
Analysis of Marketing from the Banco de Portugal

The data used in this project comes from a marketing campaign by the Banco de Portugal to encourage customers to subscribe to a term deposit. It includes

attributes about the customer, how the marketing was conducted, relevant economic indicators, and whether the offer was accepted or declined.

In [1]: import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
%matplotlib inline

In [2]: df= pd.read_excel('C:\\Users\\Woyte\\Desktop\\Bank.xlsx')

In [3]: df.head()

In [4]: df = df[df != 'unknown']
df.dropna(inplace=True)
#Deleting cells with unknown information from data

Out[3]:
age job marital education default housing loan contact month day_of_week ... campaign pdays previous poutcome emp.var.rate

0 56 housemaid married basic.4y no no no telephone may mon ... 1 999 0 nonexistent

1 57 services married high.school unknown no no telephone may mon ... 1 999 0 nonexistent

2 37 services married high.school no yes no telephone may mon ... 1 999 0 nonexistent

3 40 admin. married basic.6y no no no telephone may mon ... 1 999 0 nonexistent

4 56 services married high.school no no yes telephone may mon ... 1 999 0 nonexistent

5 rows × 21 columns

C:\Users\Woyte\Anaconda3\lib\site-packages\pandas\core\ops.py:1649: FutureWarning: elementwise comparison
failed; returning scalar instead, but in the future will perform elementwise comparison
 result = method(y)

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

1 of 9 10/23/2019, 1:35 PM

In [5]: dummy=pd.get_dummies(df['default'])
dummy2=pd.get_dummies(df['housing'])
dummy3=pd.get_dummies(df['loan'])
dummy4=pd.get_dummies(df['y'])
df= pd.concat([df, dummy], axis=1)
df= df.drop('no',axis=1)
df['Ydefault']=df['yes']
df=df.drop('yes', axis=1)
df= pd.concat([df, dummy2], axis=1)
df= df.drop('no',axis=1)
df['Yhousing']=df['yes']
df=df.drop('yes', axis=1)
df= pd.concat([df, dummy3], axis=1)
df= df.drop('no',axis=1)
df['Yloan']=df['yes']
df=df.drop('yes', axis=1)
df= pd.concat([df, dummy4], axis=1)
df= df.drop('no',axis=1)
df['accepted']=df['yes']
df=df.drop(['default', 'housing', 'loan', 'y', 'yes'], axis=1)
df.head()
#Creating a lot of dummy variables from categorical data

In [6]: #Running a simple analysis to make sure everything is correct
group=df['accepted'].groupby([df['education']]).mean()
group

In [7]: plt.grid(True)
plt.xlabel('Education Level')
plt.ylabel('Chance of Acceptance')
plt.title('Relationship Between Education Level and Mean Chance of Acceptance')
plt.plot(group,c= 'red', marker='.')

Out[5]:
age job marital education contact month day_of_week duration campaign pdays ... poutcome emp.var.rate cons.price.idx

0 56 housemaid married basic.4y telephone may mon 261 1 999 ... nonexistent 1.1 93.994

2 37 services married high.school telephone may mon 226 1 999 ... nonexistent 1.1 93.994

3 40 admin. married basic.6y telephone may mon 151 1 999 ... nonexistent 1.1 93.994

4 56 services married high.school telephone may mon 307 1 999 ... nonexistent 1.1 93.994

6 59 admin. married professional.course telephone may mon 139 1 999 ... nonexistent 1.1 93.994

5 rows × 21 columns

Out[6]: education
basic.4y 0.136975
basic.6y 0.097912
basic.9y 0.088868
high.school 0.121314
illiterate 0.272727
professional.course 0.124508
university.degree 0.148098
Name: accepted, dtype: float64

Out[7]: [<matplotlib.lines.Line2D at 0x200da7bb390>]

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

2 of 9 10/23/2019, 1:35 PM

Results

As the data shows, there is an interesting relationship between education and the mean chance of acceptance of the bank's offer. Generally, from illiteracy to

some high school education, the more education they have, the less likely the person is of accepting the bank's offer. This relationship reverses when someone

graduates from high school though, slowly gaining in likelihood to accept the bank's offer the more education they receive.

Overall, the illiterate were the most likely to accept a loan, with a mean chance of 27%, and those with nine years of education are the least likely, only a 9%

chance.

ANOVA Comparing Ages to Customer Education

In [8]: df.boxplot('age', by= 'education')

In [9]: mod = smf.ols('age ~ education', data=df).fit()
anova_table = sm.stats.anova_lm(mod, typ=2)
anova_table

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x200db004048>

Out[9]:
sum_sq df F PR(>F)

education 2.123928e+05 6.0 354.573796 0.0

Residual 3.043065e+06 30481.0 NaN NaN

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

3 of 9 10/23/2019, 1:35 PM

In [10]: pair_t = mod.t_test_pairwise('education')
pair_t.result_frame

Results

As the above tables show, there is a very distinct statistical difference between the data from the varying groups. The first ANOVA test, which tested the model

as a whole, came back with a p-value of less than .01, meaning that there was a statistical difference even at a 99% confidence level. Running the test on each

individual grouping for Education came back showing that thirteen out of the twenty one relationships, or 62% of them, were statistically different from the

others.

K-Nearest Neighbors

Let's a new candidate came in the ways of a 45-year-old man withno housing loan. Would they be expected to accept the bank's offer?

In [11]: X = pd.DataFrame(data = df ,columns = ['age', 'Yhousing'])
X = X[['age', 'Yhousing']]
y= df['accepted']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

Out[10]:
coef std err t P>|t| Conf. Int. Low Conf. Int. Upp. pvalue-hs reject-hs

basic.6y-basic.4y -7.710521 0.337376 -22.854371 1.218471e-114 -8.371793 -7.049250 0.000000e+00 True

basic.9y-basic.4y -9.453235 0.255529 -36.994754 4.280600e-293 -9.954083 -8.952388 0.000000e+00 True

high.school-basic.4y -10.405884 0.234339 -44.405310 0.000000e+00 -10.865198 -9.946570 0.000000e+00 True

illiterate-basic.4y -3.473071 3.019576 -1.150185 2.500767e-01 -9.391566 2.445424 4.376150e-01 False

professional.course-basic.4y -8.412774 0.255053 -32.984432 1.816088e-234 -8.912688 -7.912859 0.000000e+00 True

university.degree-basic.4y -9.420885 0.227015 -41.498943 0.000000e+00 -9.865844 -8.975926 0.000000e+00 True

basic.9y-basic.6y -1.742714 0.308582 -5.647486 1.642591e-08 -2.347548 -1.137880 1.971109e-07 True

high.school-basic.6y -2.695363 0.291277 -9.253593 2.308216e-20 -3.266279 -2.124447 0.000000e+00 True

illiterate-basic.6y 4.237450 3.024528 1.401029 1.612156e-01 -1.690750 10.165651 4.098656e-01 False

professional.course-basic.6y -0.702252 0.308188 -2.278649 2.269482e-02 -1.306314 -0.098191 1.594399e-01 False

university.degree-basic.6y -1.710364 0.285419 -5.992475 2.089880e-09 -2.269796 -1.150931 2.716844e-08 True

high.school-basic.9y -0.952649 0.190565 -4.999080 5.792344e-07 -1.326164 -0.579134 5.792329e-06 True

illiterate-basic.9y 5.980164 3.016495 1.982488 4.743361e-02 0.067709 11.892619 2.529124e-01 False

professional.course-basic.9y 1.040462 0.215528 4.827503 1.389244e-06 0.618018 1.462905 1.250313e-05 True

university.degree-basic.9y 0.032350 0.181483 0.178256 8.585233e-01 -0.323364 0.388065 8.585233e-01 False

illiterate-high.school 6.932813 3.014773 2.299613 2.147686e-02 1.023731 12.841895 1.594399e-01 False

professional.course-high.school 1.993110 0.189926 10.494154 1.016663e-25 1.620848 2.365373 0.000000e+00 True

university.degree-high.school 0.984999 0.150185 6.558552 5.520139e-11 0.690629 1.279369 7.728196e-10 True

professional.course-illiterate -4.939703 3.016454 -1.637586 1.015185e-01 -10.852079 0.972674 3.483166e-01 False

university.degree-illiterate -5.947814 3.014213 -1.973256 4.847543e-02 -11.855797 -0.039830 2.529124e-01 False

university.degree-professional.course -1.008111 0.180812 -5.575465 2.489582e-08 -1.362510 -0.653712 2.738540e-07 True

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

4 of 9 10/23/2019, 1:35 PM

In [12]: X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
knn = KNeighborsClassifier(n_neighbors=5, metric='euclidean')
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
sns.scatterplot(

x='age',
y='Yhousing',
hue='accepted',
data=X_test.join(y_test, how='outer'))

In [13]: confusion_matrix(y_test, y_pred)

In [14]: x2 = [[45, 0]]
pred = knn.predict(x2)
print("X=%s, Predicted=%s" % (x2[0], pred[0]))

Results

With a true positive and a true negative of 6,552 and 46 instances respectively, that means the models accurate results were 6,598. Adding on the false

positives and false negatives, and our model had an accuracy of 6,598/7,622 or 86.5%.

As for the new instance itself. If there is a 45-year-old person without a housing loan, they are not expected to accept the bank's offer.

Building a Classification Tree Model

Another new person is added to the marketing data. This time it is a 50 year-old woman who has never defaulted, has a housing loan, but does not have a

regular loan.

In [15]: X = pd.DataFrame(data = df, columns = ['age', 'Yhousing', 'Ydefault', 'Yloan'])
y= df['accepted']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
#Splitting the data set for prediction and setting up variables.

In [16]: clf = DecisionTreeClassifier(max_depth = 1, random_state = 0)
clf.fit(X_train, y_train)

In [17]: #Testing accuracy of model.
score = clf.score(X_test, y_test)
score

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x200da088898>

Out[13]: array([[6552, 99],
 [925, 46]], dtype=int64)

X=[45, 0], Predicted=0

Out[16]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=1,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False,
 random_state=0, splitter='best')

Out[17]: 0.874048806087641

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

5 of 9 10/23/2019, 1:35 PM

In [18]: #Creating function to test out other possible maximum depths of the model and their accuracy
max_depth_range = list(range(1, 6))
accuracy = []
for depth in max_depth_range:

clf = DecisionTreeClassifier(max_depth = depth,random_state = 0)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
accuracy.append(score)

plt.grid(True)
plt.plot(accuracy)

In [19]: accuracy

In [20]: importances = pd.DataFrame({'feature':X_train.columns,'importance':np.round(clf.feature_importances_,3)})
importances = importances.sort_values('importance',ascending=False)
importances

In [21]: x3 = [[50, 1, 0, 0]]
pred2 = clf.predict(x3)
print("X=%s, Predicted=%s" % (x3[0], pred2[0]))

Results

With an accuracy of 87%, this model is pretty effective at predicting the possibility of acceptance for a candidate if you know their age, whether they have a

housing loan, whether they have a normal loan, and whether they have defaulted.

Of these factors, this model finds the candidate's age to be the most important, gives a little relevance to whether the candidate accepted a housing loan, and

even less relevance to whether they have a normal loan. Whether they candidate defaulted or not has no relevance in the model and can be removed. This is

probably because these variables are all highly correlated, so a vast majority of the information in the latter three variables are already given by a candidate's

age.

So if a candidate is 50 years old and has a housing loan but not a normal loan and never defaulted, they are not expected to accept the bank's offer.

Final Logistical Regression Testing Candidate Characteristics and Likelihood of Accepting
Offer

Out[18]: [<matplotlib.lines.Line2D at 0x200dc82a128>]

Out[19]: [0.874048806087641,
 0.874048806087641,
 0.8735240094463396,
 0.8737864077669902,
 0.871556022041459]

Out[20]:
feature importance

0 age 0.973

1 Yhousing 0.014

3 Yloan 0.012

2 Ydefault 0.000

X=[50, 1, 0, 0], Predicted=0

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

6 of 9 10/23/2019, 1:35 PM

In [22]: X= X.drop(['Ydefault'], axis=1)
X= sm.add_constant(X)
y= df['accepted']
logit1 = sm.Logit(y,X)
results = logit1.fit()
results.summary()

Optimization terminated successfully.
 Current function value: 432.821231
 Iterations 6

C:\Users\Woyte\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is
deprecated and will be removed in a future version. Use numpy.ptp instead.
 return ptp(axis=axis, out=out, **kwargs)
C:\Users\Woyte\Anaconda3\lib\site-packages\statsmodels\base\model.py:492: HessianInversionWarning: Invert
ing hessian failed, no bse or cov_params available
 'available', HessianInversionWarning)
C:\Users\Woyte\Anaconda3\lib\site-packages\statsmodels\base\model.py:492: HessianInversionWarning: Invert
ing hessian failed, no bse or cov_params available
 'available', HessianInversionWarning)
C:\Users\Woyte\Anaconda3\lib\site-packages\statsmodels\discrete\discrete_model.py:3390: RuntimeWarning: d
ivide by zero encountered in double_scalars
 return 1 - self.llf/self.llnull

Out[22]:
Logit Regression Results

Dep. Variable: accepted No. Observations: 30488

Model: Logit Df Residuals: 30484

Method: MLE Df Model: 3

Date: Thu, 17 Oct 2019 Pseudo R-squ.: inf

Time: 02:15:41 Log-Likelihood: -1.3196e+07

converged: True LL-Null: 0.0000

Covariance Type: nonrobust LLR p-value: 1.000

coef std err z P>|z| [0.025 0.975]

const -2.4922 0.069 -36.029 0.000 -2.628 -2.357

age 0.0135 0.002 8.471 0.000 0.010 0.017

Yhousing 0.0610 0.035 1.757 0.079 -0.007 0.129

Yloan -0.0418 0.048 -0.869 0.385 -0.136 0.052

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

7 of 9 10/23/2019, 1:35 PM

In [23]: X= df[['age'] +['Yhousing']]
X=sm.add_constant(X)
logit1 = sm.Logit(y,X)
results = logit1.fit()
results.summary()

C:\Users\Woyte\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is
deprecated and will be removed in a future version. Use numpy.ptp instead.
 return ptp(axis=axis, out=out, **kwargs)

Optimization terminated successfully.
 Current function value: 432.795705
 Iterations 6

C:\Users\Woyte\Anaconda3\lib\site-packages\statsmodels\base\model.py:492: HessianInversionWarning: Invert
ing hessian failed, no bse or cov_params available
 'available', HessianInversionWarning)
C:\Users\Woyte\Anaconda3\lib\site-packages\statsmodels\base\model.py:492: HessianInversionWarning: Invert
ing hessian failed, no bse or cov_params available
 'available', HessianInversionWarning)
C:\Users\Woyte\Anaconda3\lib\site-packages\statsmodels\discrete\discrete_model.py:3390: RuntimeWarning: d
ivide by zero encountered in double_scalars
 return 1 - self.llf/self.llnull

Out[23]:
Logit Regression Results

Dep. Variable: accepted No. Observations: 30488

Model: Logit Df Residuals: 30485

Method: MLE Df Model: 2

Date: Thu, 17 Oct 2019 Pseudo R-squ.: inf

Time: 02:15:41 Log-Likelihood: -1.3195e+07

converged: True LL-Null: 0.0000

Covariance Type: nonrobust LLR p-value: 1.000

coef std err z P>|z| [0.025 0.975]

const -2.4984 0.069 -36.313 0.000 -2.633 -2.364

age 0.0135 0.002 8.481 0.000 0.010 0.017

Yhousing 0.0596 0.035 1.718 0.086 -0.008 0.128

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

8 of 9 10/23/2019, 1:35 PM

In [24]: plt.style.use('bmh')
sns.lmplot(x='age', y='accepted', data=df, logistic=True, y_jitter=.01)
sns.lmplot(x='Yhousing', y='accepted', data=df, logistic=True, y_jitter=.01)

In [25]: np.exp(results.params)

Results

Of all the candidate characteristics, only a candidate's age and if they they had a housing loan were statistically significant at a 90% confidence level, and at a

95% confidence level the housing loan variable was dropped. That meant that at 95% confidence and above, only a candidate's age had any signicant

relationship with their chance of accepting a loan.

The model at a 90% confidence level is

Otherwise, the odds ratio shows that someone with a housing loan is 1.06 times as likely to accept the bank's offer than someone without, an interesting find,

and every increase in someone's age by a single year increases their odds of accepting the bank's offer by 1.014 times as much.

In []:

Out[24]: <seaborn.axisgrid.FacetGrid at 0x200dbd01c88>

Out[25]: const 0.082214
age 1.013589
Yhousing 1.061400
dtype: float64

Bank Marketing http://localhost:8888/nbconvert/html/Python Scripts/Bank Marketing.ipy...

9 of 9 10/23/2019, 1:35 PM

