

AP14.35 C15-C16 Practice FRQ's

Try to complete the AP FRQ worth 10 points in 24 minutes. You can find the video explanations answers for the FRQ on the Chem-Tube page at ChemAdvantage.net .

Sorbic acid, HC₆H₇O₂ (molar mass 112.3 g/mol) is commonly used as a sour flavoring and also as an antimicrobial agent for foods. The concentration of HC₆H₇O₂(*aq*) of solution must be determined. A student titrates 45.00 mL of the solution with 0.250 *M* NaOH(*aq*) using both an indicator and a pH meter. The value of K_a for sorbic acid is 1.7×10^{-5} .

- (a) Write the molecular and net-ionic equations for the reaction between HC₆H₇O₂(*aq*) and NaOH(*aq*).
 (1 point)
- (b) The images below show the buret before the titration begins (below left) and at the end point (below right). What should the student record as the volume of NaOH(*aq*) is required to reach the end point. (1 point)
- (c) Assuming that the end point is equal to the equivalence point, calculate [HC₆H₇O₂] in the original solution.
 (2 points)
- (d) The pH of the equivalence point of the titration is measured to be 8.83. Which of the following indicators would be the best choice for determining the end point of the titration? Justify your answer.

(1 point)

Indicator	Ka
Phenolphthalein	5.0 ×10 ⁻¹⁰
Bromothymol blue	1.0 ×10 ⁻⁷
Methyl red	1.0 ×10 ⁻⁵
Thymol blue	1.0 ×10 ⁻²
Methyl violet	1.6 ×10 ⁻¹

- (e) Calculate the pH at the half-equivalence point. (1 point)
- (f) The initial pH and the equivalence point are plotted on the graph below. Accurately sketch the titration curve on the graph below. Mark the position of the half-equivalence point on the curve with an X. (3 points)
- (g) The pH of a soft drink is 3.37 after the addition of HC₆H₇O₂(*aq*) and Na C₆H₇O₂(*aq*). Which species HC₆H₇O₂ or C₆H₇O₂⁻, has a higher concentration in the soft drink? Justify your answer. (1 point)

