Project Number: DE-SC0020730

CO₂-philic Block Copolymers with Intrinsic Microporosity for Post-combustion CO₂ Capture

> PI: Ravi Prasad Co-PI: Haiqing Lin Business Contact: Jim Maloney

Helios-NRG, LLC University at Buffalo, SUNY(UB)

Phase 2 Kickoff Meeting

Nov 8, 2021

General Project Information

- Title: *CO*₂-philic Block Copolymers with Intrinsic Microporosity for Post-combustion CO₂ Capture
- Project Type: SBIR/STTR Phase 2
 - Lead Organization: Helios-NRG, LLC
 - PI: Ravi Prasad, PhD, PE Co-PI: Dr Haiqing Lin (UB)
 - Federal Project Manager: Dr. Sai Gollakota
 - Partners:
 - University at Buffalo, SUNY (UB)
 - Membrane Technology & Research (MTR)
 - TechOpp Consulting (Comm Advisor)
 - National Carbon Capture Center (NCCC)
- Project Award Number: DE-SC0020730
 - Total Project Value: \$1,649,928
- Project Period: Aug 23, 2021 Aug 22, 2023

The high cost of Post-combustion CO₂ removal

Current and future technologies for power generation with postcombustion carbon capture, DOE/NETL-2012/1557, 2012. CO₂ capture from power plants is currently too expensive

- Challenges:
 - Gas is at near ambient pressure
 - Only ~12% CO₂ for coal plants
 - Gas has contaminants
 - Product must be relatively pure
- Many technologies possible but all have issues
- Membrane specific challenges
 - Low feed pressurization (few psi)
 - Permeate vacuum/sweep gas needed
 - Very low driving force => extremely high CO₂ permeance needed
 - Need high selectivity for high purity
 - The two properties are inversely related

TECHNOLOGY

Impact of Membrane Properties on Capture Cost

Merkel, et al., Pilot testing of a membrane system for post-combustion CO_2 capture (DE-FE0005795), Membrane Technology and Research, Inc., final report to DOE NETL, 2015.

Tradeoff between Permeability & Selectivity

Helios-NRG, LLC

- SOA commercial membrane: CO₂ permeance = 2,000 GPU and $\alpha_{\rm CO2/N2}$ = 50
- Our Goal: CO₂ permeance = 4,500 GPU and $\alpha_{CO2/N2}$ = 40

Technology Background & Phase1 Progress

Gas transport through polymers

Solution-diffusion model

Productivity - Permeability

 $P_A = S_A \land D_A$

Membrane

Technology & Research

	: N ₂		Condensability	Size	Size
		Penetrant	Critical Temperature (K)	Kinetic Diameter (Ă)	Critical volume (cm³/mole)
	(1) Sorption on upstream side		Temperature (II)	(21)	(em more)
	(2) Diffusion down partial pressure gradient	N ₂	126	3.64	89.8
	(3) Desorption on downstream side	CO ₂	304	3.3	93.9
Wijn	nans and Baker, <i>J. Membr. Sci.</i> 107 , 1 (1995)				

Helios-NRG, LLC

Engineering Advanced Polymers

Liu, Hou, Park, and Lin, *Chem. Eur. J.* 2016, 22 (45)15980. Du, Park, Robertson, Dal-Cin, Visser, Scoles, and Guiver, *Nat. Mater.* 2011, 10, 372. Park, Jung, Lee, Hill, Pas, Mudie, Wagner, Freeman, and Cookson, *Science* 2007, 318, 254. Guiver and Lee, *Science* 2013, 339, 284-285

Hu, Lin, et al., Highly permeable mixed matrix materials comprising crosslinked poly(ethylene oxide) and ZIF-8 nanoparticles for CO_2 capture. *Sep. Purif. Technol.* 2017, 205 (31), 58-65.

Strategy for a step change membrane

Block copolymers poly(ethylene oxide) with Intrinsic Microporosity (BCPIMs)

10

JATIONAL

HNOLOGY

BCPIMs: UiO-66-NH₂

- **NE NATIONAL ENERGY** TECHNOLOGY LABORATORY

Synthesis of UiO-66

Low loading of MOFs increases permeability

XLPEO-CE50-MOF1: pure- and mixed-gas tests

Т (°С)	Pure- or	Feed pressure Permeability (Barrer)		CO_2/N_2	
- (0)	Mixed-gas	(psig)	CO_2	N_2	Selectivity
35	Pure	30	2200	48	46
35	Mixed	150	2200	44	50
50	Mixed	150	2900	100	29
60	Mixed	150	3000	100	30

The mixed gas contains 20% CO_2 and 80% N_2 at 150 psig

XLPEO-CE50-MOF1 with simulated flue gas

The dry gas mixture contains 20% CO $_2$ and 80% N $_2$, Wet gas contains 0.3 mol% water vapor 35 $^\circ\!C$ $\,$ in addition.

XLPEO-CE50-MOF1 with simulated flue gas

Samplas	SO _x /NO _x	Permeat	CO_2/N_2	
Samples	exposure	CO ₂	N ₂	Selectivity
1	No exposure	2218	48	46
	After exposure	2393	52	46
2	No exposure	1800	36	50
	After exposure	1870	38	49

 35° C and 30 psig with and without exposure to 75 ppm SO_x and 75 ppm NO_x in N₂ for 100 hours.

Preliminary data on TFC membranes

Complex		Permeance	(GPU)	CO ₂ /N ₂ Selectivity	CO ₂ /N ₂ Selectivity	CO ₂ /N ₂ Selectivity	CO_2/N_2	CO_2/N_2	CO_2/N_2	CO_2/N_2	CO_2/N_2	CO_2/N_2	
Samples	Selective Layer	CO ₂	N ₂				Selective 50 - 200 nm layer 50 - 200 nm						
1	None	5400	500	11	Gutter								
2	PEO	2500	85	30	Microporous								
3		1100	29	38	support								
4		1070	36	30	Non-woven fabric 100 - 150 µm								
5		630	15	43	538-1 F3 (792hi-F)								
6	98% PEO + 2% MOF	1140	45	25									

Helios-NRG, LLC

2-Stage Process for CO2 Capture

- No air sweep; no boiler modification but lower capture efficiency
- ~50% Capture will reduce CO2 emission from coal plant to level of NG power plant

2-Stage Process - Impact of Capture Efficiency

Helios-NRG, LLC

3-Stage Process for CO2 Capture

NATIONAL

ENERGY TECHNOLOGY LABORATORY

TEA for 3-Stage Process

Basis: 550 MW SC PC Power plant

Motrio	Mem 1	- Low End	Mem 2 - High End		
Metric	W/o Cryo W/- Cryo		W/o Cryo	W/- Cryo	
Overall Capture Efficiency	91.5%	91.5%	91.5%	91.5%	
Prod CO2 Concentration	85.5%	100.0%	87.0%	100.0%	
CO2 Capture Cost (\$/ton)	21.2	29.5	20.1	28.5	

Helios-NRG, LLC

Accomplishments of Phase1

Membrane

Technology

- Advanced materials with CO $_2$ permeability of 2,000 Barrer and CO $_2/N_2$ selectivity of 40 synthesized
- Material stability in the presence of acid gases demonstrated
- Proof of concept thin-film composite (TFC) membranes fabricated
- Substrate coatability and improved gutter layer identified as key improvements to target in Phase2
- TEA work confirmed potential of the advanced membranes to achieve project objective of $30/ton CO_2$

Helios-NRG, LLC

Phase 2 Project Plans

Phase 2 Project Objectives

- 1. Develop TFC membrane with CO_2 permeance = 4,500 GPU & CO_2/N_2 selectivity = 40 at 35-60°C
- 2. Scale-up TFC membrane fabrication
- 3. Validate resistance to flue gas contaminants in long-term test
- 4. Fabricate small modules and validate performance in process tests
- 5. Define the best process and refine TEA

Project Tasks - Year1

- Task 1 Project management
- Task 2 Prepare and optimize TFC membranes
- Task 3 Conduct parametric tests of TFC membranes
- Task 4 Assess contaminant stability
- Task 5 Scale up the fabrication of TFC membranes

Project Tasks - Year 2

- Task 6 Project management
- Task 7 Test membrane coupons at NCCC
- Task 8 Fabricate bench-scale modules
- Task 9 Conduct process tests with modules
- Task 10 Process Development and TEA

Task 2.1 Select materials & scale-up synthesis

- Synthesize high molecular weight PEO
- Scale up the PEO synthesis to 50 g/batch
- Rapid synthesis of UiO66-NH₂ in a reproducible way
- Scale up the synthesis to 1-5 g/batch

Helios-NRG, LLC

Task 2.2 Optimize gutter layer

- Select gutter layer material
- Deploy gutter layer on support
- Surface modification to improve the compatibility with the coating solution
 - Plasma treatment (with O₂ or NH₃)

Task 2: Prepare and optimize TFC membranes

Task 2.3 Optimize coating thickness & defect reduction

- Optimize coating thickness by varying the polymer content in the solutions
- Develop a facile way to measure the film thickness of both layers
- Develop a facile way to determine surface smoothness of gutter layer
- Defect Reduction:
 - Optimize parameters to fabricate defect-free membranes
 - Use defect elimination techniques if needed

(a) PDMS SEM

ΔΤΙΟΝΔΙ

& Research

Task 3: Conduct parametric tests of TFC membranes

- Determine mixed-gas CO₂/N₂ separation properties
- 2-5 Bar; 35-70C
- Use Ar/He purge if needed

Task 4: Assess contaminant stability of TFC membranes

Helios-NRG, LLC

- Coupon tests on simulated flue gas (H2O, SOX, NOX)
- Measure degradation using standardized tests following "flue gas" exposure
- Address contaminant induced degradation
 - Membrane modification
 - Process modification

Task 5 - Scale up the fabrication of TFC membrane

Membrane

Technology & Research

- Thin film composite (TFC) membrane scale up activities; Extensive experience in tuning fabrication parameters to optimize membrane performance
- Research-scale (12-inch width) and commercial (1-m width) roll-to-roll coating equipment available

Helios-NRG, LLC

• Pure gas performance used as QC test to determine membrane quality and reproducibility

Task 7 – Test membrane coupons at NCCC

- Modify existing test skid for operation at NCCC
- Test TFC membrane coupons at NCCC on real flue gas
 - Long term test
 - Performance measured daily
 - Post analysis of membranes

Task 8 – Fabricate bench-scale modules

- Post-combustion CO₂ capture is a low pressure process that requires membrane modules with low pressure drop
- MTR has designed, built, and tested planar modules that offer much lower pressure drop than other module forms
- For lab testing, the new membrane will be made into small prototype modules (1 m²)
- Standard module integrity/QC tests will be performed at MTR before shipping to Helios for parametric testing

Helios-NRG, LLC

1/6th Scale Housing with Membrane

Membrane

Technology & Research

Task 9 – Conduct process tests with modules

- Map module performance over a range of operating conditions
- Understand impact of water vapor and CO₂ concentration on separation
 - Study impact of stage cut on performance
 - Check for non-linear property change
- Stage specific process tests
- Post-mortem of module following test

Task 10 - Process Dev and Economics

- Design process cycles for CO₂ separation from coal-fired flue gas using the novel membranes
 - Impact of CO₂ level on properties
 - Modify based on the measured membrane properties and capture efficiency
- Map tradeoff between CO₂ purity, recovery, specific power, area
 - Estimate CO₂ capture cost as a function of membrane properties & operating conditions
 - Identify best process for CO₂ separation at different purities/recovery
- Understand optimum recovery at which CO₂ capture cost is minimized
- Refine TEA

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number DE-SC0020730

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Helios-NRG, LLC

