9/13/21, 9:00 PM College - Jupyter Notebook

Analysis of Top Ranked Colleges in the United
States

In [2]: M import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [3]: M df = pd.read_csv("'

df.head(3)
out[3]: Aver
Rank Name City State Public/Private Und;?;ﬂ?al:?;: Po:L::Jadt?onr: Pr?:; Gi
o 10 Havard o bridge MA Private 13844.0 31120.0 14327.0 498
University
1 o Stanford - gnford CA Private 84020 175340 132610 501:
University
2 30 , Yae New oy Private 64830 129740 18627.0 508!
University Haven

Variable Creation

Test Scores

Looking at the columns from the dataframe, | noticed that there was a lower and upper value for
both the student population's SAT and ACT scores, but not an average, so | wanted to create an
average variable myself. Note: This average is not the average score of the student population, but
the average score between the highest and lowest scorers amonst the population.

Public/Private

The variable is currently contained as a string, which isn't very useful for data analysis, so |
decided to turn it into a binary variable where '1' were all public schools, and '0' were all private.

Undergraduate Percentage

The percentage of the student population enrolled in an undergraduate program

Test Difference

The difference between the highest and lowest test scores

Post-UG Population

localhost:8888/notebooks/College.ipynb 124

9/13/21, 9:00 PM

College - Jupyter Notebook

The student population enrolled beyond an undergraduate education.

Post-UG Percentage

Percentage of the student population enrolled after obtaining a Bachelor's degree.

In [4]: M df['SAT Average']=df['SAT Lower']/2+df['SAT Upper']/2
df["ACT Average']=df['ACT Lower']/2+df["'ACT Upper']/2
df.head(3)
Out[4]: Aver
Rank Name City State Public/Private Undergradu_ate Stud_ent Net Gi
Population Population Price
0 10 UH.a""a.rd Cambridge MA Private 13844.0 31120.0 14327.0 498
niversity
1 20 USFa”fo.rd Stanford CA Private 8402.0 17534.0 13261.0 501:
niversity
2 _ Yale New g Private 64830 129740 18627.0 508!
University Haven
In [5]: M dummy=pd.get_dummies(df['Public/Private'], drop_first=True)
df=pd.concat([df, dummy], axis=1)
df=df.drop(['Public/Private', 'Website'], axis=1)
df.head(3)
Out[5]:
. Undergraduate Student Net Average Total
Rank Name City State . h . Grant Annual
Population Population Price Aid Cost
0 1 UHa“’a.rd Cambridge MA 13844.0 31120.0 14327.0 49870.0 69600.0
niversity
1 20 e stanford ca 84020 175340 13261.0 501340 69109.0
niversity
2 30 . Yale New op 6483.0 12974.0 18627.0 50897.0 71290.0
niversity Haven
localhost:8888/notebooks/College.ipynb 2/24

9/13/21, 9:00 PM

College - Jupyter Notebook

In [6]: M df['Undergraduate Percentage'] = df['Undergraduate Population']/ df['Student
df['ACT Difference'] = df['ACT Average']-20.6
df['SAT Difference'] = df['SAT Average']-1051
df['Post-UG Population'] = df['Student Population'] - df['Undergraduate Popul
df['Post-UG Percentage'] = df['Post-UG Population'] / df['Student Population’
df.head(3)
Out[6]:
(6] . Undergraduate Student Net Average fotal
Rank Name City State . . . Grant Annual
Population Population Price Aid Cost
0 10 UH.ar"a.rd Cambridge MA 138440 31120.0 14327.0 49870.0 69600.0
niversity
1 poanford Stanford CA 84020 175340 13261.0 501340 69109.0
niversity
2 30 . Yale New — op 6483.0 129740 18627.0 50897.0 71290.0
niversity Haven
3 rows x 23 columns
Gathering Summary Statistics on Data
localhost:8888/notebooks/College.ipynb 3/24

9/13/21, 9:00 PM

In [7]: M df.info()

College - Jupyter Notebook

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 650 entries, 0 to 649

Data columns (total 23 column
Column

0 Rank

1 Name

2 City

3 State

4 Undergraduate Population
5 Student Population

6 Net Price

7 Average Grant Aid

8 Total Annual Cost

9 Alumni Salary

10 Acceptance Rate

11 SAT Lower

12 SAT Upper

13 ACT Lower

14 ACT Upper

15 SAT Average

16 ACT Average

17 Public

18 Undergraduate Percentage
19 ACT Difference

20 SAT Difference

N
=

Post-UG Population
22 Post-UG Percentage

s):

Non-Null Count

635
648
551
551
553
553
551
553
650
650
553
551
650
650

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

dtypes: float64(19), object(3), uint8(1)

memory usage: 112.5+ KB

object
float64
float64
floate4
float64
float64
float64
float64
floate4
float64
float64
float64
float64
float64
uints8
floate4
float64
float64
float64
float64

As the table shows, there are null values in my data. For example, about 15% of the SAT variables

are null values. Null values can be troublesome for machine learning, so | shouvild do something

about them. The two simplest ways are to remove any record containing a null value, or estimating

the null values. By deleting the values, I'd be effectively cutting down my available data by around
1/5th, meaning the data's predictive capability would lessen. On the other hand, estimating values
in place of the nulls might not be accurate, and so can also harm the predictive capabilities of the

model based on how off they are.

Later on, | will be trying out both methods to try and maximize my models' predictive capabilities.

localhost:8888/notebooks/College.ipynb

4/24

9/13/21, 9:00 PM

In [8]:

localhost:8888/notebooks/College.ipynb

Out[8]:

College - Jupyter Notebook

M df.describe()

o Ut Sty e Toutaal

count 650.00000 650.000000 650.000000 648.000000 646.000000 650.000000
mean 325.50000 10002.692308 12022.290769 22336.947531 20031.208978 50330.175385 9¢
std 187.78312 11162.172430 13175.091581 8269.912032 11175.869976 13223.055038 1
min 1.00000 185.000000 386.000000 0.000000 2975.000000 0.000000 7(
25% 163.25000 2020.250000 2240.750000 16410.000000 9288.250000 39917.000000 8¢
50% 325.50000 4503.000000 6269.000000 21989.000000 19605.000000 50265.000000 9t
75% 487.75000 15657.000000 17788.000000 27580.500000 27474.500000 60771.750000 10!
max 650.00000 65100.000000 75044.000000 47270.000000 50897.000000 75735.000000 15¢

The first thing that jumps out to me is how varied the data is. For instance the Public column is a

binary variable using zero and one, while the Student Population column has a range between 386

and 75044. Because of this, any machine learning models will place more weight to the variables
with the larger values. | should standardize and scale the data so that everything will be weighted
equally in the machine learning models.

5/24

9/13/21, 9:00 PM

College - Jupyter Notebook

In [9]: M df_corr = df.corr()
plt.figure(figsize=(16,8))
sns.heatmap(df_corr, annot=True)
Out[9]: <AxesSubplot:>
-100
Rank - 1
Undergraduate Population SR 0033
Student Population JRUSE 011 0.02 -0.75
MNet Price 48
Average Grant Aid 059 061
0.50
Total Annual Cost SR 061 066
Alumni Salary 019
Acceptance Rate - O 0.13 0.25
SAT Lower & 032
SAT Upper 0 133 099 094
ACT Lower 038 095 099 foeon
ACT Upper 037 065 065
SAT Average 061 069 -0.25
ACT Average 066 068
Public 0.65 0.045 02
-—0.50
Undergraduate Percentage 0 0 0.3 . 036 0.35 034
ACT Difference 48 061 066 068 094 094 099 099 095
SAT Difference 4 059 061 069 099 099 095 093 1 0.95 EiFE .. -0.75
Post-UG Population 011 | 032 036 037 035 034 037 035 018 1
Post-UG Percentage 27 031 03 036 036 035 034 037 035 023 0.62 1
T i \ i -1.00
¥ 5 5 % 2 ¥ z £ E 3§ B § B OB g B L ¥ B B
1 3 83 = § : &5 3 3
. i f . H E g
In [10]: M df_corr["Rank"].sort_values(ascending=False)
Out[1@]: Rank 1.000000
Acceptance Rate 0.628110
Undergraduate Percentage 0.250042
Public 0.147599
Undergraduate Population -0.060859
Student Population -0.133249
Post-UG Percentage -0.250042
Net Price -0.329445
Post-UG Population -0.329503
Average Grant Aid -0.445638
Total Annual Cost -0.552349
Alumni Salary -0.721772
SAT Upper -0.822319
ACT Upper -0.830561
SAT Lower -0.834263
SAT Average -0.839476
SAT Difference -0.839476
ACT Lower -0.849047
ACT Difference -0.851101
ACT Average -0.851101

Name: Rank, dtype: float64

These correlations are what one would expect at first glance. Public schools with a more inclusive
acceptance rate and a large portion of their population being undergraduate tend to be lowly
ranked, while the higher test scores and alumni salary tend to go to higher ranked colleges.

localhost:8888/notebooks/College.ipynb

6/24

9/13/21, 9:00 PM College - Jupyter Notebook

In [11]: M plt.figure(figsize=(16,4))
sns.histplot(df['SAT Average'], kde=True)
#average is 1051

Out[11]: <AxesSubplot:xlabel='SAT Average', ylabel='Count'>

1500
SAT Average

In [12]: M plt.figure(figsize=(16,4))
sns.histplot(df['ACT Average'], kde=True)
#average 1is 20.6

Out[12]: <AxesSubplot:xlabel='ACT Average', ylabel='Count'>

Count
o B B 8 &8 8 8 3 8

3.0 : J & =0
ACT Average

As both graphs show, the average test score - which is the difference between the highest scoring
studen and lowest scoring student - are usually higher than the average test scores of the
population. This is a bit of comparing apples to oranges due to the different ways average scores
are calculated here, but this does show that the colleges in this dataset typically go after higher
scoring students.

localhost:8888/notebooks/College.ipynb 7124

9/13/21, 9:00 PM College - Jupyter Notebook

In [13]: M state_rank=df['Rank'].groupby([df['State’']]).count()
state_rank.plot(kind="bar', title = 'Ranked Colleges by State', figsize = (1¢

Ranked Colleges by State

70 1

20 4

10 1

|]|_
£2EY 000 RATE T e=E 0 I 0EE S0P STES S 588 HRFFES5E32E
Ctate

In [14]: M census = pd.read_exce
census.head(3)

Out[14]: Population

State

AL 4903185
AK 731545

AZ 7278717

localhost:8888/notebooks/College.ipynb 8/24

9/13/21, 9:00 PM College - Jupyter Notebook

In [15]: M census_sorted= census.sort_values('Population')
state_rank_sorted = state_rank.sort_values()

In [16]: M census_sorted.plot(kind="'bar', title = 'Population by State', figsize = (10,¢€

Out[16]: <AxesSubplot:title={'center':'Population by State'}, xlabel='State '>

1e7 Population by State

40 mmm Population

354

304

25 4

20 4

15 A

10 A

05

0.0 A
e e P R A T E e H e E e PR e ol
State

localhost:8888/notebooks/College.ipynb 9/24

9/13/21, 9:00 PM College - Jupyter Notebook
In [17]: M state_rank_sorted.plot(kind="bar', title = 'Ranked Colleges by State', figsiz

Out[17]: <AxesSubplot:title={'center':'Ranked Colleges by State'}, xlabel='State'>

Ranked Colleges by State

70 1

20

10 A

WY
W
Hl
DE
MW
ND
AK
MH
kS
=0
MM
8]
MT
AZ
DC

CEE X YLEY SHEEL0 LS STOF $OEZE USSR 2T IESE
State

As to be expected, the amount of ranked colleges in a state almost exactly follows the population
distribution of the states. One notable exception to this is Texas, which is the second highest state
by population, but only the seventh highest in terms of ranked universities. In fact, it should have
around twice as many ranked universities as it does currently.

Building a Model to Predict College
Rankinas

localhost:8888/notebooks/College.ipynb 10/24

9/13/21, 9:00 PM College - Jupyter Notebook

In [18]: P from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

Step 1

Step one of my machine learning process is preparing the data to be more useful to the algorithms.
In this instance, that means removing all the columns made up of strings, as well as separating the
predicted variable from the explainer variables. Furthermore, I'll be dividing the data between a
train set and a test set. As the names imply, a training set is what the machine learning models are
initially built off of, while the test set is used to test the model's accuracy.

One does not want to use a training set for both training and testing as one could accidentally
overfitt the model to the data, meaning, while the model is useful for the specific data used, if any
more data is brought in, the model will become much more inaccurate than a model tested with a
separate test set of data.

In [19]: M df=df.drop(['Name', 'City', 'State'], axis = 1)
df_goal=df['Rank'].copy()
df2=df.drop('Rank', axis=1)
df_train, df_test, goal_train, goal_test = train_test_split(df2, df_goal, tes

In [20]: M df_train.head(3)

Out[20]:
28] Undergraduate Student Net Average Total Alumni Acceptance SAT !
Population Population Price Grant Annual Sala Rate Lower U
P P Aid Cost y F
522 22386.0 24375.0 15368.0 7270.0 43444.0 89900.0 86.0 980.0 12(
178 2367.0 2535.0 31014.0 25282.0 65330.0 101900.0 48.0 1140.0 13«
260 29777.0 30896.0 20493.0 8263.0 44706.0 104800.0 79.0 1070.0 13(

To prepare the data more, | will also be standardizing the data so that the whole set will have
similar deviations. | will also be implementing an imputer to fill in the nulls values in the data with
an estimate of what they could be based on the column's median value. | am doing this to save as
much of the data as possible, but later | will make a regressor model without the imputer to see
how it compares.

In [21]: M standardscaler = StandardScaler()
imputer = SimpleImputer(strategy="median")
pipe = Pipeline([('std', standardscaler), ('imputer', imputer)])
pipe.fit(df_train, goal_train)
df_train2 = pipe.transform(df_train)
df_test2 = pipe.transform(df_test)

localhost:8888/notebooks/College.ipynb 11/24

9/13/21, 9:00 PM College - Jupyter Notebook
First Model: K-Nearest Neighbors

The first model we will run is a KNN model. This model is one of the simplest machine learning
models to run, meaning it also takes much less resources on the system than a more complex
model. Typically one should use the simplest model first in order to save on resources. In the case
of K-Nearest Neighbors, it takes the given records and compares them to the records with the
variables closest to them. So if | wanted to know what rank a public university with an acceptance
rate of 70% and a net price of $18,000, the model will look at the closest public universities with a
similar acceptance rate and net price.

Every model will be judged by two criteria: the RMSE, or root mean squared error, and the cross
validation accuracy score. RMSE refers to the absolute value of the error in a predicted value. So if
the model predicts a college will be ranked 4th, but in reality it was ranked 2nd, then the RMSE of
the prediction would be two. Cross validation is typically used when the data is rather limites or as
a way to protect against overfitting the data. Basically the training set will be split up many more
times and iterations of the machine learning algorithm will be fitted and tested against the
partitions. You can then average out the accuracy of the partitions, and get an overall accuracy
score for the predictions.

In [22]: M from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score

In [23]: M n_neighbors =list(range(1, 10))

accuracy = []

for neighbor in n_neighbors:
clf = KNeighborsRegressor(n_neighbors = neighbor)
clf.fit(df_train2, goal_train)
score = clf.score(df_test2, goal_test)
accuracy.append(score)

plt.grid(True)

plt.plot(accuracy)

Out[23]: [<matplotlib.lines.Line2D at @x1f053681e50>]

074 1

073 1

0.72 1

071 A

070 4

069 1

Many machine learning models allow for parameter tuning to get the best predictive results. In the
case of K-Nearest Neighbors, one can choose the amount of neighbors closest to the college

localhost:8888/notebooks/College.ipynb 12/24

9/13/21, 9:00 PM College - Jupyter Notebook

being predicted. One might think that more is always better, but adding more neighbors takes more
system resources and can hurt the predictive capabilities of the model. In the case of the above,
we can see that the model is most accurate when limited to four nearest neighbors.

In [24]: M knn = KNeighborsRegressor(n_neighbors = 4)
knn.fit(df_train2, goal_train)
knn_predict = knn.predict(df_test2)
knn_mse = np.power(goal_test - knn_predict, 2).mean()

In [25]: M knn_mse
Out[25]: 9319.088662790698

In [26]: D mean_squared_error(goal_test, knn_predict)

Out[26]: 9319.088662790698

In [27]: M knn_rmse= knn_mse ** .5
knn_rmse

Out[27]: 96.53542698300298

The accuracy score given while doing parameter tuning was not a robust score. It was good for
determining the best number of parameters to use, but it is likely off by at least a little bit due to
only running the model once on a select subset of the data. Therefore I'll be using cross validation
to get a more accurate score.

In [28]: M knn_scores = cross_val_score(knn, df_test2, goal_test, cv=10)
knn_scores

Out[28]: array([@0.794885 , ©.71838554, 0.8986766 , 0.81744243, 0.7089424 ,
0.68471291, 0.59426826, ©.76292426, 0.63861639, 0.77691769])

In [29]: M knn_scores.mean()

Out[29]: ©.7395771478536421

With an RMSE of 96.5 and an accuracy score of 73.9%, this model isn't a great predictor of a
college's rank. It's accuracy score is respectable, but the RMSE of 96.5 means that it won't predict
much. There is a huge difference in a college in the top 10 and a college in the top 100, yet the
model is likely to miss the correct ranking of a college by about the same amount. We will be
moving on to other models to try and get a effective model.

Second Model: Linear Regression

localhost:8888/notebooks/College.ipynb 13/24

9/13/21, 9:00 PM

In

In

In

In

In

In

The second model will be a linear regression. Linear regressions are also a simpler type of

College - Jupyter Notebook

regression, but, depending on the variables involved, they are generally more complex than KNN.

I'll be building a linear regression model using two methods. This is because, while Sci-Kit Learn'
regressions allow a user to do many things, they don't allow you to analyse individual variables,

something offered by Statemodels. So I'll be using both.

[30]: M

[31]: M

out[31]:

[32]: M

out[32]:

[33]: M

out[33]:

[34]: M

Out[34]:

[35]: M

Out[35]:

from sklearn.linear_model import LinearRegression
import statsmodels.api as sm

reg = LinearRegression()

reg.fit(df_train2, goal_train)

reg_predict = reg.predict(df_test2)

reg_mse = np.power(goal_test - reg_predict, 2).mean()
reg_mse

10302.234400465317

mean_squared_error(goal_test, reg_predict)

10302.234400465317

reg_rmse= reg mse **.5
reg_rmse

101.49992315497248

reg_scores = cross_val _score(reg, df_test2, goal_test, cv=10)
reg_scores

array([0.74019212, 0.64185176, ©.80766255, ©.77701872, ©.73228213,
0.65909261, 0.6692306 , ©.72233914, 0.73605185, 0.74614342])

reg_scores.mean()

0.7231864884213678

localhost:8888/notebooks/College.ipynb

S

14/24

9/13/21, 9:00 PM

In [36]: M x=sm.add_constant(df_train2)

College - Jupyter Notebook

model = sm.OLS(goal_train, x)

results = model.fit()

results.summary()

Out[36]:

OLS Regression Results

Dep. Variable:

No. Observations:

Df Residuals:

Covariance Type:

const
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18

x19

localhost:8888/notebooks/College.ipynb

Model:
Method:
Date:

Time:

Df Model:

coef
328.7755
-20.4626
-15.3993
-22.9348
26.9552
-47.8183
-42.5044
29.3555
38.5810
26.0582
-15.5589
-19.7339
-45.1689
-17.6337
1.7050
-5.5583
-17.6337
-45.1689
7.9363

5.5583

Omnibus:

Rank R-squared: 0.753
OLS Adj. R-squared: 0.745
F-statistic: 91.41

Least Squares

Mon, 13 Sep 2021

std err
5.059
5.775
3.476
9.319
14.075
12.510
6.724
6.753
169.204
149.456
18.712
19.315
157.650
4.215
11.227
3.489
4.215
157.650
9.090
3.489

1.895

Prob (F-statistic): 7.74e-118

20:49:51 Log-Likelihood: -2588.4

435 AlC: 5207.

420 BIC: 5268.

14
nonrobust

t P>t [0.025 0.975]
64.991 0.000 318.832 338.719
-3.544 0.000 -31.813 -9.112
-4.430 0.000 -22.232 -8.566
-2.461 0.014 -41.252 -4.618
1.915 0.056 -0.710 54.621
-3.822 0.000 -72.408 -23.228
-6.322 0.000 -55.720 -29.288
4.347 0.000 16.083 42.629
0.228 0.820 -294.010 371.172
0.174 0.862 -267.716 319.832
-0.831 0.406 -52.340 21.222
-1.022 0.308 -57.699 18.231
-0.287 0.775 -355.050 264.712
-4.183 0.000 -25919 -9.348
0.152 0.879 -20.363 23.772
-1.593 0.112 -12.416 1.300
-4.183 0.000 -25.919 -9.348
-0.287 0.775 -355.050 264.712
0.873 0.383 -9.931 25.803
1.593 0.112 -1.300 12416

Durbin-Watson:

1.906

15/24

9/13/21, 9:00 PM

In [37]:

College - Jupyter Notebook

Prob(Omnibus): 0.388 Jarque-Bera (JB): 1.718

Skew: -0.081 Prob(JB): 0.424

Kurtosis: 3.261 Cond. No. 1.61e+16
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 1.52e-29. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.

Third Model: Random Forest Regressor

This model is by far the most complex of the models used. Similar to how cross validation treats
training data, random forest regressors takes a decision tree and runs multiple iterations against
the data, averaging out the iterations. It's a great overall model and tends to work better on more
complex datasets.

M from sklearn.ensemble import RandomForestRegressor
forest=RandomForestRegressor(random_state=42)
forest.fit(df_train2, goal_train)
forest_predict = forest.predict(df_test2)
forest_mse = np.power(goal_test - forest_predict, 2).mean()
forest_mse

Out[37]: 6960.33954604651

In [38]:

M forest_rmse= forest_mse **.5
forest_rmse

Out[38]: 83.42864943199375

In [39]:

M forest scores = cross_val_score(forest, df test2, goal test, cv=10)
forest_scores

Out[39]: array([0.86632698, 0.75866635, 0.83249986, 0.8694084 , 0.69275768,

In [40]:

0.75625868, 0.74860723, ©0.81315518, 0.83219168, 0.8311133])

M forest_scores.mean()

Out[40]: ©.8000985332657431

With an RMSE of 83.4, over ten digits under the RMSE of the KNN model, and an accuracy of
80% - 6% higher than the accuracy of the KNN model, this model performs better against the data
to a sizable degree compared to the other models.

That being said, a standard error in predicting a rank being 83.4 digits is not a good predictor. The
most likely reason for this being that the parameter variables given are not themselves a strong
enough predictor for a college rank, suggesting that more information is used to determine a

localhost:8888/notebooks/College.ipynb 16/24

9/13/21, 9:00 PM

College - Jupyter Notebook

college's ranking than just the ones given.

No Impute

The goal of the following analysis is to test the best predictive model from our previous selections
and test it against a copy of the dataset where | removed all the records with null values instead of
using estimated values.

For this test | will just be using the random forest regressor. While normally it'd be worth testing
more models, since the predicted and predictor variables aren't changing outside of the null
values, it's more efficient to just bring the best predictive model over.

In [41]: M
In [42]: M
In [43]: M
Out[43]:
In [44]:)
Out[44]:
In [45]: M
Out[45]:
In [46]: M
Out[46]:

df3=df.dropna()
df3_goal=df3['Rank'].copy()
df3=df3.drop(['Rank'], axis=1)

df_train3, df_test3, goal_train3, goal_test3 = train_test_split(df3, df3_goal
pipe2 = Pipeline([('std', standardscaler)])

pipe2.fit(df_train3, goal_train3)

df_train4 = pipe.transform(df_train3)

df_test4 = pipe.transform(df_test3)

forest2=RandomForestRegressor(random_state=42)
forest2.fit(df_traind4, goal_train3)

forest2_predict = forest2.predict(df_test4)

forest2_mse = np.power(goal_test3 - forest2_predict, 2).mean()
forest2_mse

6346.378575722541

forest2_rmse= forest2_mse **.5
forest2_rmse

79.66416117503869

forest_scores2 = cross_val_score(forest2, df_test4, goal_test3, cv=10)
forest_scores2

array([0.78817466, ©.77596259, ©.79245394, 0.83675126, 0.83025825,
0.84631427, 0.60307723, 0.6617484 , 0.814059 , 0.80734403])

forest_scores2.mean()

0.7756143634832479

With an RMSE of 79.66 - around four digits off of the RMSE with imputation - and a cross
validation accuracy score of 77.56% - around 2.5% below the accuracy score with imputation - it

depends on what metric vou focus on to determine which method is better. Droopina the nulls
localhost:8888/notebooks/College.ipynb 17/24

9/13/21, 9:00 PM

In [47]:

College - Jupyter Notebook

—— - = - -y - - - - -

proved to make the model slightly more predictive, yet slightly less accurate. Due to the change in
RMSE being larger, I'm going to rely on it for determining the better model. After all, The difference
in accuracy scores might not be statistically significant. Therefore I'll forgo imputations in future
models.

- IS

Predicting Alumni Salary

Due to a lack of subjectivity, alumni salary is a potentially better variable for determining the
greatness of a college while also being easier to predict. These algorithms will be designed with
the nulls removed instead of estimated.

M df_corr['Alumni Salary'].sort_values(ascending=False)

Out[47]: Alumni Salary 1.000000
SAT Lower 0.692809
SAT Average 0.688489
SAT Difference 0.688489
ACT Lower 0.684012
ACT Difference 0.676508
ACT Average 0.676508
SAT Upper 0.665051
ACT Upper 0.649847
Total Annual Cost 0.398787
Average Grant Aid 0.377548
Post-UG Population 0.320138
Post-UG Percentage 0.297272
Net Price 0.191580
Student Population 0.107621
Undergraduate Population 0.032952
Public -0.045116
Undergraduate Percentage -0.297272
Acceptance Rate -0.556903
Rank -0.721772

localhost:8888/notebooks/College.ipynb

Name: Alumni Salary, dtype: floaté64

As we can see, the variables most correlated to Aimunmni Salary are the same variables most
correlated to a college's rank.

18/24

9/13/21, 9:00 PM College - Jupyter Notebook

In [48]: M df3=df.dropna()
df_goald=df3['Net Price'].copy()
df4=df3.drop('Net Price', axis=1)

df_train5, df_test5, goal_train3, goal_test3 = train_test_split(df4, df_goal4

df_train5.head(3)

Out[48]:
Undergraduate Student Average Total Alumni Acceptance SAT SA
Rank Population Population Grant Annual Sala Rate Lower Uppe
pu pu Aid Cost Y PP
601 602.0 2814.0 3343.0 6195.0 35144.0 81500.0 86.0 990.0 1200.
458 459.0 1043.0 1231.0 22690.0 44408.0 77900.0 91.0 1060.0 1320.
3 4.0 4680.0 11466.0 43248.0 67430.0 155200.0 7.0 1490.0 1570.

In [49]: M pipe2.fit(df_train5, goal_train3)
df_train6 = pipe2.transform(df_train5)
df_test6 = pipe2.transform(df_test5)

First Model: Random Forest Regressor

In [50]: M forest3=RandomForestRegressor(random_state=42)
forest3.fit(df_train6, goal_train3)
forest3_predict = forest3.predict(df_test6)

forest3_mse = np.power(goal_test3 - forest3_predict, 2).mean()

forest3_mse

Out[50]: 18774601.68435087

In [51]: M forest3_rmse= forest3_mse ** .5
forest3_rmse

Out[51]: 4332.966845517153

In [52]: M forest_scores3 = cross_val_score(forest3, df_test6, goal test3, cv=10)

forest_scores3

Out[52]: array([0.6849588 , ©.49297163, 0.65751083, ©.69383073, 0.33530305,
©.72323763, 0.51358294, 0.73420128, 0.65510616, ©.5868688])

In [53]: P forest_scores3.mean()

Out[53]: ©.607757186336001

With an RMSE of 4332.96 and an accuracy score of 60.78%, the model's predictions could be
better. The RMSE is actually very good as 4332.96 is less than half of a standard deviation for
Alumni Salary. Also the range for Alumni Salary is around 80,000, which is several times larger

localhost:8888/notebooks/College.ipynb

19/24

9/13/21, 9:00 PM College - Jupyter Notebook

In

In

In

In

than the RMSE. That being said, the accuracy score from cross validation is only 60.78%, not
much better than a coin toss.

Based on it - as well as not havin an Alumni Salary RMSE to compare it to - | believe there is a
better model to use to predict alumni salary. As Random Forest Regressors generally prefer more
complex data, I'll move on to simpler models.

Second Model: Linear Regression

As before, I'll be using two different methods to build my regression model. This is due to the fact
that some information is easier to acquire through the different methods.

[54]: M reg.fit(df_train6, goal_train3)
reg2_predict = reg.predict(df_test6)
reg_mse2 = np.power(goal_test3 - reg2_ predict, 2).mean()
reg_mse2

Out[54]: 16173398.50470559

[55]: M reg_rmse2 = reg_mse2 ** .5
reg_rmse2

Out[55]: 4@21.61640447042

[56]: M reg2_scores = cross_val_score(reg, df_test6, goal test3, cv=10)
reg2_scores

Out[56]: array([0.65835473, 0.50046384, ©.73517647, ©.8845713 , 0.81058023,
0.72947146, ©.67998092, 0.79991371, 0.69276538, ©.5845141])

[57]: M reg2_scores.mean()

Out[57]: ©.7075792138743544

As | expected, both the RMSE and the accuracy score have been improved by using a linear
regression model. The RMSE have dropped by 300 points, or a 7% improvement. While the
accuracy score has increased by 10% to 70%, much more respectable.

localhost:8888/notebooks/College.ipynb 20/24

9/13/21, 9:00 PM College - Jupyter Notebook

In [58]: M x=sm.add_constant(df_train6)
model = sm.OLS(goal_train3, x)
results = model.fit()
results.summary()

Out[58]: OLS Regression Results
Dep. Variable: Net Price
Model: OoLS
Method: Least Squares

Date: Mon, 13 Sep 2021

Time: 20:50:11

No. Observations: 351
Df Residuals: 337

Df Model: 13
Covariance Type: nonrobust
coef stderr t

const 2.249e+04 193.808 116.040
x1 402.8923 434.024 0.928
x2 -383.5865 240.375 -1.596
x3 -330.4238 142520 -2.318
x4 -7876.0109 537.182 -14.662
x5 7425.8739 477.425 15.554
x6 98.3172 315.230 0.312
x7 436.7279 328.859 1.328
x8 -186.6839 746.319 -0.250
x9 809.7023 721.777 1.122

x10 1786.3811 758.727 2.354
x11 -1924.9865 762.068 -2.526
x12 286.5902 175.280 1.635
x13 122.8545 190.536 0.645
x14 -5897.5446 394.822 -14.937
x15 -258.0653 154.160 -1.674
x16 122.8545 190.536 0.645
x17 286.5902 175.280 1.635
x18 -28.2732 382.310 -0.074
x19 258.0653 154.160 1.674

Adj.

R-squared:
R-squared:

F-statistic:

Prob (F-statistic):

Log-Likelihood:

P>|t|
0.000
0.354
0.111
0.021
0.000
0.000
0.755
0.185
0.803
0.263
0.019
0.012
0.103
0.520
0.000
0.095
0.520
0.103
0.941
0.095

Omnibus: 32.740 Durbin-Watson:

localhost:8888/notebooks/College.ipynb

AlC:

BIC:

[0.025
2.21e+04
-450.845
-856.410
-610.765
-8932.662
6486.765
-521.749
-210.147
-1654.714
-610.054
293.945
-3423.996
-58.190
-251.935
-6674.170
-561.302
-251.935
-58.190
-780.288
-45.172

1.893

0.776
0.768
90.02
4.10e-101
-3368.1
6764.

6818.

0.975]
2.29e+04
1256.630

89.237
-50.082

-6819.360

8364.983
718.383
1083.603
1281.346
2229.459
3278.818
-425.977
631.371
497.644
-5120.919
45172
497.644
631.371
723.741
561.302

21/24

9/13/21, 9:00 PM College - Jupyter Notebook
Prob(Omnibus): 0.000 Jarque-Bera (JB): 63.552
Skew: 0.531 Prob(JB): 1.58e-14

Kurtosis: 4.794 Cond. No. 2.60e+16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The smallest eigenvalue is 5.74e-30. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

There is some more information to be gleamed. Based on an an alternative hypothesis with a 95%
confidence threshold, most of the variables in this regression would be found statistically
insiginficant. It also has an R-squared value of 77.6%, which is a respectable R-squared value.
Based on the regression, it seems that simpler algorithms offer better predictions when
determining Alumni Salary, so it's best to try an even simpler model.

Third Model: K-Nearest Neighbors

In [59]: M n_neighbors =list(range(1, 10))

accuracy = []

for neighbor in n_neighbors:
clf = KNeighborsRegressor(n_neighbors = neighbor)
clf.fit(df_train6, goal train3)
score = clf.score(df_test6, goal_ test3)
accuracy.append(score)

plt.grid(True)

plt.plot(accuracy)

Out[59]: [<matplotlib.lines.Line2D at @x1f@555feee®>]

Qa0 1

055 1

050 1

045 1

040 1

In [60]: M knn2 = KNeighborsRegressor(n_neighbors = 5)
knn2.fit(df_train6, goal_train3)
knn2_predict = knn2.predict(df_test6)
knn_mse2 = np.power(goal_test3 - knn2_predict, 2).mean()

localhost:8888/notebooks/College.ipynb 22/24

9/13/21, 9:00 PM College - Jupyter Notebook

In [61]: M knn_rmse2 = knn_mse2 ** .5
knn_rmse2

Out[61]: 5254.1800195136675

In [62]: M knn2_scores = cross_val_score(knn2, df_test6, goal_test3, cv=10)
knn2_scores

Out[62]: array([0.46883649, 0.46369285, ©.59270023, 0.56427594, 0.33024053,
0.53479367, 0.55311628, 0.36523227, 0.56416681, 0.49563041])

In [63]: M knn2_scores.mean()

Out[63]: ©.4932685475870634

Interestingly this model performed the worst out of all the models. It had the worst RMSE and its
accurac score is around 20% lower than the regression. Therefore the regression model is the
model to use when predicting Alumni Salary.

In [64]: D n_neighbors =list(range(1, 10))

accuracy = []

for neighbor in n_neighbors:
clf = KNeighborsRegressor(n_neighbors = neighbor)
clf.fit(df_train6, goal_train3)
score = clf.score(df_test6, goal_test3)
accuracy.append(score)

plt.grid(True)

plt.plot(accuracy)

Out[64]: [<matplotlib.lines.Line2D at @x1f@55661ee®>]

080 1

055 1

050 1

045 1

040 1

As the model is already at its more effective number of neighbors, there is little that can be done to
improve on the model. Therefore, the linear regression model is the best predictor of alumni salary.

localhost:8888/notebooks/College.ipynb 23/24

9/13/21, 9:00 PM College - Jupyter Notebook

In [65]: M df.to_excel~ndex = False)

localhost:8888/notebooks/College.ipynb 24124

