Improving the Economic Viability of Biological CO₂ Utilization by Improved Algae Productivity & Integration with Wastewater Treatment

Cooperative Agreement No: DE-FE0030822

Illinois Sustainable Technology Center 🛛 📕 ILLINOIS

Basic Project Information for DE-FE0030822

- Title: Improving the Economic Viability of Biological Utilization of Coal Power Plant CO₂ by Improved Algae Productivity & Integration w/ Wastewater Treatment
 - DOE Program Manager: Andy Aurelio
 - Lead Organization: University of Illinois- Illinois Sustainable Technology Center
 - PI: Lance Schideman, Josh McCann
 - Primary Collaborating Organization: Helios-NRG
 - CO-Pi: Ravi Prasad, Fred Harrington
- DOE Funding Program DE-FOA-0001622: Applications for Technologies Directed at Utilizing Carbon Dioxide from Coal Fired Power Plants
 - Total Project Value: \$ 1,249,873 Government : \$999,536 Cost Share: \$250,337
 - Currently in Budget Period 2 (BP2)- October 1, 2018 September 30, 2019

• Major Project Objectives & Goals

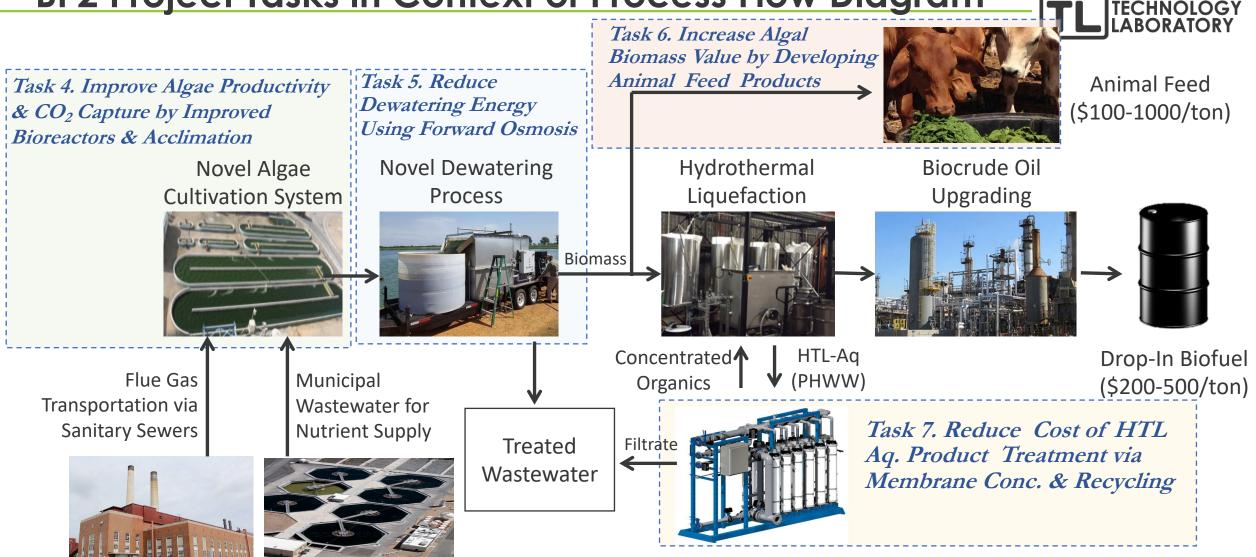
- End of project performance goals
 - 35 g/m²day biomass productivity (vs 8.5 g/m² day DOE Baseline- 2015 State of Technology)

I ILLINOIS

- >70% CO₂ capture efficiency (during lighted hours)
- \$470/ton algal biomass projected nth plant (vs \$1,641/ton current DOE Baseline)

2

Helios-NRG, LLC


Project Tasks

- Task 1- Project Management
- Task 2- Demonstrate Stable Algae Cultivation w/ Simulated Flue Gas
- Task 3- Demonstrate Stable Algae Cultivation w/ Wastewater Nutrients
- Task 4- Optimize CO₂ Capture Efficiency in the Algae Cultivation Process
- Task 5- Evaluate Novel Algae Dewatering Processes (forward osmosis)
- Task 6- Characterize algal biomass for HTL and animal feed applications
- Task 7- Demonstrate ability to concentrate & recycle HTL aqueous phase
- Task 8- Evaluate the potential of sewer network flue gas distribution
- Tasks 9- Techno-Economic Analysis
- Tasks 10- Life-Cycle Analysis

BP2 Project Tasks in Context of Process Flow Diagram

NATIONAL

Techno-Economic Rationale: Integrating wastewater (WW) treatment can make algal animal feed cost-effective

Harvest & Dewater

\$82/DT

\$50/DT

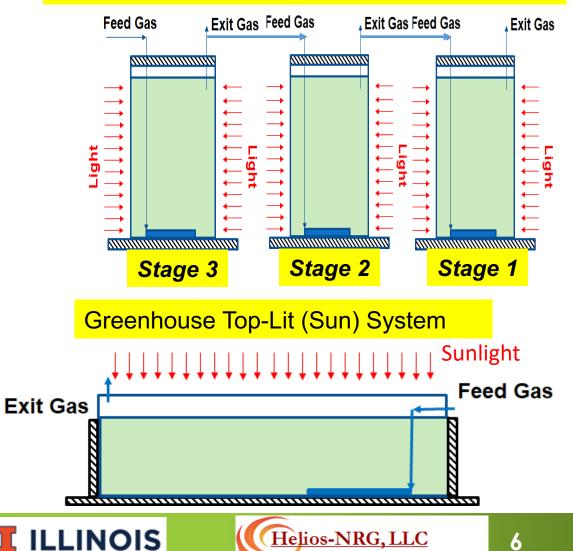
Ponds/Inoculum: 2015 DOE Case \$1,359/DT Proposed Case \$331/DT

U.S. DEPARTMENT OF

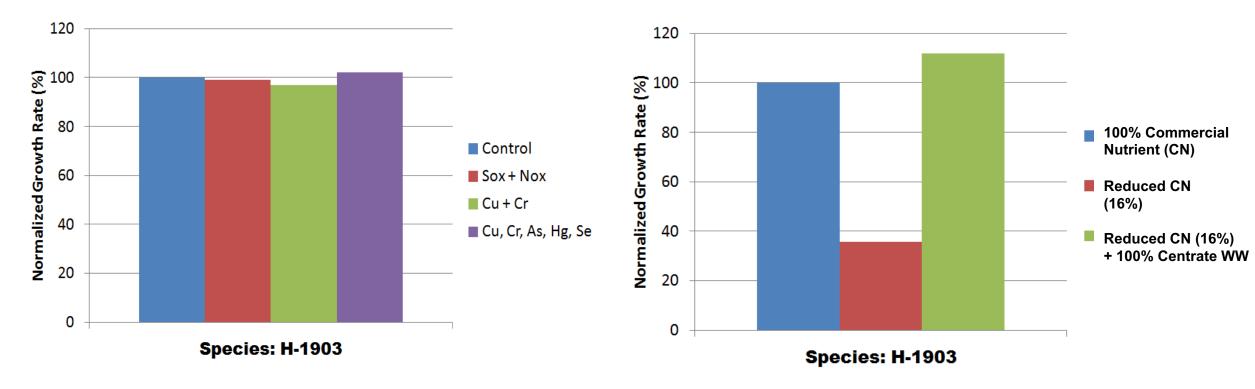
Total Biomass Cost

\$1641 /DT

\$537 /DT


extra drying cost (up to \$330/DT)

Task 4- BP2 Algae Testing Plan Overview


- Transition from lab batch to continuous (w/liquid transfer)
- Transition from artificial lighting to sunlight (Greenhouse)
 - Quantify sunlight variations and impact on performance
- Greenhouse tests w/ simulated flue gas
 - $12\% CO_2 + SO_X$, NO_X & 5 heavy metals (Cu, Cr, Hg, As, Se)
- Investigate and optimize greenhouse cultivation operations
 - Algae concentration effects on productivity
 - Gas/liquid flow rates effect on CO₂ capture & productivity
 - Long term stability & performance in greenhouse
- Demonstrate weekly average productivity of 25 g/m²/day with 70% CO₂ capture simultaneously for a simulated Multi-Stage Continuous (MSC) reactor system

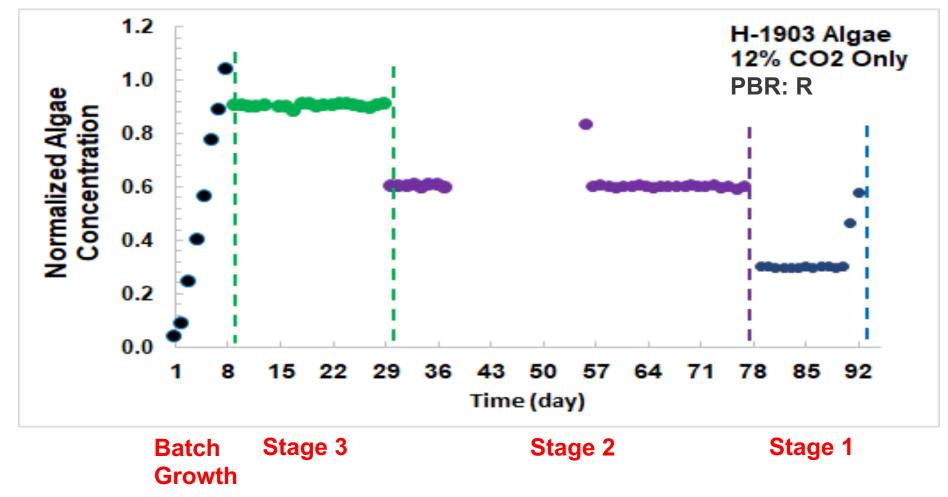
Lab Side-Lit & Multi-Stage Continuous System

• Algae tolerance to key post-FGD flue gas contaminants demonstrated

U.S. DEPARTMENT OF

ENERGY

Wastewater can beneficially replace
 purchased nutrients to reduce costs

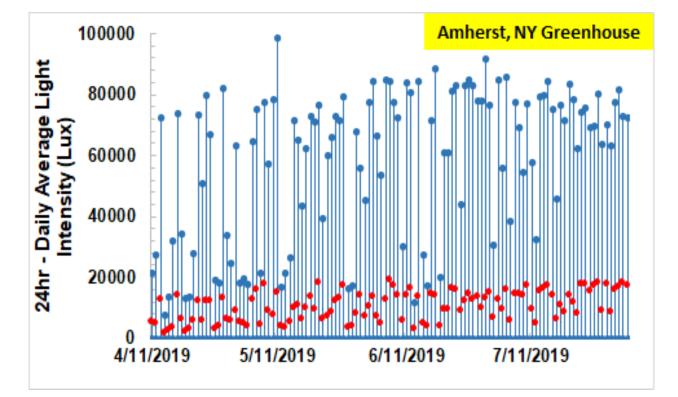

Illinois Sustainable Technology Center

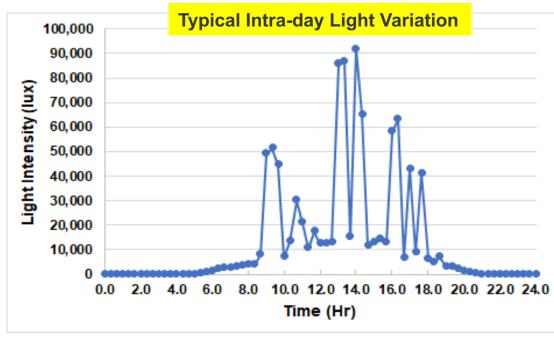
7

Helios-NRG, LLC

Transition from batch to continuous liquid transfer in the Lab

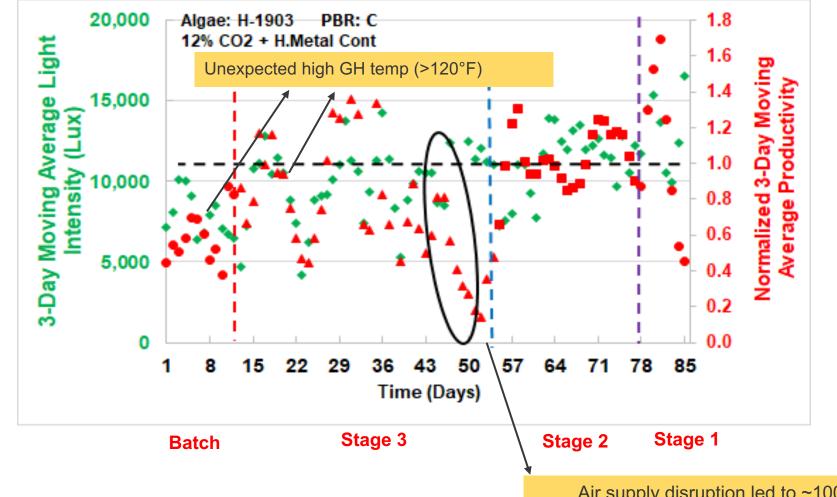
Stability of MSC stage algae concentration with liquid transfer demonstrated


I ILLINOIS



Greenhouse Operations in Natural Sunlight

- Substantial inter & intra-day variation
- Improving sunlight from spring to summer
- ~2x light loss from outside to GH

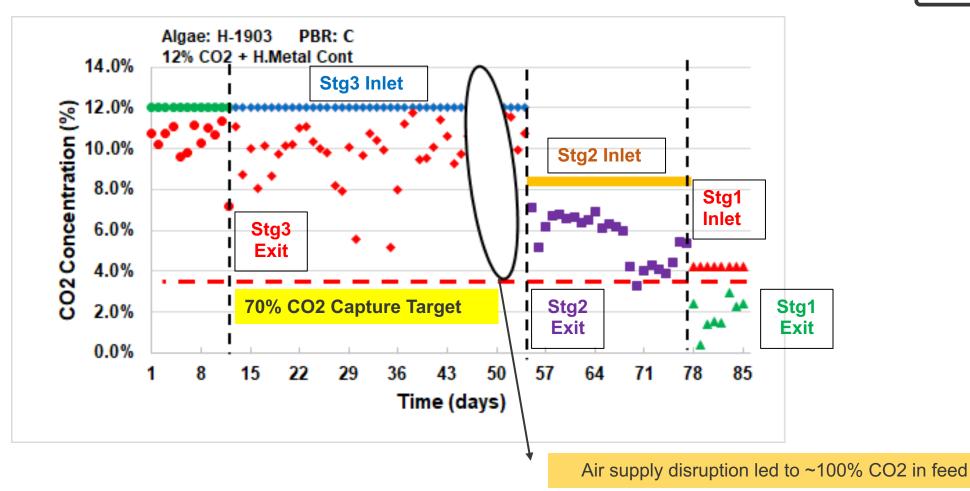

Month	Month Average Light Intensity (Lux)				
Wonth	Internal GH	External GH			
Apr-19	6893				
May-19	9423				
Jun-19	11306				
Jul-19	12877	23243			

ILLINOIS

Optimizing Long-term Greenhouse Operations

- Fluctuating light intensity results in large variations in algae growth (productivity) and CO₂ uptake
- Resilience of system demonstrated despite natural and abnormal fluctuations in greenhouse conditions

Air supply disruption led to ~100% CO2 in feed



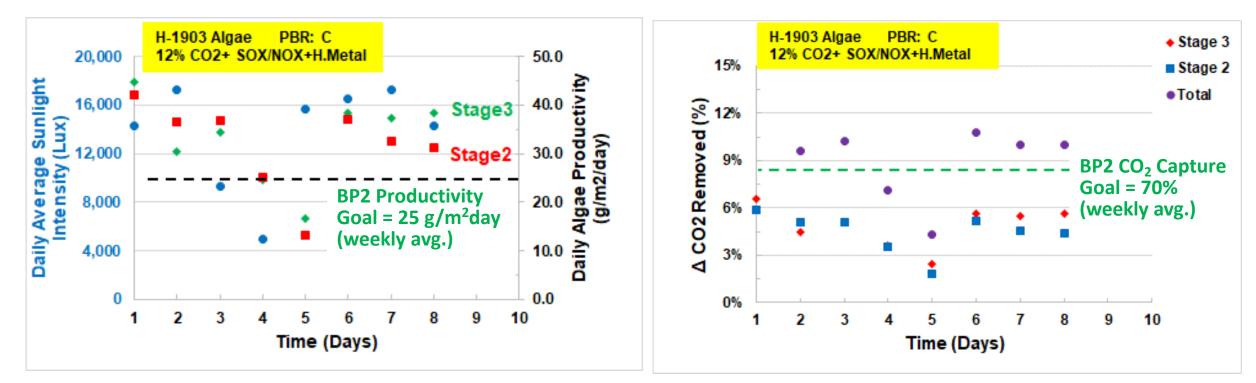
ILLINOIS

CO₂ Capture in Greenhouse Operations

NATIONAL ENERGY TECHNOLOGY LABORATORY

Fluctuating light intensity results in varying exit CO₂ concentration in the respective stages

Illinois Sustainable Technology Center


U.S. DEPARTMENT OF

Helios-NRG, LLC

Demonstration of CO2 Capture and Productivity Goals

Greenhouse Operation

BP2 algae cultivation targets met \rightarrow Weekly average of 30 g/m²/day productivity achieved simultaneous with 74% CO₂ capture demonstrated for a 2-stage MSC system

Demonstration of BP2 Milestones for Algae Bioreactors

Simulated MSC process performance using single-stage experimental results

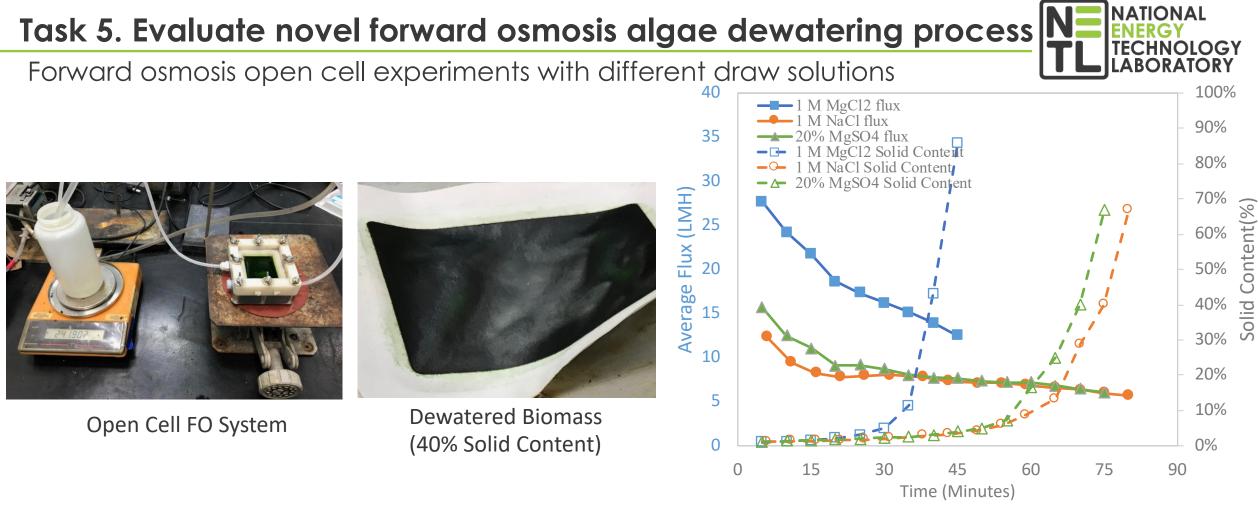
Test	Li	ght		Feed Gas		Overall Performance		
Series	Source	Intensity Avg (Lux)	CO2	Post FGD Cont	# of Stages	Max Weekly Avg Prod (g/m2/day)	Total CO2 Cap Eff (%)	
1	Artificial	~9,000	12.0%	N/A	3	14.1	54%	
2	Artificial	~9,000	12.0%	N/A	3	19.9	80%	
3	Sunlight	~11,000	12.0%	SOX/NOX + HM	3	21.2	73%	
4	Sunlight	~14,500	12.0%	SOX/NOX + HM	2	30.8	74%	

Performance was dependent lighting intensity and reactor operating conditions

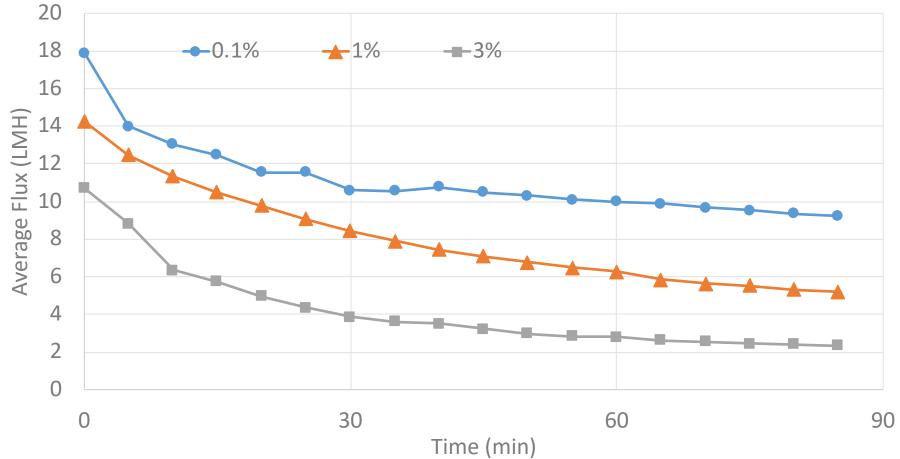
Summary of BP2 Work

- Transitioned tests to natural sunlight in greenhouse
- Demonstrated long term stability
- Assessed impact of gas and liquid flows on MSC performance
- Refined MSC process via successive single stage PBR tests
- Exceeded BP2 goal with just 2 stage MSC
- Investigating use of waste water (Centrate & HTL recycle) in CO2 capture tests

Task 4- Algae Cultivation Workplan Overview (Helios)



- Validate in Top-lit PBR's
- Transition from batch to liquid transfer operation
- Transition tests from artificial light to sunlight
- Quantify sunlight intensity variations and impact on performance
- Study impact of gas/liquid flow rates on capture efficiency and productivity
- Demonstrate long term stability & performance in GH operation
- Conduct GH tests with acid gases & 5 HM contaminants
- Demonstrate average productivity and capture efficiency targets



- Bench-scale open cell forward osmosis system was developed to test algae dewatering
- Biomass dewatered to above 20% solid content without pre-treatment in reasonable time
- Dewatering efficiency: $1 \text{ M MgCl}_2 > 20\% \text{ MgSO}_4 \sim 1 \text{ M NaCl}$

Improving F.O. dewatering process for cost and energy inputs

Effect of Feedstock Solids Content on Flux

• Forward osmosis dewatering efficiency drops as culture concentration increases

Illinois Sustainable Technology Center

.S. DEPARTMENT OF

ENERGY

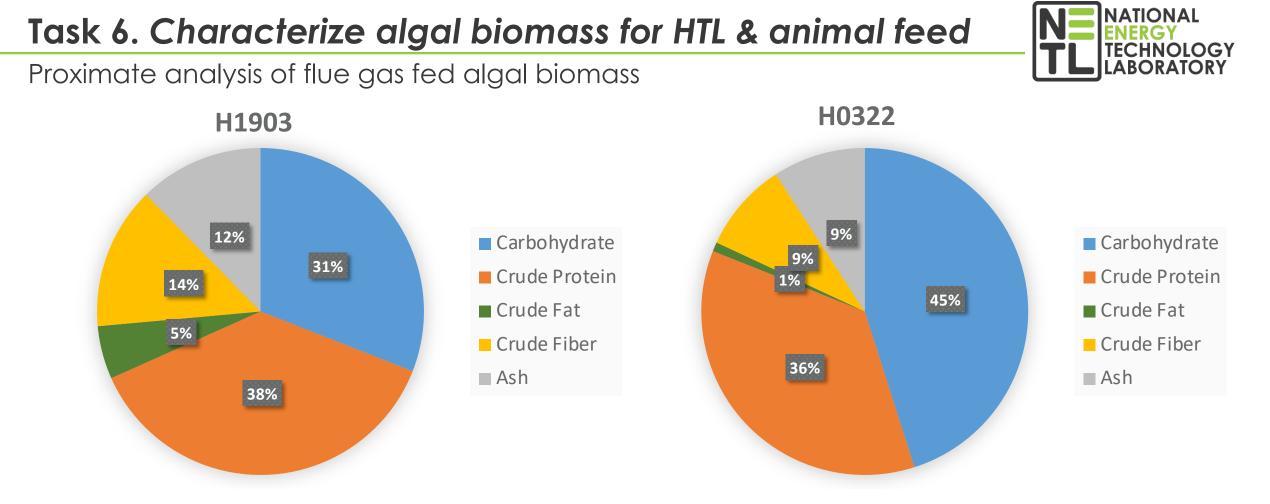
Helios-NRG, LLC

Improving F.O. dewatering process energy inputs

1 m ³ 1% 1 st sta	age F.O. Brine S	3% 0.3 m ³ 2 nd stage F.O Source/Sink	20% 0.05 m ³
	Starting Solid (%)	Ending Solid (%)	Energy consumption (kWh/m3)
Settling Pond	0.1	1	-
Membrane	1	13	0.04
Centrifuge	13	20	1.35
Forward Osmosis 1 st Stage	1	3	0.26
Forward Osmosis 2 nd Stage	3	20	0.57

* 2-stage F.O. process using natural brines or sea water can greatly reduce dewatering energy inputs

Task 5 Summary: Evaluate novel forward osmosis algae dewatering process


- Forward Osmosis can effectively dewater algal biomass above 20% solid content with different draw solutions
- The energy consumption of forward osmosis is significantly lower than centrifuge

Budget Period	Task #	Mile- stone #	Milestone Description	Planned Completion Date	Actual Completion Date	Comments
2	5	T5.1	Dewater algal biomass >15% solid content through forward osmosis using <1.35 kwh/m ³	9/30/2019	9/1/2019	>20 % solids content achieved with minimum energy inputs – 0.26 kW/m ³

• Both species are rich in protein and carbohydrates, low in fat, which is suitable for certain animal feeds

U.S. DEPARTMENT OF

20

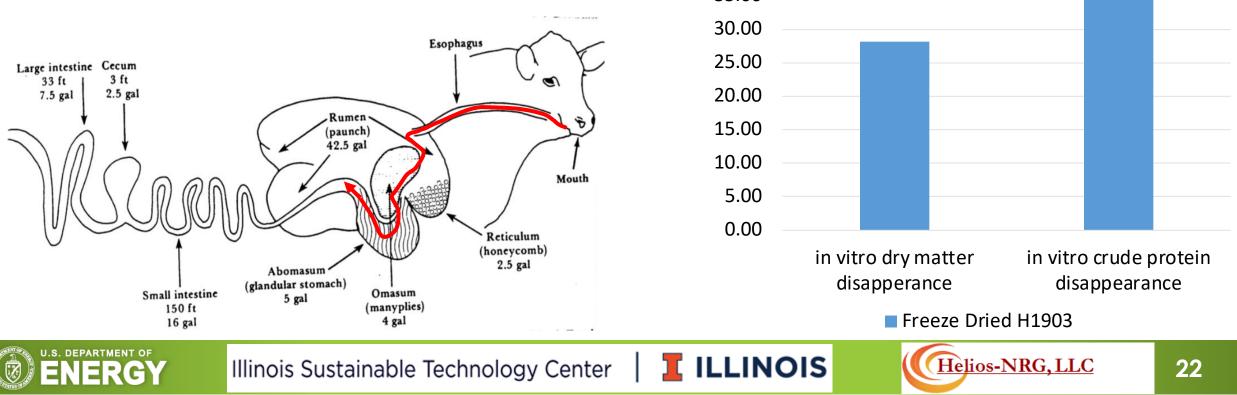
Helios-NRG, LLC

Heavy metals in algae grown w/ flue gas contaminants

Compare with animal feed maximum tolerable level (MTL)

Minerals	H-1903 Cu, Cr, As, Hg, Se (ppm)	Poultry Feed MTL (ppm)	Swine Feed MTL (ppm)	Cattle Feed MTL (ppm)	Fish Feed MTL (ppm)
As	2.18	30	30	50	5
Cd	<1	10	10	0.5	10
Cr	1.16	100	100	100	3,000 [*] as CrO
Со	<2	25	100	25	
Cu	46.6	250	250	100	100
Hg	0.5	1	2	2	1
Pb	<5	10	10	30	10
Ni	<5	250	250	50	50
Se	0.54	3	4	5	2
Zn	11.3	500	1000	500	250

• Algal biomass grown with flue gas contaminant meets most animal feed limits for metals and it can be blended with other feeds to mitigate any heavy metal concerns


Task 6- Feedstuff Assessment

Effect of Freeze Drying on IVDMD and

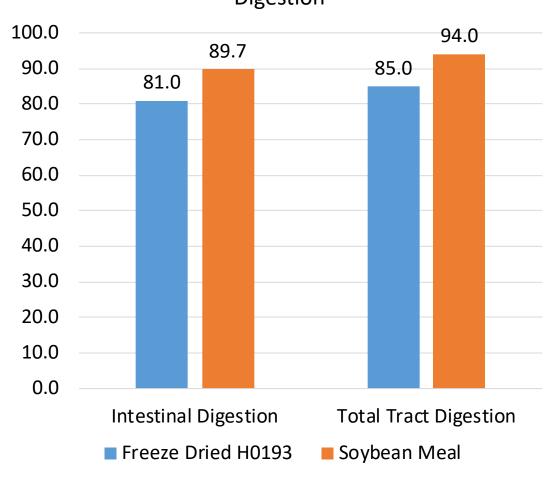
IVCPD

- Algae is a High Protein Feedstuff (44% Protein)
- Most Algal Protein is "Bypass Protein"
 - Rumen fluid from cannulated steer
 - Incubate samples for 24 hours

40.00

35.00

Task 6- Feedstuff Assessment


• In vitro evaluation of post-ruminal digestion

- 1. Ruminal digestion
- 2. Post-ruminal digestion (enzymatic)
 - Add HCl + Pepsin
 - Neutralize with NaOH
 - Add pancreatin enzyme mix (24 hr)

• Results

- Algae post-ruminal protein digestion was very high > 80%
- Algal protein availability is about 90% of soybean meal
- Feeding value in ruminant diets will be determined by specific amino acid intestinal availability

In Vitro Analysis of Post-Ruminal Protein Digestion

Helios-NRG, LLC

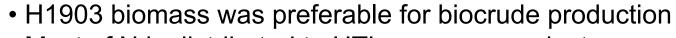
ILLINOIS

Algae Feedstuff Pricing as a Protein Source

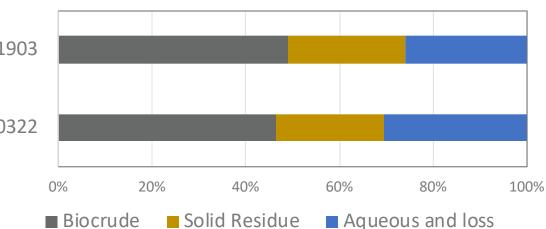
- Ruminant Market
 - Based on crude protein content in beef and bypass protein quality in dairy
- Non-ruminant Market
 - Based on ability to meet amino acid (AA) deficiencies in the diet
 - H-1903 has less desirable AA composition than soybean meal
 - H-1903 has more desirable AA composition than DDG

Current value estimate for H-1903 as a protein source: 75-80 % of SBM = \$260-280/ton 130-140% of DDG \$195-210/ton

*will change with AA composition and value of PUFA


Amino Acids % DM	Crude Protein	Lysine	Threonine	Methionine	Tryptophan	Cysteine	
Algae H-1903	37	1.52	1.40	0.69	0.18	0.47	
Soybean Meal	48	3.00	1.86	0.67	0.68	0.71	Most limiting
Distillers Grain	28	0.84	1.00	0.55	0.21	0.50	amino acids
							in livestock
Algae as % of SBM	77	51	75	102	26	66	diets
Algae as % of DDG	132	180	140	125	86	94	
U.S. DEPARTMENT OF	Illinois Sustaina	able Technolo	ogy Center			lelios-NRG, LL	<u>C</u> 24

Biomass elemental analysis and HTL Performance


Carbon Distribution in HTL Products

	H1903	H0322	
C (% dw)	52.44	46.83	H19
H (% dw)	7.54	7.11	H03
O (% dw)	35.52	40.98	1102
N (% dw)	4.50	5.10	
Biomass Heating Value (MJ/kg)	22.15	18.66	
HTL Biocrude oil Fraction	0.347	0.312	H19
HTL Biocrude oil HHV (MJ/kg)	35.1	34.8	HOB

• Most of N is distributed to HTL aqueous product

U.S. DEPARTMENT OF ENERGY

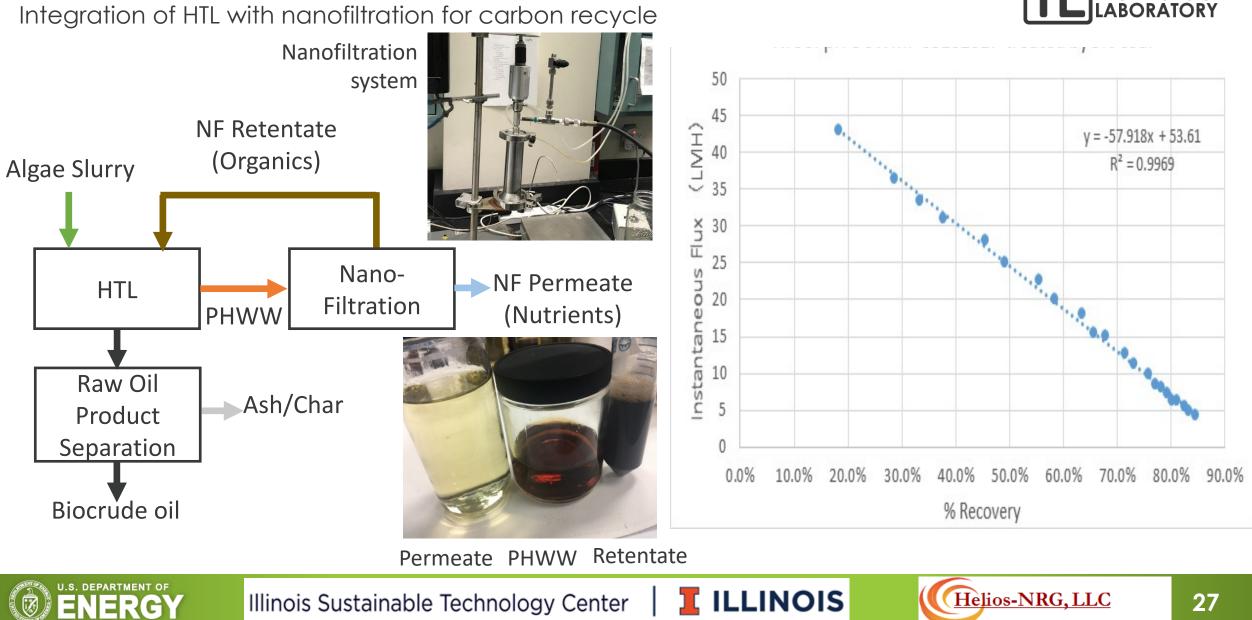
Nitrogen Distribution in HTL Products

Helios-NRG, LLC

ILLINOIS

25

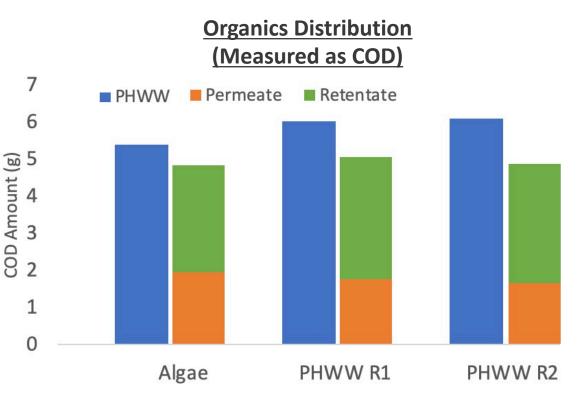
Task 6 Summary: Characterize algal biomass for HTL & animal feed



- The biomass composition analysis and in-vitro digestibility test showed simulated flue gas grown algal biomass is a suitable animal feed
- Concentrations of heavy metals in the flue gas grown algae are within animal feed maximum tolerable levels. Blending with other ingredients can be used to lower borderline values.
- H1903 species has higher HTL crude oil yield than H0322

Budget Period	Task #	Mile- stone #	Milestone Description	Planned Completion Date	Actual Completion Date	Comments
2	6	T6.1	Characterize algal species that biomass heating value > 18MJ/kg and protein content > 30%	3/31/2019	3/20/2019	Completed- H1903 and H0322 sample analyzed, protein content are 38% and 36%. heating value are 22.15 and 18.66 MJ/kg
2	6	T6.2	Demonstrate a minimum in vitro dry matter disappearance of 40% for algal strains digested in rumen fluid	9/30/2019	9/18/2019	Completed, H1903 sample had >80% dry matter disappearance

Task 7. Demonstrate ability to concentrate & recycle HTL aqueous phase (PHWW)


NATIONAL

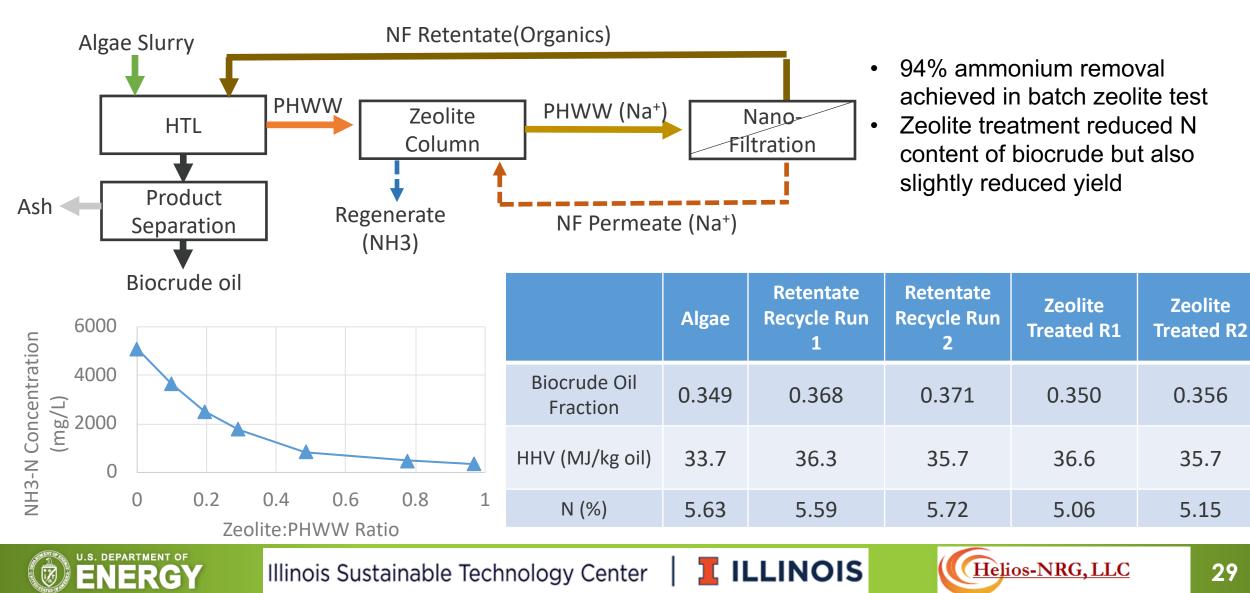
FECHNOLOGY

Effect of recycling PHWW on biocrude yield & quality

	Algae Only	Algae + Run 1 Retentate (20%)	Algae + Run 2 Retentate (20%)
Biocrude Oil Yield Fraction	0.349	0.368	0.371
C (%)	70.64	73.74	73.42
H (%)	8.78	9.38	9.12
N (%)	5.63	5.59	5.72
O (%)	14.95	11.29	11.74
HHV (MJ/kg oil)	33.7	36.3	35.7

- 6% increase in biocrude yield w/ PHWW recycle
- Small N increase in the biocrude oil

- ~60% of PHWW organics captured in NF retentate
- Significant N also captured in NF retentate (~50%)
 - May not be desirable → Zeolite treatment can mitigate



Alternatives to reduce NH3 in recycled PHWW

Task 7 Summary: Demonstrate ability to concentrate & recycle HTL aqueous phase (PHWW)

- Successfully demonstrated nanofiltration can recover 59.1% organic in PHWW
- Recycling concentrated organics to HTL increased crude oil yield by 5.4 and 6.1 % in first and second recycle runs
- On-going work to enhance nitrogen separation from organics

Budget Period	Task #	Mile- stone #	Milestone Description	Planned Completion Date	Actual Completion Date	Comments
2	7		Recycle >50% of carbon from HTL aqueous and increase biocrude oil yield by > 5%	9/30/2019	6/30/2019	Completed- ~60% of carbon from HTL-aq recycled to enhance oil by 5%

TEA: Integrating WW treatment can make algal biofuels cost-effective

Algal biomass for fuel

Algal Biomass Supply Cost: \$15.15/gge (\$1,641/DT) Algal Biomass Supply Cost: \$5.25/gge (\$537/DT)

Aqueous Product Treatment Catalytic Hydrothermal Gasification \$1.54/gge Nanofiltration

\$0.28/gge

Hydrothermal Liquefaction \$1.18/gge

Biofuel Production Cost	DOE Baseline (2015 case)	Proposed case for BP2
Algal Biomass	\$15.15 /gge	\$ 5.25/gge
Hydrothermal Liquefaction	\$ 1.18/gge	\$ 1.18/gge
Bio-oil Upgrade	\$ 0.44/gge	\$ 0.44/gge
Aqueous post treatment	\$ 1.54/gge	\$ 0.28/gge
Balance of plant	\$ 0.29/gge	\$ 0.29/gge
TOTAL Biofuel Cost	\$18.60/gge	\$ 7.44/gge

Bio-oil Upgrade \$0.44/gge

Revenue for Algal Biofuels

 CO2 Removal:
 \$ 0 - \$ 0.60 /gge

 Nutrient Removal:
 \$ 3.70 - \$ 7.20 /gge

 Fuel Selling Price:
 \$ 2.00 - \$ 3.50 /gge

TOTAL Revenue \$ 5.70 - \$ 11.30/gge

Project Success Criteria for Each Budget Period

Decision Point	Date	Success Criteria
		Algal Productivity > 25 g/m ² /d (weekly average)
		with Simulated Flue gas containing 12% CO2,
G/N-1		SOX, NOX and representative levels of heavy
Go/No-Go Budget Period 1	9/30/2018	metals Hg, Se, As, Cu and Cr
		Algal Productivity > 25 g/m ² /d (weekly average)
		and >70% CO2 capture with Simulated Flue gas
		containing 12% CO2, SOX, NOX and
G/N-2		representative levels of heavy metals Hg, Se, As,
Go/No-Go Budget Period 2	9/30/2019	Cu and Cr
G/N-3		Integrated Application of Project Technologies w/
Go/No-Go Budget Period 3	9/30/2020	Projected Cost of Algal Biomass < \$470 /dry ton

Projection of remaining work in BP2

- Continuing use of wastewater (PHWW) in CO₂ capture tests
- Continuing tests of organic and nitrogen separation in PHWW with nanofiltration
- Submit Q4 progress report (Due Oct. 30, 2019)

BP3 Project Tasks

• Task 8- Evaluate the potential of sewer network flue gas distribution

- Identify sewer system modifications to accommodate flue gas transport.
- Develop flue gas transport model for case study.
- Measure flue gas transfer efficiency in field demonstration test
- Estimate cost of flue gas transport via sewer network and compare with dedicated pipeline.

• Tasks 9- Techno-Economic Analysis

- Preliminary TEA Evaluation
- Lab tests to quantify relationship between light intensity and algae productivity and outdoor experiments external to GH to achieve 35 g/m2/day productivity and 70% CO2 capture efficiency
- Measure animal performance using algae feed
- Refined TEA Incorporating Project Results.
- Tasks 10- Life-Cycle Assessment
 - Refine and Customize LCA Model
 - LCA Hotspot Evaluation
 - Refined LCA Model Incorporating Project Results.

Lance Schideman schidema@Illinois.edu 217-390-7070

© 2014 University of Illinois Board of Trustees. All rights reserved. For more permission information, contact the Illinois Sustainable Technology Center, a Division of the Prairie Research Institute.

istc.illinois.edu

Illinois Sustainable Technology Center

Helios-NRG, LLC