## **Handout 1 – Descriptive Chemistry 1**

Apr 3, 2019

- Doing chemistry requires both understanding ideas and remembering key information Note

## [Pre-Reading & Pre-assignments]:

(Zumdahl9e) Chp20/21; (Atkins7e) Focus8/9 (Optional)

Worksheet - Flinn AP Chem Chemistry Reaction (Google Classroom)

Q5 or Q6 - Reaction Writing in National 2014-2018 Part II/Q7-12 (Part I)

## [Learning Objectives]:

- Metal reactivity and extraction of metals
- Reactions of representative metals
- Pourbaix diagram and typical redox titrations 0
- Prediction of unknown reactions based on reactions types 0

## **Classification of Redox Reactions**

Introductory Question: Why do we need to summarize the reactions types?

| Subtypes                                  | Examples (net ionic equation if in aqueous)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combustion                                | Li(s) + O <sub>2</sub> (g) > Li20<br>Na(s) + O <sub>2</sub> (g) > Na <sub>2</sub> O <sub>2</sub> heating NaO <sub>2</sub> Superoxid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (O <sub>2</sub> /air) 6A v                | $(S(s) + O_2(g) \rightarrow SO_L (SO_X))$ $(S(s) + O_2(g) \rightarrow P_0O_L (SO_X))$ $(S(s) + O_2(g) \rightarrow P_0O_L (SO_X))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Combustion                                | $\begin{array}{c} Mg(s) + N_2(g) \rightarrow \\ Mg(s) + CO_2(g) \rightarrow \\ +2 \qquad MgO + CO \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (other oxidants)                          | Fe(s) + Ch(g) > Fed x  Fe(s) + Sh) > FeS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Single-displace                           | Fe(s) + H+(aq) → Fert + Hrcg) pre - H metods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (metals)                                  | $\frac{\text{Cu(s)} + \text{Ag}^{\dagger}(\text{aq}) \rightarrow \text{Cu}^{\dagger} + \text{Ag}}{\text{Cu}^{\dagger}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Single-displace (nonmentals)              | $\frac{\text{Cl}_2(g) + \text{Br}^-(aq) \rightarrow}{\text{F}_2(g) + \text{H}_2\text{O}(l) \rightarrow}  \text{Br}_2 + \text{Cl}^-  \text{Br}_2\text{Cl} \times \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Typical h <sup>+</sup> † redox titrations | (acidified) $MnO_4^-(aq) + C_2O_4^{-2}(aq) \rightarrow C_$ |
| ~~                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

$$\frac{\sqrt{c-e^{\beta}}}{\sqrt{c}} + \frac{\sqrt{c}}{\sqrt{c}}$$

lab handout - empirical formula

https://bit.ly/2FXvP8S

https://bit.ly/2YQmUxF

https://bit.ly/2uGAntS

https://bit.ly/2YJDLC2

https://bit.ly/2uJOMFK (6:35)

https://bit.ly/2Ibllo3 (N2018-Q8)









Fe – Representative of transition metals with multiple oxidation numbers Write down the (net ionic if applicable) equation of each reaction



https://bit.ly/2WDGB9M (Fe<sub>3</sub>O<sub>4</sub>) https://bit.ly/2OOPSta (Fe(OH)<sub>2</sub>) https://bit.ly/2K4I5sm (OH- +  $Fe^{2+}/Fe^{3+}$ ) https://bit.ly/2CTgdS0 (N2017-Q7)