Álgebra Superior I **Tarea 2**

Prof: Iker Martínez Ayud: Erick Rodríguez

31 de diciembre de 2019

1. Teoría de Conjuntos

1.1. Álgebra de Conjuntos y Funciones

Ejercicio 1.1. Dados 2 conjuntos A,B, sea X un conjunto con las siguientes propiedades:

- 1. $A \subseteq X y B \subseteq X$.
- 2. Si $A \subseteq Y$ y $B \subseteq Y$, entonces $X \subseteq Y$.

Demuestra que $X = A \cup B$.

Ejercicio 1.2. Dados 2 conjuntos A, B, sea X un conjunto con las siguientes propiedades:

- 1. $X \subseteq A$ y $X \subseteq B$.
- 2. Si $Y \subseteq A$ y $Y \subseteq B$, entonces $Y \subseteq X$.

Demuestra que $X = A \cap B$.

Ejercicio 1.3. Sean $A, B \subseteq X$. Demuestra que:

- (a) $A \cap B = \emptyset$ si y solo si, $A \subseteq B^{\complement}$.
- (b) $A \cup B = X \text{ si y solo si } A^{\complement} \subseteq B$.

Ejercicio 1.4. Sean $A,B \subseteq X$. Demuestra que $A \subseteq B$ si y solo si $A \cap B^{\complement} = \emptyset$.

Ejercicio 1.5. Da un ejemplo de conjuntos A,B,C tales que :

$$(A \cup B) \cap C \neq A \cup (B \cap C)$$

Ejercicio 1.6. Si $A,B \subseteq X$ satisfacen que $A \cap B = \emptyset$ y $A \cup B = X$, demuestra que $B = A^{\complement}$.

Ejercicio 1.7. Si $A \subseteq B$ entonces $B \cap (A \cup C) = (B \cap C) \cup A$ para todo conjunto C. Por otro lado si existe un conjunto C tal que se cumple la igualdad anterior, entonces demuestra que $A \subseteq B$.

Ejercicio 1.8. Dados 2 conjuntos A,B demuestra que A = B si y sólo si:

$$(A \cap B^c) \cup (A^c \cap B) = \emptyset.$$

Ejercicio 1.9. Demuestra las siguientes igualdades :

- (a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- (b) $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- (c) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.
- (d) $A \subseteq A', B \subseteq B' \Rightarrow A \times B \subseteq A' \times B'$.

Ejercicio 1.10. Dados 2 conjuntos A,B demuestra que:

$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

Ejercicio 1.11. Definamos la **Diferencia Simétrica** de A y B como el conjunto:

$$A \triangle B := (A \setminus B) \cup (B \setminus A).$$

Demuestra que si $A \triangle B = A \triangle B$, entonces B = C. Determina si se vale un resultado análogo para $\cap, \cup, \delta \times$.

Ejercicio 1.12. *Demuestra que* $A \triangle B = (A \cup B) \setminus (A \cap B)$.

Ejercicio 1.13. Dada una función $f: A \longrightarrow B$ demuestra que $\forall X, Y \subseteq A$.

- (a) $f(X) \setminus f(Y) \subseteq f(X \setminus Y)$
- (b) $Si\ f$ es inyectiva entonces se da la igualdad en la contención anterior.

Ejercicio 1.14. Demuestra que una función $f: A \longrightarrow B$ es inyectiva si y solo si $\forall X \subseteq A$, $f(A) \setminus f(X) = f(A \setminus X)$.

Ejercicio 1.15. Dada una función $f: A \longrightarrow B$ demuestra que:

- (a) $\forall X \subseteq A \text{ tenemos que } X \subseteq f^{-1}(f(X)).$
- (b) f es inyectiva si y sólo si $f^{-1}(f(X)) = X$, $\forall X \subseteq A$.

Ejercicio 1.16. Dada una función $f: A \longrightarrow B$ demuestra que :

- (a) $\forall Z \subseteq B \text{ tenemos que } f(f^{-1}(Z)) \subseteq Z$.
- (b) f es suprayectiva si y sólo si $f(f^{-1}(Z)) = Z$, $\forall Z \subseteq B$.

Ejercicio 1.17. Dada una familia de conjuntos $\{A_{\lambda}\}_{{\lambda}\in I}$, demuestra que $X:=\bigcup_{{\lambda}\in I}A_{\lambda}$ es el único conjunto que satisface las siguientes 2 propiedades :

- (a) $\forall \lambda \in I, A_{\lambda} \subseteq X$.
- (b) Si Y es un conjunto tal que $A_{\lambda} \subseteq Y$, $\forall \lambda \in I$, entonces $X \subseteq Y$.

Ejercicio 1.18. Enuncia y demuestra un resultado análogo al anterior pero que esta vez caracterice a $X := \bigcap_{\lambda \in I} A_{\lambda}$.

Ejercicio 1.19. Dadas las familias $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ y $\{B_{\mu}\}_{{\mu}\in M}$, considera las familias:

- (a) $\{A_{\lambda} \cup B_{\mu}\}_{(\lambda,\mu) \in \Lambda \times M}$.
- (b) $\{A_{\lambda} \cap B_{\mu}\}_{(\lambda,\mu) \in \Lambda \times M}$.

Demuestra que:

$$\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) \cap \left(\bigcup_{\mu \in M} B_{\mu}\right) = \bigcup_{(\lambda, \mu) \in \Lambda \times M} (A_{\lambda} \cap B_{\mu}).$$

$$\left(\bigcap_{\lambda\in\Lambda}A_{\lambda}\right)\cup\left(\bigcap_{\mu\in M}B_{\mu}\right)=\bigcap_{(\lambda,\mu)\in\Lambda\times M}\left(A_{\lambda}\cup B_{\mu}\right).$$

Ejercicio 1.20. Sea $\{A_{ij}\}_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ una familia de conjuntos indexada por $\mathbb{N}\times\mathbb{N}$. Demuestra o dar un contraejemplo de la siguiente igualdad:

$$\bigcup_{j=1}^{\infty}(\bigcap_{i=1}^{\infty}A_{ij})=\bigcap_{i=1}^{\infty}(\bigcup_{j=1}^{\infty}A_{ij}).$$

Ejercicio 1.21 (Teorema de Cantor-Bernstein-Schröder). Sean A,B dos conjuntos. Supongamos que existen dos funciones inyectivas, $f:A \longrightarrow B$ y $g:B \longrightarrow A$. Demuestra que existe una biyección $h:A \longrightarrow B$.

1.2. Inducción

Ejercicio 1.22. Un elemento $n^- \in \mathbb{N}$ se llama **Antecesor** de $n \in \mathbb{N}$ cuando se tiene que $n^- < n$ pero no existe $c \in \mathbb{N}$ tal que $n^- < c$ y c < n. Demuestra que todo numero natural distinto de 0 tiene antecesor.

Ejercicio 1.23. Demuestra que $(n^-)^+ = n$, para todo n > 0.

Ejercicio 1.24. *Demuestra por inducción matemática que para todo n* $\in \mathbb{N}$:

- (a) 2(0+1+2+....+n) = n(n+1).
- (b) $1+3+5+...+(2n+1)=(n+1)^2$.
- (c) $(a-1)(1+a+...+a^n) = a^{n+1}-1, \forall a \in \mathbb{N}.$
- (d) $0^2 + 1^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- (e) $0^3 + 1^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$.

Ejercicio 1.25. *Demuestra por inducción a partir de k:*

- (a) Para todo $n \in \mathbb{N}^{\times}$, $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$.
- (b) Para todo $n \in \mathbb{N}^{\times}$, $(1 \frac{1}{2})(1 \frac{1}{3})(1 \frac{1}{4}) \cdots (1 \frac{1}{n+1}) = \frac{1}{n+1}$.
- (c) Para todo $n \in \mathbb{N}^{\times}$, $(1 + \frac{1}{1})(1 + \frac{1}{2})(1 + \frac{1}{3})\cdots(1 + \frac{1}{n}) = n + 1$.
- (d) Para cualesquiera $a, n \in \mathbb{N}$ y $t \in \mathbb{N}^{\times}$,

$$a + at + at^{2} + at^{3} + ... + at^{n} = \frac{a(t^{n+1} - 1)}{t - 1}.$$

- (e) Para todo $n \in \mathbb{N}^{\times}$, $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$.
- (f) Para todo $n \in \mathbb{N}^{\times}$, $1 \cdot 3 + 2 \cdot 3^2 + ... + n \cdot 3^n = \frac{(2n-1)3^{n+1} + 3}{4}$.

- (g) Para toda $n \ge 4$, demuestra que $n! > 2^n$.
- (h) Prueba que la suma de los ángulos internos de un polígono de $n \ge 3$ lados es $(n-2)\pi$, dando por hecho que la suma de los ángulos internos de un triángulo es π .

Ejercicio 1.26. *Sea* $f : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ *la función definida por:*

$$f(1,n) = 2n-1$$
, $f(m+1,n) = 2^m(2n-1)$

Demuestra que f es una biyeccion.

1.3. Estructuras Algebriacas

Ejercicio 1.27. Sea X un conjunto y $\mathcal{P}(X)$ su conjunto potencia. Demuestra que $(\mathcal{P}(X), \triangle, \cap)$ es un anillo conmutativo con unidad. Donde $A \triangle B = (A \cup B) \setminus (A \cap B)$ es la diferencia simétrica.

Ejercicio 1.28. Demuestra que $\forall k \neq 0$, la función $P_k : \mathbb{N} \longrightarrow \mathbb{N}$, $P_k(n) = k \cdot n$, es inyectiva

Ejercicio 1.29. *Demuestra que* $(\mathbb{Z}, +)$ *es un grupo Abeliano.*

Ejercicio 1.30. *Demuestra que* $(\mathbb{Z}, +, \cdot)$ *es un anillo conmutativo.*

Ejercicio 1.31. *Demuestra que* $(\mathbb{Z}, <)$ *es un COTO estricto.*

Ejercicio 1.32. *Demuestra que* $(\mathbb{Q}, +)$ *es un grupo Abeliano.*

Ejercicio 1.33. *Demuestra que* $(\mathbb{Q}^{\times}, \cdot)$ *es un grupo Abeliano.*

Ejercicio 1.34. *Demuestra que* $(\mathbb{Q}, +, \cdot)$ *es un campo.*

Ejercicio 1.35. *Demuestra que* $(\mathbb{Q}, <)$ *es un COTO estricto.*