Question 1 (page 1 of 2)

USNCO ID Number:

- An unknown salt MX_2 is a group 2 metal halide. 1. [10%]
 - 10.00 g MX_2 dissolves in 50.0 g water to give a homogeneous solution. The freezing point of this solution is -4.50°C. What is the molar mass of MX₂? For water, $K_f = 1.86$ °C/m.

$$m = \frac{10.00/M \times 3}{0.0500} = 2.42 =) [M = 248 8/mol]$$

10.00 g Na₂CO₃ and 10.00 g MX₂ are mixed in 200.0 mL of water. A precipitate of MCO₃ forms. What is the pH of the supernatant? The K_a of H_2CO_3 is 4.3×10^{-7} and the K_a of HCO_3^- is 4.7×10^{-11}

In the supernatant:
$$C(CO_{3}^{1}) = \frac{9.43 \times 10^{-2} - 4.53 \times 10^{-2}}{0.2000 L} = \frac{2.70 \times 10^{-1} M}{0.2000 L}$$
 $CO_{3}^{1} + 1 M = 1 M M + 5 M = \frac{X^{2}}{0.2000 L} = \frac{10^{-19}}{41 \times 10^{-1}} = 2.13 \times 10^{-9}$
 $CO_{3}^{1} + 1 M = 1 M M = 1$

c. A solution of 10.00 g MX₂ in water is treated with excess silver nitrate. The precipitate is dried; the mass of the dried compound is 15.2 g. What is the identity of
$$MX_2$$
?

.2 g. What is the identity of
$$MX_2$$
?

 $X + (+g^+ - A_5 \times C_5)$

d. A sample of 10.00 g MX₂ dissolved in 50 mL water is treated with increasing amounts of Na₂SO₄ up to 10 g in total. How will the mass of precipitate formed vary with the mass of added Na₂SO₄? Graph your answer on the grid provided.

$$n(MX) = 9.52 \times 10^{-2}$$
 $m(Nansole) = 9.53 \times 10^{-2} \times 142$
 $= 5.729$
 $m(Srsole) = 4.72 \times 180$
 $= 7.429$

e. What color flame test does MX2 give?

red!

Question 2 (page 1 of 2)

USNCO ID Number:

2. [13%] A sample of solid calcium fluoride is suspended in water in an unreactive container and stirred until it achieves equilibrium. The pH of the solution is lowered by careful addition of nitric acid, and the pH and concentration of $Ca^{2+}(aq)$ are noted at several points as shown on the graph below. Note that the units on the y axis are millimoles per liter.

a. Determine the K_{sp} of CaF_2 from the data provided.

When pH is high, Clart] = 0.21 x 10-3 OF-] ~ 2 Clart] = 0.42 x 10-3 Kgp = 0.21 x 10-3 x (0.42 x 10-3)² = [2.7 x 10-11]

b. Qualitatively, what is the cause for the increase in solubility of CaF₂ at low pH?

pH lower, Cnt) Migher, Cafe + 2Ht = Cent +2HF

For binds with Ht to form werk and HF,

Shifting the dissolution equilibrium of Cafe to the right.

increasing S.

c. From the data provided, determine the K_n of HF.

At pH = 2 [CAH] = [byx10] At pH =
$$\frac{2.7 \times 10^{-1}}{1.7 \times 10^{-3}}$$
 = [byx10] At pH = $\frac{2.7 \times 10^{-1}}{1.7 \times 10^{-3}}$ = [byx10] At pH = $\frac{2.7 \times 10^{-1}}{1.7 \times 10^{-3}}$ = $\frac{1.7 \times 10^{-3}}{1.7 \times 10^{-3}}$ = $\frac{1.7 \times 10^{-3} \times 10^{-3}}{1.7 \times 10^{-3}}$ = $\frac{1.7 \times 10^{-3}}{1.7 \times 10^{-3$

d. How many moles of HNO₃ must be added to the CaF_2 /water mixture to achieve a pH = 3.00 in this experiment? The volume of solution is 1.00 L.

e. Carbon dioxide dissolves in water at 25 °C and 1 atm pressure to the extent of 0.0345 mol L⁻¹. An aliquot of the solution taken from the above experiment at pH = 5 is stirred under 1 atm CO₂ and the pH slowly raised by addition of solid NaOH until CaCO₃ just begins to precipitate. What is the pH of the solution at this point? The K_{sp} of CaCO₃ is 8.7×10^{-9} , the K_a of aqueous CO₂ ("H₂CO₃") is 4.3×10^{-7} , and the K_a of HCO₃⁻¹ is 4.7×10^{-11} .

$$ρH7/S.οδ$$
 ($Ce^{4}J^{2}2.1 \times 10^{-4}$ M

 $Con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7 \times 10^{-9}] 2.1 \times 10^{-9}$
 $con^{2}J = Ksp [Ce^{4}J = 8.7$

Ethene, C₂H₄, can react in the gas phase in the presence of redicals R to form polyethylene as shown in the 3. [13%] equation below. Here n is the degree of polymerization. The forward reaction is second-order while the reverse reaction is first-order. The values of these rate constants are independent of the degree of polymerization n and the identity of R.

A sample of polyethylene has an average degree of polymerization n = 1200. How many polymer chains are present in 1.0 g of this material?

b. Calculate
$$\Delta H^{\circ}$$
 and ΔS° for the polymerization reaction.

According to Arrhenius eq: $|nR = -\frac{E_a}{R} \cdot (\frac{1}{T}) + C$

The slope is $-\frac{E_a}{R} \cdot (\frac{1}{T}) = -\frac{1}{1} \cdot (\frac{1}{T}) + C$
 $= 121 \cdot (\frac{1}{T}) \cdot$

= 33.3 kJ/m) (CH = Ba(f) - Ba(V) = 33.3-12 = [-877

Property of ACS USNCO - Not for use as USNCO National Exam after April 21, 2024

-877×103 = [-138 J.mo] -KT

d) better and alternative mechod: 05° (70K) = -87,7 - 700×03× (-138
KO= P - OGT = P - 11.7 kJ/mm = 01/42 = + 11.7 kJ/mm
Question 3 (page 2 of 2) Question 3 (page 2 o
c. The bond dissociation enthalpy (BDE) for a typical carbon-carbon single bond is 345 kJ mol. From the data given, what is the BDE of the carbon-carbon double bond in ethene?
R. + 4x=c
The second of th
a c=c converts to 2 C-C single.
SHOT BELLEL) - 345 = -87.7 = 7 BELCEC) = 62 RJ/m
d. Ethene is charged to a fixed vessel a 25 bar and 720 K. Traces of radical are then added to initiate polymerization. What is the percent conversion of ethene into polymer at equilibrium under these conditions?
Rf - K(700) = (-4010 -720+152) - 89.63
100 = (-14500=720+21.7) = e9.63 = 0.13 = 0.13
Compagn + R. (5) -> Remah. (5)
Kp=0.139 = p(chuy.g)=7 PChmp,g)eq=0.139=7.19 ban
e. In the presence of a Vatalyst for the polymerization reaction, the forward rate constant as a function of temperature is
$ln(k_f) = -3050(1/T) \pm 21.0$. By what factor does the catalyst accelerate the rate of the forward reaction at 500 K?
In(kf) = -3050 x 500 tuis = 14.0); kf = 2.96 x106 barl.57
Inlef) = -4010 x 500 + 152 = 718; kg= 1-31 x103 box1.51
Rf / Rf = 2-964106/1-344103 = 2.26 ×103
f. By what factor does the catalyst change the rate of the reverse reaction at 500 K?
The same as above, [2.26x103]

4. [13%] Copper(II) forms a complex ion with ammonia, $Cu(NH_3)_4^{2+}$, with $K_f = 1.7 \times 10^{13}$. An electrochemical cell is set up as shown below at 298 K. Half-cell **A** contains 100 mL of 1.00 M $Cu(NO_3)_2$, while half-cell **B** contains 100 mL of a solution that contains a small amount of copper(II) and is 0.100 M in NH₃. A solution of nitric acid is slowly added to half-cell **B** and the potential measured by the voltmeter is recorded as a function of the added volume of HNO₃.

a. Which half-cell is the cathode and which is the anode? Justify your answer.

Firsthe calhode; Bis the amode:

Charly A = 1,00 M; [Charly B is much smaller

Charly A = (100 M; [Charly B is much smaller

Charly A = (100 M; [Charly B is much smaller

Charles a concentration cell, Charles into

Charles a concentration cell, Charles a to form

Charles a concentration cell, Charles a to form Charle

* d) further explain why there is a significant drop when approaching to the plateau? USNCO ID Number: As HNOZ is added to B, NHZ -> myt, more Cut is converted from its complex. [Cur] 13), according to Up or Nernst equation, Found when enough this added, all my - myt, and all construction of copper(II) in the solution in half-cell B? 1 thus levels off. In the end, Even- oim V Fren = Gren - RIIINQ = 0 - 059/19 [Chy]B = 012] => [Chy]B=231x105M VHNOy added is negligible companied to voo ont. So Cart in $\beta = \frac{2.31 \times 10^{-5} \text{ M}}{2.31 \times 10^{-5} \text{ M}}$ When Ving - 3:15 ml is added, Even levels off, It means all my 13 converted to mupt My + H+ -> my+ 1 HW2 = 1 CM/2) = 100 m/ x0.100 M = 1.00 x 10-2 mal

C(MNa) = 1 = (.00 x 10-2) = [3.17 M

Suppose that the experiment is set up again with silver metal in place of copper metal and silver(I) ion in place of copper(II) ion, but with all concentrations and all other reagents identical. What would the graph of E vs. mL added HNO₃ look like in this experiment? Sketch your result on the grid below (the graph shown above is redrawn for your convenience), and explain your answer. Silver(I) forms a complex ion with ammonia, $Ag(NH_3)_2^+$, with $K_f =$ 1.7×10^{7}

[Agt] cerel. H = 221 x 10 M ; Evenel + H [ntially, VHNOz-0 Agt + 2 mm = (19 cmm) 2 2.31 x 1055 = Kf = 1.7 x 1.37 x . (6.11.9)2 = Kf = 1.7 x 1.37 X= 1.76x,0-10

- 5. [12%] Write net equations for each of the reactions below. Use appropriate ionic and molecular formulas and omit formulas for all ions or molecules that do not take part in a reaction. Write structural formulas for all organic substances, and clearly show stereochemistry where relevant. You need not balance the equations or show the phase of the species.
 - a. Aqueous ammonia and acetic acid are mixed.

b. Sodium iodate is added to an excess of hydriodic acid.

c. Manganese(IV) oxide is added to concentrated aqueous hydrochloric acid.

d. Propyl benzoate is heated with aqueous sodium hydroxide.

e. Calcium oxide and graphite are heated to 2200 °C.

f. Iodine-124 undergoes radioactive decay by electron capture.

Question 6 (page 1 of 2)

USNCO ID Number:

6. [14%] Consider the properties of the group 1 elements, whose valence shell electron configuration (s ns¹) in the table below.

Element M	n	First ionization energy, kJ mol ⁻¹	Energy required to excite the valence electron to the $(n+1)s$ orbital, kJ mol ⁻¹	Molar density of solid MCl, mol cm ⁻³		
Н	1	1312	984	0.0403		
Li	2	520	325	0.0507		
Na	3	496	308	0.0371		
K	4	420	252	0.0266		
Rb	5	403	241	0.0232		
Cs	6	(376) ·	222	0.0237		

a. Rationalize the observed trend in first ionization energies with increasing n.

this the TEI .

b. Suppose a hydrogen atom were excited to its 2s¹ state. If that excited state atom were to transfer its electron to Cs⁺ to form a ground-state Cs atom, how much energy would that reaction absorb or release?

Ht + Cst -> Cz + Ht

OH = -376 + (1312-984) = -48 kJ/nol, release

- 48 x 103 J atom = 8.0 x 10 D J atom

1812 } Ht nst

All but one of the atoms listed in the table have an excited state that is significantly lower in energy than the (n+1)s tate described in the table. Explain this observation, noting which atom is the exception and why.

The year others have up which is significant conser than (nti)s, but H

boosylt have lp!

Ω	Duestion 6 (page 2 of 2)	USNC	O ID Number:	
	than the $(n+1)s^1$ state described in t	he table. Explain this observation	s modestly higher in energy $(38-5)$, noting which atom is the exception	
	其处都有一下路高丽	丽,有一个治病(元	略为!	
or na	(n+1)pl/is modest	y Wyler than (v	iti)s for all his	→Cs
w1) f	but H's (n+1)p ha	s the same en	ergy as (n+1)s'	95
	le has only e, r	is = np lenergy		
	expected from the trend and CsCl(s) is more dense than expected. Ex	ties, except that HCl(s) is less dense xplain this periodic trend, and give r	
	Lich > Rbcl,	similar latte	strutures,	
	Volume jacroasers	More than the	it of the molar	mass,
	thus, d		and the same of th	1
	HUCST is not i	onle, but up la	ular, distance be	Then
	unolembes are la	nger so dersit	y smaller; Cst	has a
	f. 137Cs (136.9070895 amu) undergo	es radioactive decay to give a stab cay is this, and what is the identity	le product whose atomic mass is 136 of the decay product?	6.9058274
	55C5 -> 1/3 55C5 -> 1/3	+ (37 Ba)	lager siz	
	Q-de	cay	More Ch S	No. of the contract of the con
	g. Calculate the energy, in kJ mol ⁻¹ ,	released by the radioactive decay of	Phus, den	
	DE -OMC1 = (136	9-7-895-13690	28mb) x (5/2×10/2)	X par XD
	= 1.13	36 x1014 Jamel	1 2998	
	- (.13)	otto, kil (mo)		

Question 7 (page 1 of 2)

USNCO ID Number:

7. [13%] Flash vacuum pyrolysis of carbonyl azide (CON₆) at 420 °C gives low yields of a cyclic compound, diazirinone, as shown in the equation below. Note that the illustrations of carbonyl azide and diazirinone correctly show the connectivity of the atoms but are NOT correct Lewis structures. The bond dissociation enthalpies (BDE, in kJ mol⁻¹) of various bonds among carbon, oxygen, and nitrogen are given in the table.

Bond	BDE, kJ mol ⁻¹						
C-O	350	C-N	290	N-N	160	N-O	200
C=O	20 741 30	C=N	615	N=N	418	N=O	480
C≡O	1080	C≡N	891	N≡N	949		

a. Draw complete Lewis structures for carbonyl azide and for diazirinone, including all lone pairs and nonzero formal charges. You need only draw one Lewis structure for each molecule, even if there are multiple possible resonance structures.

$$\begin{array}{cccc}
CA & & & & & \\
CA & & & & \\
CA & & & & \\
CA & & & \\
CA & &$$

b. Diazirinone decomposes in the gas phase over the course of several days at room temperature to give carbon monoxide and nitrogen gas. Based on the given BDEs, calculate ΔH° for this decomposition reaction.

c. The actual ΔH° for the decomposition of diazirinone is -347 kJ mol⁻¹. Comment on any discrepancy you find between this value and the value you determined in part b. Be sure your comment addresses the direction of deviation of the two values.

Actual is more excelerant than calculated! of it is caused by the significant unstability of N=10 due to the ring strain (small ring), this is why.

d. Will ΔG° for decomposition at 298 K be algebraically greater than, less than, or equal to ΔH° for decomposition? Briefly justify your answer.

As more gas molecules are produced, 05 >0

Da = 5H - [05] = 7 5a Con

e. There is an isomer of diazirinone that has a chain structure with the connectivity NCNO. Draw a Lewis structure for this molecule and clearly describe or sketch its geometry.

NEC-NO: 1 Dent bent

f. Would you expect acyclic NCNO to be more or less stable than diazirinone? Clearly justify your prediction.

More stable, ring strain due to the less ideal

8. [12%] Consider the three isomers of C₄H₉NO₂ shown below:

$$CH_3O$$
 NH_2
 H_2N
 OCH_3
 HO
 NH_2
 NH_2

Which compound is the most basic? Justify your answer.

thin in It is the most basic. The NH in I is less basic as the N is resonanced with C=0, The N in II is sp2-hybridized, thus it is more electronegative,

Draw the structures of the conjugate acids of the three compounds. and less basic than that in I.

Draw the structure of a chiral isomer of C₄H₉NO₂.

Consider the two nitrogen heterocycles shown below:

d. Which compound is more basic? Draw the structure of its conjugate acid.

e. Which compound is more reactive towards Br₂? Explain why it is more reactive and draw the structure of a major product of its reaction with Br₂.

IV is more reactive

The circled N in V below is electron withdrawing.

Which decreoses the e dencity in V, thus V is

less reactive towards Br, as aromatic ring is

the nucleaphile (higher e density, more reactive)

major product of IV:

Major product of IV:

Major product of IV:

Solution

Sintotal

Property of ACS USNCO – Not for use as USNCO National Exam after April 21, 2024