 the model does not satisfy CC conditions and there
exists a ZIR absorbing state, as the the slope of ADELB can be upward sloping and flatter
than that of AS. In such a case, the system takes the following form:

π̂T =
κ y

1 – β p
ŷT + β

(1 – p)µ
ψ∗ – 1

AS, (92a)

π̂T =

–
α y
κ y
ŷT ADOP,

(1– p)σ
c( p–ψ∗) ŷ

T – (1– p)µ
( p–ψ∗)(ψ∗–1)

[
(1–β)σ
cκ y + 1

]
– µ
p–ψ∗ – p

c( p–ψ∗) r̂
T ADELB.

(92b)

Here too ADELB in Equations (22) and (92) are identical, following the previously ex-
plained logic.

B.6. Canonical Form Coefficients under Consumption Tax Rules

A contemporaneous inflation targeting rule implies:

Et∆τ̂
c
t+1 = ψππ̂t. (93)

The relevant coefficient matrices are given by:

A1 =

(
1 + ϕ yσ–1 (ϕπ +ψπ)σ–1

κ y –1

)
, A0 =

(
1 ψπσ

–1

κ y –1

)
,
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and

B0 = B1 =

(
–1 –σ–1

0 β

)
.

A contemporaneous inflation and output targeting rule implies:

Et∆τ̂
c
t+1 = ψππ̂t +ψ y ŷt (94)

The relevant coefficient matrices are given by:

A1 =

(
1 + (ϕ y +ψ y)σ–1 σ–1(ϕπ +ψπ)

κ y –1

)
, A0 =

(
1 +ψ yσ–1 σ–1ψπ

κ y –1

)
,

and

B1 =

(
–1 –σ–1

0 β

)
, B0 = B1.

B.7. NK-FPModel with Government Spending Inertia

The canonical form coefficients are given by

A1 =


κ y –1 0 κg

–1 0 – cσ g

ϕ y ϕπ –1 0
ψ y ψπ 0 –1

 , A0 =


κ y –1 0 κg

–1 0 0 g

ϕ y ϕπ –1 0
ψ y ψπ 0 –1

 ,

B0 = B1 =


0 β 0 0
1 c

σ 0 –g
0 0 0 0
0 0 0 0

 , h0 = h1 =


0
0
0
ρg

 ,

C1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , C0 =


1 0 0 0
0 1 0 cµ

σ

0 0 1 0
0 0 0 0

 ,

Y t =


x̂t
π̂t

ît
ĝt

 , Y t–1 =


0
0
0
ĝt–1

 , Xt =


ut
εt

0
1

 .
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