Cálculo Difrencial e Integral II **Tarea 2**

Prof: Iker Martínez Ayud: Andrew Shaw

26 de agosto de 2019

1. **Integrales**

1.1. **Integrales Definidas**

Ejercicio 1.1. *Sea* $f : [a,b] \rightarrow \mathbb{R}$ *acotada. Prueba que*

$$\left| \int_{a}^{*} f(x) dx \right| \leq \int_{a}^{*} \left| f(x) \right| dx.$$

Da un ejemplo donde la desigualdad análoga para integrales inferiores, no vale.

Ejercicio 1.2. Sea $f:[a,b] \to \mathbb{R}$ integrable. Prueba que las siguientes afirmaciones son equivalentes:

1.
$$\int_{a}^{b} |f(x)| dx = 0$$
.

- 2. Si f es continua en un punto c, entonces f(c) = 0.
- 3. $X = \{x \in [a,b] | f(x) \neq 0\}$ tiene interior vacío.

Ejercicio 1.3. Sea $f:[a,b] \to \mathbb{R}$ continua. Si f no es idénticamente cero, entonces

$$\int_a^b |f(x)| \, dx > 0.$$

Ejercicio 1.4. Da un ejemplo de una función integrable que sea discontinua en un conjunto infinito.

Ejercicio 1.5. Sean $f,g:[a,b] \to \mathbb{R}$ funciones continuas con $f(x) \le g(x)$ para todo $x \in [a,b]$. Define $\varphi:[a,b] \to \mathbb{R}$ como, $\varphi(x) = f(x)$ si x es racional y $\varphi(x) = g(x)$ si x es irracional. Prueba que

$$\int_{a}^{b} \varphi(x)dx = \int_{a}^{b} f(x)dx$$

$$y$$

$$\int_{a}^{*b} \varphi(x)dx = \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} \varphi(x)dx = \int_{a}^{b} g(x)dx$$

Concluye que φ es integrable si y solo si f = g.

Ejercicio 1.6. Sea $f:[a,b] \to \mathbb{R}$ acotada y no negativa. Demuestra que $\int_a^b f(x)dx = \sup_{\xi} \int_a^b \xi(x)dx$,

donde ξ varía por el conjunto de las funciones escalonadas tales que $\xi(x) \leq f(x)$ para todo $x \in [a,b]$. Demuestra que un resultado análogo se cumple si tomamos, ξ continua o bien ξ integrable (manteniendo la hipótesis $\xi(x) \leq f(x)$, $\forall x \in [a,b]$).

Ejercicio 1.7. Sea $f:[a,b] \to \mathbb{R}$ continua, $\varphi:[t_0-\varepsilon,t_0+\varepsilon] \to [a,b]$ differenciable $y \in [a,b]$. Demuestra que las siguientes afirmaciones son equivalentes:

- A) $\varphi'(t) = f(\varphi(t))$ para todo $t \in [a, b]$ y $\varphi(t_0) = c$
- B) $\varphi(t) = c + \int_{t_0}^t f(\varphi(s))ds \ para \ todo \ t \in [a, b].$

Ejercicio 1.8. Sea $f : \mathbb{R} \to \mathbb{R}$ difrerenciable tal que f(0) = 0 y para todo $x \in \mathbb{R}$ se cumple que $f'(x) = (f(x))^2$. Demuestra que f(x) = 0 para todo $x \in \mathbb{R}$.

Ejercicio 1.9. Da un ejemplo de una función no integrable que tenga una primitiva. (**Hint:** Encuentra una función f diferenciable en [-1,1] y con derivada no acotada).

Ejercicio 1.10. Sean $f,g:[a,b] \to \mathbb{R}$ funciones integrables. Etiquetemos a cada partición P de dos maneras distintas, escogiendo en cada intervalo $[t_{i-1},t_i]$ un punto ξ_i y un punto η_i . Demuestra que:

$$\lim_{mesh(\mathbf{P})\to 0}\sum_{i=1}^n f(\xi_i)g(\eta_i)(t_i-t_{i-1})=\int_a^b f(x)g(x)dx.$$

Ejercicio 1.11. Sea $f:[a,b] \to \mathbb{R}$ integrable $g:[c,d] \to \mathbb{R}$ monotona con g' integrable. Si $g([c,d]) \subseteq [a,b]$, entonces $\int_{g(c)}^{g(d)} f(x) dx = \int_{c}^{d} f(g(t))g'(t) dt$.

Ejercicio 1.12. Sean $f:[0,2] \to \mathbb{R}$ y $g:[-1,1] \to \mathbb{R}$ integrables, entonces

$$\int_0^2 (x-1)f((x-1)^2)dx = 0 = \int_0^\pi g(\sin(x))\cos(x)dx.$$

Ejercicio 1.13. Sea $f:[a,b] \to \mathbb{R}$ con derivada integrable, para $m=\frac{a+b}{2}$, demuestra que

$$f(a) + f(b) = \frac{2}{b-a} \int_{a}^{b} [f(x) + (x-m)f'(x)] dx.$$

Ejercicio 1.14. Sea $f[a,b] \to \mathbb{R}$ acotada. Demuestra que f es integrable si y solo si existe un número real α , con la propiedad de que para todo $\epsilon > 0$ podemos obtener una partición P_{ϵ} de [a,b], tal que $\left|R(f;\dot{Q}) - \alpha\right| < \epsilon$, para cualquier partición etiquetada \dot{Q} , con $P_{\epsilon} \subseteq Q$.

Ejercicio 1.15. Sea $g \ge 0$ una función integrable tal que $\int_a^b g(x)dx = 0$ y f(x) una función integrable. Demuestra que,

$$\int_{a}^{b} f(x)g(x)dx = 0.$$

Ejercicio 1.16. Sea $g:[c,d] \longrightarrow \mathbb{R}$ continua $y \ f:[a,b] \longrightarrow [c,d]$ integrable. Demuestra que $g \circ f:[a,b] \longrightarrow \mathbb{R}$ es integrable.

Ejercicio 1.17. Sea $f:[a,b] \longrightarrow [c,d]$ una función de clase C^1 tal que $f'(x) \neq 0$, $\forall x \in [a,b]$. Demuestra que si $g:[c,d] \longrightarrow \mathbb{R}$ es integrable entonces $g \circ f$ también lo es.

Ejercicio 1.18. Sea $f:[0,1] \longrightarrow \mathbb{R}$ definida por $f(x):=x \cdot sen(\frac{1}{x})$ si $x \neq 0$ y f(0)=0. Demuestra que f es continua pero no tiene variación acotada.

Ejercicio 1.19. *Dadas* $f,g:[a,b] \longrightarrow \mathbb{R}$, *definamos:*

$$(f \wedge g)(x) := min\{f(x), g(x)\}\$$

$$(f \vee g)(x) := max\{f(x), g(x)\}\$$

Demuestra que si f y g son integrables entonces $f \land g$ y $f \lor g$ también lo son. Concluye que una función es integrable si y solo si su parte positiva y su parte negativa son integrables.

Ejercicio 1.20. Para cada entero k, $0 \le k \le n$, reescribe a $(1-t)^n$ como, $(1-t)^n = (1-t)^{n-k}(1-t)^k$ en la expresión para el residuo R_{n+1} de la fórmula de Taylor con residuo integral. Obtén que

$$R_{n+1} = \frac{(1-\theta)^{n-k} f^{(n+1)}(a+\theta h)}{n!(k+1)} h^{n+1}, \qquad \theta \in (0,1).$$

Tomando k = n recupera el residuo de Lagrange y tomando k = 0 reobtén el residuo de Cauchy:

$$R_{n+1} = \frac{(1-\theta)^n f^{(\theta+1)}(a+\theta h)}{n!} h^{n+1}$$

Con los cambios de variables b := a + h y $\xi := a + \theta h$ entonces la fórmula del residuo de Cauchy se reexpresa como sigue:

$$R_{n+1} = \frac{f^{(n+1)}(\xi)}{n!} (b - \xi)^n (b - a), \quad \xi \in (a, b).$$

Ejercicio 1.21. Usa el residuo de Cauchy en la expansión de Taylor de $f(x) = (1+x)^{\alpha}$, $\alpha \notin \mathbb{N}$ para demostrar que la serie de Taylor de f al rededor del 0 converge para f(x) cuando $x \in (-1,1)$.

1.2. Integrales Impropias

Ejercicio 1.22. Sean $f,g:[a,\infty] \to \mathbb{R}$ continuas $g \in K > 0$ tal que para cualesquiera $g,d \in [a,\infty]$,

$$\left| \int_{c}^{d} f(x) dx \right| \leq K.$$

Si g es una función derifertenciable, decreciente y además $\lim_{x\to\infty} g(x) = 0$. Prueba que existe el límite

$$\int_{a}^{\infty} f(x)g(x)dx = \lim_{x \to \infty} \int_{a}^{x} f(x)g(x)dx$$

(**Hint:** Usa el criterio de Cauchy. Demuestra que $\forall \varepsilon > 0$ existe A > a ta que A < c < d implica que

$$\left| \int_{c}^{d} f(x)g(x) \right| < \epsilon \big).$$

Ejercicio 1.23. Demuestra que la integral impropia $\int_0^\infty \frac{\sin(x)}{x} dx$ es convergente, mas no converge absolutamente, pues para $F(x) = \int_0^\infty \left| \frac{\sin(x)}{x} \right| dx$, se tiene que el limite $\lim_{x \to \infty} F(x) = \infty$.

1.3. Medida Cero

Ejercicio 1.24. Decimos que $f : \mathbb{R} \to \mathbb{R}$ es Localmente Acotada en un Punto x, cuando existe $\epsilon > 0$ tal que $f|_{(x-\epsilon,x+\epsilon)}$ es acotada.

Demuestra que el conjunto de puntos $x \in \mathbb{R}$ donde f es localmente acotada es abierto. Muestra que se puede definir la oscilación de f en los puntos donde f es localmente acotada. Prueba que los puntos donde una función arbitraria $f : \mathbb{R} \to \mathbb{R}$ es continua es una intersección numerable de abiertos. Usando el teorema de Baire, concluye que ninguna función $f : \mathbb{R} \to \mathbb{R}$ puede tener a \mathbb{Q} como el conjunto de puntos donde f es continua.

Ejercicio 1.25. Sea I un intervalo de medida 0. Demuestra que I es un punto.

Ejercicio 1.26. Demuestra que todo conjunto de medida 0 tiene interior vacío.

Ejercicio 1.27. Sean $f,g:[a,b] \longrightarrow \mathbb{R}$ Riemann integrables. Define $A:=\{x \in [a,b]: f(x) \neq g(x)\}$. Demuestra que si la medida de A es cero entonces

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx.$$

Ejercicio 1.28. Da un ejemplo de 2 funciones acotadas $f,g:[a,b] \longrightarrow \mathbb{R}$ tales que $A:=\{x \in [a,b]: f(x) \neq g(x)\}$ tenga medida 0, f(x) sea Riemann integrable y g(x) no lo sea.

Ejercicio 1.29. Sea $f : [a,b] \longrightarrow \mathbb{R}$ Lipschitz continua. Demuestra que si $A \subseteq [a,b]$ tiene medida 0 entonces f(A) también.

Ejercicio 1.30. $A \subseteq \mathbb{R}$ tiene **Contenido 0** si para toda $\epsilon > 0$ existe una cantidad finita de intervalos $I_1,...,I_k$ tal que $A \subseteq I_1 \cup ... \cup I_k$ y $\sum_{i=1}^k \ell(I_i) < \epsilon$.

Demuestra que si $A \subset \mathbb{R}$ tiene contenido 0 entones su cerradura \bar{A} también. En particular \bar{A} tiene interior vació. ¿Que pasa si A tiene medida 0?.

1.4. Logaritmos y Exponenciales

Ejercicio 1.31. Sea $f : \mathbb{R}^+ \longrightarrow \mathbb{R}$ continua tal que $f(x \cdot y) = f(x + y)$ para todo $x, y \in \mathbb{R}^+$. Demuestra que existe $c \in \mathbb{R}$ tal que $f(x) = c \cdot log(x)$.

Ejercicio 1.32. *Demuestra que:*

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a.$$

Ejercicio 1.33. Demuestra que $\lim_{x\to 0} x^x = 1$, $\lim_{x\to 0} x^{log(x+1)} = 1$ y que $\lim_{x\to 0} (log(x) \cdot log(x+1)) = 0$.

Ejercicio 1.34. Sea $f : \mathbb{R} \longrightarrow \mathbb{R}$ una función continua tal que f(x + y) = f(x)f(y). Demuestra que $f(x) = a^x$ con $a \in \mathbb{R}^+$ o $f(x) = 0 \ \forall x \in \mathbb{R}$.

Ejercicio 1.35. *Demuestra que* $\forall a \ge 0$

$$\lim_{n\to\infty} n \cdot \sqrt[n]{a-1} = \log(a).$$

Ejercicio 1.36. Demuestra que

$$\lim_{n\to\infty}\left(\frac{n^{n+1}+(n+1)^n}{n^{n+1}}\right)^n=e^e.$$