DOH = -100 0 1/35 = 019 moler: 0.03; wol = 5 = 0.0019 moler: 0.03; DOH = -100 0 1/35 = 0.03;

Scholars Of Calgary Northwest

Chemistry 30, Unit 4: Chemical Equilibrium Focusing on Acid-Base Systems, 10 Questions

Please wait until the exam has fully loaded in your web browser before starting. **Do not** press "Submit" at the end of the exam until you are sure of your responses, as your test will be graded immediately. Good luck!

L. A solution containing 2.00 g of $Sr(OH)_{2(s)}$ in 250 mL of water was prepared. The pH expected (to the nearest tenth) is ______.

14-0.9=13.1

2.

Indicator Colour in Unidentified Solution	
indigo carmine	blue
bromothymol blue	blue
methyl red	yellow
phenolphthalein	colourless
pp.manom	2010 411000

table

The pH of the unidentified solution is approximately:

- OA) 13.0
- OB) 4.8
- \bigcirc C) 6.0
- OD) 7.8

when this list of acidic or basic solutions mixed to 1.00 mol/L to answer the following question.

 1 H₂SO_{3(aq)}
 5 KHCO_{3(aq)}

 2 HF_(aq)
 6 LiF_(aq)

 3 CH₃COOH_(aq)
 7 NaOH_(aq)

 4 H₃PO_{4(aq)}
 8 NH_{3(aq)}

1423

A 10.0 mL sample of $HNO_{2(aq)}$ is titrated to the equivalence point with 18.5 mL of 0.150 mol/L $NaOH_{(aq)}$. The concentration of $HNO_{2(aq)}$ is

OA) 2.78 mol/L

●B) 0.278 mol/L

OC) 0.139 mol/L

- OD) 1.39 mol/L
- 5. In the acid-base reaction

$$HC_6H_6O_6^-(aq) + HSO_4^-(aq) \longrightarrow H_2C_6H_6O_6(aq) + SO_4^{2-}(aq)$$

HNO2 + NOOH -> H20 + NOWO2
10ml 18-5
? 0.150

18.5:1000=0.0185 x0.150 = 0.003

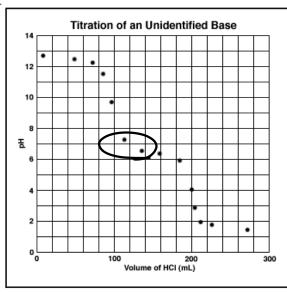
$$\frac{0.003 \times 1000}{10} = 0.278$$

OA) reactants are favoured

©B) HC₆H₆O₆ (aq) is acting as an acid

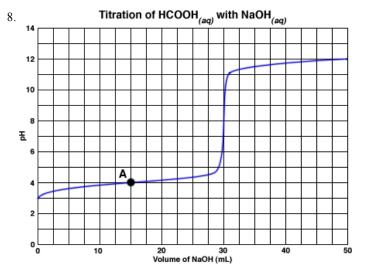
- \bullet C) SO_4^{2-} (aq) is a proton acceptor
- $\mathcal{O}_{\mathbf{D}}^{\mathsf{HSO}_{4}^{-}}$ and $\mathcal{HC}_{6}\mathcal{H}_{6}\mathcal{O}_{6}^{-}$ are a conjugate acid-base pair

Tooth decay results from the dissolving of tooth enamel, or hydroxyapatie, $Ca_5(PO_4)_3OH_{(s)}$. Bacteria in the presence of sugars in the mouth change the pH of the mouth which causes the following equilibrium:


HCCHCOC+H20A -- H2CCHCOC+2004

$$Ca_5(PO_4)_3OH_{(s)} \longrightarrow 5 Ca^{2+}_{(aq)} + 3PO_4^{3-}_{(aq)} + OH^{-}_{(aq)}$$

Most toothpastes contain stannous fluoride compounds that re–mineralize the tooth enamel forming $Ca_5(PO_4)_3F_{(s)}$, or fluorapatite. The fluorapatite is more resistant to breaking down in an acidic medium than hydroxyapatite because fluoride is


- OA) a stronger base than hydroxide ion and is more likely to react
- OB) a stronger base than hydroxide ion and is less likely to react
- OC) a weaker base than hydroxide ion and is less likely to react
- OD) a weaker base than hydroxide ion and is more likely to react

7.

The graph shows the number of buffer regions to be

- OA) one
- B) two
- OC) three
- OD) none

At point A during any titration, the solution is resistant to a change in pH if either a strong base or a strong acid is added to it. The reason for this is, at A, the solution contains equal amounts of

 \bigcirc B) HCOO $^{-}_{(aq)}$ and OH $^{-}_{(aq)}$

 \bigcirc C) HCOOH_(aq) and OH $^-$ (aq)

- \bullet D) HCOOH_(aq) and HCOO⁻_(aq)
- 9. The primary buffer in the blood is the $H_2CO_{3(aq)} / HCO_{3(aq)}^{-}$ buffer system. The equilibrium expression for this buffer is:

$$H_2CO_{3(aq)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + HCO_3^-_{(aq)}$$

If this buffer at equilibrium contains 1.0×10^{-3} mol/L HCO₃⁻(aq) and 1.5×10^{-4} mol/L H₂CO₃(aq), then the pH of the sample (to the nearest hundredth) is

- 10. Which of the following solutions has the highest pH?
 - \bigcirc A) 300 mL of 1.00 × 10⁻² mol/L HClO_{4(aa)}
 - \bigcirc B) 100 mL of 1.00 × 10⁻² mol/L HCl_(aa)
 - C) 150 ml of 1.00×10^{-5} mol/L H₂SO_{4(aa)} H= 5
 - \bigcirc D) 10.0 mL of 1.00 × 10⁻³ mol/L H₃O⁺_(aa)

Request took 0.093 seconds.

Copyright © 2025, Syzygy Research & Technology Ltd. All rights reserved.

Follow us; we're friendly! (7)

