Cálculo Difrencial e Integral I **Tarea 3**

Prof: Iker Martínez Ayud: Andrew Shaw

24 de diciembre de 2018

1. Límites

1.1. Límites Finitos

Ejercicio 1.1. Sea $f: X \cup Y \longrightarrow \mathbb{R}$, $a \in X' \cup Y'$. Definamos $g:=f|_X y$ $h:=f|_Y$. Demuestra que si $\lim_{z \to a} g(z) = \lim_{z \to a} h(z) = L$ entonces $\lim_{z \to a} f(z) = L$.

Ejercicio 1.2. Sea $f: X \longrightarrow \mathbb{R}$ una función monótona tal que $f(X) \subseteq [a,b]$. Demuestra que si f(X) es denso en el intervalo [a,b], entonces $\forall c \in X'_+ \cap X'_-$, se tiene que $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x)$. Si $c \in X$ demuestra que éste límite es igual a f(c).

Ejercicio 1.3. Sea $f: X \longrightarrow \mathbb{R}$ una función monótona, $a \in X'_+$ y $x_n > a$ una sucesión de elementos en X que converge para a. Si $\lim_{x \to a^+} f(x) = L$.

Ejercicio 1.4. Sea $f: X \longrightarrow \mathbb{R}$ monótona. Demuestra que $A := \left\{ a \in X' \mid \lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x) \right\}$ es a lo más numerable.

Ejercicio 1.5. Si $\lim_{\substack{x \to a \\ }} |f(x)| = |L|$ demuestra que el conjunto de valores de adherencia de f en a está dado por $\{L\}$, $\{-L\}$ o $\{L, -L\}$.

Ejercicio 1.6. Definamos $f: \mathbb{Q} \longrightarrow \mathbb{R}$ como $f(\frac{p}{q}) := a^{\frac{p}{q}}$ donde a > 1. Demuestra que $\lim_{x \to 0} f(x) = 1$ concluye que:

- (a) Para todo $b \in \mathbb{R}$ $\lim_{x \to b} f(x)$ existe. A éste límite lo denotaremos como a^b .
- (b) Si $b \in \mathbb{Q}$ entonces $\lim_{x \to b} f(x) = f(b)$.
- (c) $a^x \cdot a^y = a^{x+y}$.
- (d) $Si \ x < y \Rightarrow a^x < a^y$.

1.2. Límites Infinitos

Ejercicio 1.7. Dado a > 1 definamos $g : \mathbb{R} \longrightarrow \mathbb{R}$ como $g(x) = a^x$, $\forall x \in \mathbb{R}$. Demuestra que $\lim_{x \to \infty} g(x) = \infty$ y que $\lim_{x \to -\infty} g(x) = 0$.

Ejercicio 1.8. Sea p(x) un polinomio con coeficientes reales. Demuestra que si el coeficiente del termino de mayor grado es positivo entonces:

- (a) $\lim_{x \to \infty} p(x) = \infty$
- (b) $\lim_{x \to -\infty} p(x) = \pm \infty$ dependiendo de la paridad del grado.

Ejercicio 1.9. Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(\frac{p}{q}) := q$ si $\frac{p}{q}$ es un número racional distinto de 0, f(x) := x si x es un número irracional y f(0) = 0. Demuestra que esta función es no acotada en cualquier intervalo abierto de la recta.

Ejercicio 1.10. Sean $f: X \longrightarrow \mathbb{R}$, $g: Y \longrightarrow \mathbb{R}$ funciones tales que $f(X) \subseteq Y$. Demuestra que si $a \in X'$ y $b \in Y'$ se tiene que $\lim_{x \to a} f(x) = b$, $\lim_{y \to b} g(b) = c$ y además $f(x) \neq b$, $\forall x \in X - \{a\}$ entonces $\lim_{x \to a} g(f(x)) = c$. Demuestra que la condición $b \in Y'$ se sigue de $f(x) \neq b$ para $x \neq a$.

Ejercicio 1.11. Definamos [x] como el mayor entero menor o igual que x. Demuestra que si $a,b \in \mathbb{R}^+$

$$\lim_{x \to 0^+} \frac{x}{a} \left[\frac{b}{x} \right] = \frac{b}{a} \qquad \lim_{x \to 0^+} \frac{b}{x} \left[\frac{x}{a} \right] = 0$$

Demuestra también que:

$$\lim_{x \to 0^{-}} \frac{x}{a} \left[\frac{b}{x} \right] = \frac{b}{a} \qquad \lim_{x \to 0^{-}} \frac{b}{x} \left[\frac{x}{a} \right] = \infty$$

Ejercicio 1.12. $Dadas\ f,g:X\longrightarrow\mathbb{R}\ definamos\ h:X\longrightarrow\mathbb{R}\ como\ h(x):=max\{f(x),g(x)\}.$ $Sea\ a\in X'\ tal\ que\ \lim_{x\to a}f(x)=L\ y\lim_{x\to a}g(x)=M.$ $Demuestra\ que\ \lim_{x\to a}h(x)=N\ donde\ N\ es\ el\ máximo\ entre\ L\ y\ M.$

Ejercicio 1.13. Sea $f:[0,\infty) \longrightarrow \mathbb{R}$ una función acotada en cualquier intervalo acotado. Si $\lim_{x \to \infty} [f(x+1) - f(x)] = L$ demuestra que $\lim_{x \to \infty} \frac{f(x)}{x} = L$.

Ejercicio 1.14. Sea $p: \mathbb{R} \longrightarrow \mathbb{R}$ un polinomio no constante, $b \in \mathbb{R}$ y $\{x_n\}$ una sucesión tal que $\lim_{n \to \infty} p(x_n) = b$. Demuestra que la sucesión $\{x_n\}$ es acotada y que el conjunto de sus valores de adherencia es no vacío y está contenido en $p^{-1}(b)$. En particular prueba que si existe una sucesión $\{x_n\}$ tal que $\lim_{n \to \infty} p(x_n) = 0$ entonces p tiene al menos una raíz real.

2. Continuidad

2.1. Continuidad

Ejercicio 2.1. Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ una función continua. Demuestra que el conjunto de ceros de f, $Z_f := f^{-1}(0) = \{x \in \mathbb{R} | f(x) = 0\}$ es un conjunto cerrado. Concluye que si $f,g : \mathbb{R} \longrightarrow \mathbb{R}$ son continuas entonces $A := \{x \in \mathbb{R} | f(x) = g(x)\}$ es cerrado.

Ejercicio 2.2. Dadas $f,g:X \longrightarrow \mathbb{R}$ definamos, $f \lor g, f \land g:X \longrightarrow \mathbb{R}$ como

$$(f \lor g)(x) := max\{f(x), g(x)\}\$$

$$(f \wedge g)(x) := \min\{f(x), g(x)\}\$$

Demuestra que si f,g son continuas en $a \in X$ entonces $f \vee g \ y \ f \wedge g$ también lo son.

Ejercicio 2.3. Sean $f,g:X\longrightarrow\mathbb{R}$ continuas. Supongamos que $\overline{Y}\subseteq X$ y que f(y)=g(y), $\forall y\in Y$. Demuestra que $f|_{\overline{Y}}=g|_{\overline{Y}}$. Concluye que si $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ son funciones continuas tales que f(x)=g(x), $\forall x\in\mathbb{Q}$, entonces f=g.

Ejercicio 2.4. Sean $f,g:[0,1] \longrightarrow \mathbb{R}$ continuas tales que f(1) = g(0) y definamos $h:[0,1] \longrightarrow \mathbb{R}$ como sigue:

$$h(x) := \begin{cases} f(2x) & si \ x \in \left[0, \frac{1}{2}\right] \\ g(2x-1) & si \ x \in \left[\frac{1}{2}, 1\right] \end{cases}$$

Demuestra que h es continua.

También prueba que la función de sentido contrario, $f^*(x) := f(1-x)$ es continua en [0,1].

Ejercicio 2.5. Demuestra que una funcion $f: X \longrightarrow \mathbb{R}$ es discontinua en $a \in X$ si y solo si existe $\epsilon > 0$ y una sucesión $\{x_n\} \subseteq X$ tal que $|x_n - a| \le \frac{1}{n}$ y $|f(x_n) - f(a)| > \epsilon$, $\forall n \in \mathbb{N}$.

Ejercicio 2.6. Sea $F \subseteq \mathbb{R}$ cerrado y $f : F \longrightarrow \mathbb{R}$ continua. Demuestra que existe una **Extensión** (función), $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ continua, con $\psi|_F = f$. (Hint: define ψ linealmente en las componentes conexas de $\mathbb{R} \setminus F$, imagina la gráfica).

Ejercicio 2.7. Una función $f : \mathbb{R} \longrightarrow \mathbb{R}$, continua se llama **Propia**, si para todo $K \subseteq \mathbb{R}$, compacto se tiene que $f^{-1}(K)$ es compacto. Demuestra que las siguientes afirmaciones son equivalentes:

(a) f es propia.

- (b) $\lim_{x\to\infty} |f(x)| = \lim_{x\to-\infty} |f(x)| = \infty$.
- (c) $Si |x_n| \to \infty$ entonces $|f(x_n)| \to \infty$.

Ejercicio 2.8. Sea K el conjunto de Cantor y definamos $A := [0,1] \setminus K$. Construye una función $f : A \longrightarrow \mathbb{R}$ con las siguientes propiedades:

- (a) f es monotona no-decreciente.
- (b) f es constante para en todo intervalo abierto contenido en A.
- (c) $f(A) \subset [0,1]$ y los elementos de f(A) son racionales de la forma $\frac{m}{2^n}$.

Demuestra que existe una extensión (función) monótona y continua $\psi:[0,1] \longrightarrow \mathbb{R}$ tal que $\psi|_A = f$. A esta función se le llama **Función de Cantor**.

Ejercicio 2.9 (Punto Fijo de Brower). Sea $f:[a,b]: \longrightarrow [a,b]$ continua. Demuestra que f tiene al menos un punto fijo, es decir, existe $x_0 \in [a,b]$ tal que $f(x_0) = x_0$. Da un ejemplo de una función continua $f:[0,1) \longrightarrow [0,1)$ sin puntos fijos.

Ejercicio 2.10. Sea n impar. Demuestra que $\forall y \in \mathbb{R}$ existe un único $x \in \mathbb{R}$ tal que $x^n = y$. Concluye que la función f definida por $f(y) := \sqrt[n]{y}$ es un homeomorfismo de \mathbb{R} en \mathbb{R} .

Ejercicio 2.11. Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ continua. Demuestra que si para todo abierto $A \subseteq \mathbb{R}$ se tiene que f(A) es abierto entonces f es inyectiva y por lo tanto monótona.

Ejercicio 2.12. Sea $X \subseteq \mathbb{R}$. Demuestra que si toda función continua $f: X \longrightarrow \mathbb{R}$ es acotada entonces X es compacto.

Ejercicio 2.13. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una funcion continua tal que $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \infty$. Demuestra que existe un elemento $x_0 \in \mathbb{R}$ para el cual f alcanza su mínimo.

Ejercicio 2.14. Sea $f:(-1,1) \longrightarrow \mathbb{R}$ definida por $f(x):=\frac{x}{1-|x|}$. Demuestra que f es un homeomorfismo.

Ejercicio 2.15. Sea $f: X \longrightarrow \mathbb{R}$ una funcion tal que $\forall \epsilon > 0$ existe una función continua $g: X \longrightarrow \mathbb{R}$ con la propiedad de que $\forall x \in X$, $|f(x) - g(x)| < \epsilon$. Demuestra que f es continua.

2.2. Continuidad Uniforme

- **Ejercicio 2.16.** Dado $S \subseteq \mathbb{R}$ no vacío, definamos $f : \mathbb{R} \longrightarrow \mathbb{R}$ como $f(x) := \inf\{|x-s| : s \in S\}$. Demuestra que $|f(x) f(y)| \le |x y|$, $\forall x, y \in \mathbb{R}$. Concluye que f es uniformemente continua.
- **Ejercicio 2.17.** Sea $g : \mathbb{R} \longrightarrow (-1,1)$ la inversa de la funcion definida en el ejercicio 2.14. Demuestra que g es uniformemente continua g que g no lo es.
- **Ejercicio 2.18.** Sean $f,g:X \longrightarrow \mathbb{R}$ uniformemente continuas. Demuestra que f+g, $f \land g y$ $f \lor g$ también lo son (ver 2.2).
- **Ejercicio 2.19.** Sea $p : \mathbb{R} \longrightarrow \mathbb{R}$ un polinomio. Demuestra que p es uniformemente continua si y solo si su grado es menor o igual que 1.
- **Ejercicio 2.20.** Sea $f: X \to \mathbb{R}$. Demuestra que f es continua si y solo si $\forall \epsilon > 0$ existe una cubierta abierta $\{I_x\}$ de X tal que si $y,z \in X \cap I_x$ entonces $|f(x)-f(y)| < \epsilon$. Demuestra que f es uniformemente continua si estos abiertos se pueden tomar de la misma longitud.
- **Ejercicio 2.21.** Demuestra que $f(x) = x^n$ es Lipschitz continua en cualquier conjunto acotado. Si n > 1 demuestra que f no es uniformemente continua en ningún intervalo no acotado.
- **Ejercicio 2.22.** Demuestra que la función f definida por $f(x) := \sqrt[n]{x}$ no es Lipshtitz continua en ningún intervalo de la forma [0,a], a>0, pero si es uniformemente continua ahí. Por otro lado demuestra que para cualquier intervalo de la forma $[a,\infty]$ f es Lipshitz continua y por lo tanto uniformemente continua. Concluye que f es uniformemente continua en $[0,\infty]$. (Hint: Prueba que f es Lipshitz con constante de Lipschitz $\lambda = \frac{1}{n \cdot \sqrt[n]{a^{n-1}}}$ en $[a,\infty]$).
- **Ejercicio 2.23.** Sea $I \subseteq \mathbb{R}$ un intervalo. Demuestra que si $f: I \longrightarrow \mathbb{R}$ es continua, monótona y acotada, entonces f es uniformemente continua.
- **Ejercicio 2.24.** Sea $f:[a,b] \longrightarrow \mathbb{R}$ continua. Demuestra que $\forall \epsilon > 0$ existen $a = a_0 < a_1 < ... < a_{n-1} < a_n = b$ tal que $\forall i \in \{1,2,...,n\}$ $y \forall x,y \in [a_{i-1},a_i]$ se tiene que $|f(x)-f(y)| < \epsilon$.
- **Ejercicio 2.25.** A una función continua $\psi:[a,b] \longrightarrow \mathbb{R}$ se llama **Poligonal** si existen $a=a_0 < a_1 < ... < a_{n-1} < a_n = b$ tales que $\forall i \in \{1,2,...,n\}$ se tiene que $\psi|_{[a_{i-1},a_i]}$ es una función afín. Demuestra que para toda función continua $f:[a,b] \longrightarrow \mathbb{R}$ y para toda $\epsilon > 0$ existe una función poligonal $\psi:[a,b] \longrightarrow \mathbb{R}$ tal que $|f(x)-\psi(x)| < \epsilon$, $\forall x \in [a,b]$.