STTR – DE-SC0005004 Advanced Technology for He Recovery

1

He Overview

He has unique properties

- 2nd lightest; Smallest molecule
- Most Inert; Highest ionization potential
- Lowest boiling point (~4K)
- Excellent heat transfer

Helium is a strategic resource

- Scarce economically recoverable from only a few natural gas deposits around the world (~>0.3% He typically required)
- The quantity of He on earth is in constant decline
- Used in a large number of critical applications where use of an alternative is difficult/impossible

Global He Production

US He Production from Natural Gas Wells and Government Storage

Estimated He Reserves

- Total US reserves ~20.6 billion m³
 - Economically Recoverable now ~4 billion m³
 - ~ 17 billion m³ in low grade reserves
- As economical reserves are depleted, marginal sources will come into play
 - Marginal reserves can be accessed with advanced technology

Current Project

• Objective:

- Develop a membrane hybrid technology which enables economic recovery of He from marginal fields containing concentrations, below today's "economic threshold".
- Phase II builds on the progress made in Phase I and is intended to lay the foundation for advancing the technology to field tests

• Project Team:

- Helios-NRG, LLC Prime
- Oak Ridge Nat'l Lab
- MTR
- Praxair Business/Marketing Advisory role

Technology Strategy

- Define feed gas
- Synthesize process cycles
- Use He price to set targets for development
- Develop new membranes with superior properties
- Develop advanced hybrid processes
- Test new membranes
- Refine economics
- Establish foundation for Phase III field demo

Average US Price of Grade-A He

Setting Targets for Development

- Typical raw gas from marginal wells is a mixture of several gases + small amount of He
 - Methane rich wells
 - Nitrogen rich wells
- Potential processes to recover He
 - Type A Mem + PSA process w/o cryo
 - Type B1 Cryo + Mem + PSA
 - **Type B2** Adv cryo + Mem + PSA

Membrane Development

- Advanced sieving membranes at ORNL
 - Separation based on molecular size

- Applicable to both CH4 and N2 rich fields
- Not limited by the Robesson upper bound for polymers
- Not plasticized by HC or CO₂

Improved polymeric membranes from MTR

- Commercial mfg. process & module design
- Membrane optimized for current separation

• Low cost

ORNL Sieving Membrane's

- Pore diameters of < 1 nm to 5 μ m
- Thin wall support structure and membrane layer made of variety of metals and ceramics
- 300 and 400 series Stainless Steel, Hastelloy X, iron-aluminide

- Membrane layer
 - $-Al_2O_3, \gamma -Al_2O_3$
 - -ZrO₂,TiO₂,SiO₂
 - Carbon, zeolite
- Best pure gas properties:
 - Selectivity >85
 - Permeance > 150 GPU

Gas Separation with Carbon Membrane

✓ Molecular Sieve Carbon Membrane (2.5-5.5 Å)

Efficient for the separation of gas mixture with similar molecular size: He/N₂, O₂/N₂, CO₂/N₂, CO₂/CH₄

✓ Activated Carbon Membrane (8- 20 Å)

Efficient for the separation of non-condensible gas $(N_2, O_2, He, etc.)$ and condensible gas (hydrocarbon, VOCs, etc) mixture

Preparation of Carbon Membranes

Po	vmer	precursor

✓ Phenolic resin

Preparation of Support

✓ Porous metal composite support

Oxidation

✓ Gas phase oxidation

Pyrolysis

✓ Carbonization

Supported carbon membrane

Helios-NRG, LLC

✓ Permeation Test

ORNL Lab Facilities

High Temperature Membrane Treatment

High Temperature Gas Permeation and Separation

High Performance ORNL Membranes

Sample number	N2 permeance (GPU)	He permeance (GPU)	Selectivity
1749-61	2.6	142.5	54
1749-56	1.1	81.7	74.3
1749-68	1.7	100.1	60.7
1749-65	1.9	57	30.5
1748-61-1	1.5	85.4	55.4
1749-66	3	142.5	48
1479-70	1.3	107.3	81.3
1749-48	2	74.8	37.8
1749-71	3.1	90.1	29.3
1749-69	1.4	81.7	57.2
1749-72	3	68.5	23.1
1749-62	1.9	106.8	57.1
1749-58	1.8	155.2	88.2

* GPU = 1 x 10^{-6} cm³/(cm²-s-cm Hg) at 25 °C

Options for Membrane Scale-up

- Membrane supports
 - Tubular (shell/tube)
 - Hexagonal multichannel
 - Circular multichannel
 - Honeycomb monolith

MTR Membrane's

- Polymeric membranes
- Choice of many polymers
- Spiral wound design
- Fouling resistant
- Low pressure drop
- Excellent for roughing stage
- Pure gas properties exceed target
 - Selectivity 30% higher
 - Permeance 38% higher

Advanced Hybrid Process for Type B

Lab Pilot Unit

ORNL

Pilot Plant P&ID

Helios-NRG, LLC

20

Lab Pilot Unit

- Project objective was to test membranes at B2 process conditions using mixed gas
- Praxair Inc has donated He and specialty mixtures for tests
- Very successful startup
- Modules received from MTR and ORNL
- MTR tests complete
 - Tests were completed for both B1 & B2 processes
 - Successful mixed gas tests
- ORNL tests underway
- Plan to conduct some Process A tests as well

Process Economics from Process Tests

- Advanced hybrid process improves economics by ~20%
- This combined with the better-than-plan membrane properties enabled much superior process economics
- Application Type B2 Target Exceeded (Phase 2 Objective)
 - ~25% better than our goal
- Application Type B1 Target met
 - ~15% better than goal
- Application Type A Likely possible
 - To be evaluated in future

Average US Price of Grade-A He

<u>Summary</u>

- ORNL membrane selectivity 6x of target
- Hybrid process with much improved economics developed
- Pilot unit built, process tests nearing completion
- Projected economics greatly exceed Phase2 goal
- Expect to achieve/exceed all Phase 2 objectives
- Developing Phase 3 plans

Thank You!

About Helios-NRG

- A technology company founded in '09 by ex-Praxair personnel
- Consulting
 - Industrial Gases, Separations, Clean Energy, Carbon Capture, Gasification, Adv. Technologies, and Business Dev.

Technology Development

- Advanced separations
- Membrane Technology
- Algae Biotechnology for carbon capture/utilization & water remediation

