Analysis of Song Popularity on Spotify

This project is to determine what factors help determine the popularity of a song, and to what extent these factors relate to a song's popularity. The dataset used contains songs from 1921-2020 and includes many variables.

Acouticness, Danceability, Energy, Instrumentalness, Liveness, Speechniness, and Valence are all variables with a range of 0-1 describing as a percentage how well the song reflects the given variables. So a song with a danceability of 96%, for instance, would be a song considered extremely danceable.

Valence describes how positive a song is considered.

Mode is a dummy variable showing if the song was began with a major or minor chord progression. One equals major; zero equals minor.

Explicit is a dummy variable showing if the song contains explicit content. One equals explicit content; zero equals no explicit content.

Spotify Song Popularity

In	[3]:	<pre>data=data.drop('id',</pre>	axis=1)
		<pre>data.head()</pre>	

Out[3]:

	valence	year	acousticness	artists	danceability	duration_ms	energy	explicit	instı
0	0.0594	1921	0.982	['Sergei Rachmaninoff', 'James Levine', 'Berli	0.279	831667	0.211	0	
1	0.9630	1921	0.732	['Dennis Day']	0.819	180533	0.341	0	
2	0.0394	1921	0.961	['KHP Kridhamardawa Karaton Ngayogyakarta Hadi	0.328	500062	0.166	0	
3	0.1650	1921	0.967	['Frank Parker']	0.275	210000	0.309	0	
4	0.2530	1921	0.957	['Phil Regan']	0.418	166693	0.193	0	
									•

In [4]: data_artist.head()

Out[4]:

		mode	count	acousticness	artists	danceability	duration_ms	energy	instrumentalı
-	0	1	9	0.590111	"Cats" 1981 Original London Cast	0.467222	250318.555556	0.394003	0.01
	1	1	26	0.862538	"Cats" 1983 Broadway Cast	0.441731	287280.000000	0.406808	0.08
	2	1	7	0.856571	"Fiddler On The Roof" Motion Picture Chorus	0.348286	328920.000000	0.286571	0.024
	3	1	27	0.884926	"Fiddler On The Roof" Motion Picture Orchestra	0.425074	262890.962963	0.245770	0.07:
	4	1	7	0.510714	"Joseph And The Amazing Technicolor Dreamcoat"	0.467143	270436.142857	0.488286	0.00
									•

In	[5]:	<pre>data_genre.head()</pre>
----	------	------------------------------

Out[5]:

	mode	genres	acousticness	danceability	duration_ms	energy	instrumentalness	livenes
0	1	21st century classical	0.979333	0.162883	1.602977e+05	0.071317	0.606834	0.3616(
1	1	432hz	0.494780	0.299333	1.048887e+06	0.450678	0.477762	0.1310(
2	1	8-bit	0.762000	0.712000	1.151770e+05	0.818000	0.876000	0.1260(
3	1	0	0.651417	0.529093	2.328809e+05	0.419146	0.205309	0.2186§
4	1	a cappella	0.676557	0.538961	1.906285e+05	0.316434	0.003003	0.1722{
								►
4								

In [6]: data_year.head()

Out[6]:

	mode	year	acousticness	danceability	duration_ms	energy	instrumentalness	liveness
0	1	1921	0.886896	0.418597	260537.166667	0.231815	0.344878	0.205710
1	1	1922	0.938592	0.482042	165469.746479	0.237815	0.434195	0.240720
2	1	1923	0.957247	0.577341	177942.362162	0.262406	0.371733	0.227462
3	1	1924	0.940200	0.549894	191046.707627	0.344347	0.581701	0.235219
4	1	1925	0.962607	0.573863	184986.924460	0.278594	0.418297	0.237668
								•

In [7]: data_w_genre.head()

Out[7]:

	genres	artists	acousticness	danceability	duration_ms	energy	instrumentalness
0	['show tunes']	"Cats" 1981 Original London Cast	0.590111	0.467222	250318.555556	0.394003	0.011400
1	0	"Cats" 1983 Broadway Cast	0.862538	0.441731	287280.000000	0.406808	0.081158
2	0	"Fiddler On The Roof" Motion Picture Chorus	0.856571	0.348286	328920.000000	0.286571	0.024593
3	0	"Fiddler On The Roof" Motion Picture Orchestra	0.884926	0.425074	262890.962963	0.245770	0.073587
4	0	"Joseph And The Amazing Technicolor Dreamcoat"	0.510714	0.467143	270436.142857	0.488286	0.009400

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false

In [8]: data.info()

<clas Range</clas 	ss 'pandas.core.fra eIndex: 170653 entr	ame.DataFrame': ries, 0 to 1706	> 552
Data	columns (total 18	columns):	
#	Column	Non-Null Count	t Dtype
0	valence	170653 non-nu]	ll float64
1	year	170653 non-nu]	ll int64
2	acousticness	170653 non-nu]	ll float64
3	artists	170653 non-nu]	ll object
4	danceability	170653 non-nu]	ll float64
5	duration_ms	170653 non-nu]	ll int64
6	energy	170653 non-nu]	ll float64
7	explicit	170653 non-nu]	ll int64
8	instrumentalness	170653 non-nu]	ll float64
9	key	170653 non-nu]	ll int64
10	liveness	170653 non-nu]	ll float64
11	loudness	170653 non-nu]	ll float64
12	mode	170653 non-nu]	ll int64
13	name	170653 non-nu]	ll object
14	popularity	170653 non-nu]	ll int64
15	release_date	170653 non-nu]	ll object
16	speechiness	170653 non-nu]	ll float64
17	tempo	170653 non-nu]	ll float64
dtype	es: float64(9), int	:64(6), object((3)
memor	ry usage: 23.4+ MB		

Based on the non-null values, there's doesn't appear to be any null values in the first dataset. Still, it's best to double check to make sure.

```
data.isnull().sum()
In [9]:
Out[9]: valence
                              0
         year
                              0
         acousticness
                              0
         artists
                              0
         danceability
                              0
         duration_ms
                              0
                              0
         energy
         explicit
                              0
         instrumentalness
                              0
         key
                              0
         liveness
                              0
         loudness
                              0
         mode
                              0
         name
                              0
         popularity
                              0
         release_date
                              0
         speechiness
                              0
         tempo
                              0
         dtype: int64
```

Out[10]:	mode	0
	genres	0
	acousticness	0
	danceability	0
	duration_ms	0
	energy	0
	instrumentalness	0
	liveness	0
	loudness	0
	speechiness	0
	tempo	0
	valence	0
	popularity	0
	key	0
	dtype: int64	

In [11]: data.describe()

Out[11]:							
		valence	year	acousticness	danceability	duration_ms	energy
	count	170653.000000	170653.000000	170653.000000	170653.000000	1.706530e+05	170653.00000(
	mean	0.528587	1976.787241	0.502115	0.537396	2.309483e+05	0.48238
	std	0.263171	25.917853	0.376032	0.176138	1.261184e+05	0.26764(
	min	0.000000	1921.000000	0.000000	0.000000	5.108000e+03	0.00000(
	25%	0.317000	1956.000000	0.102000	0.415000	1.698270e+05	0.25500(
	50%	0.540000	1977.000000	0.516000	0.548000	2.074670e+05	0.47100(
	75%	0.747000	1999.000000	0.893000	0.668000	2.624000e+05	0.70300(
	max	1.000000	2020.000000	0.996000	0.988000	5.403500e+06	1.00000(
	•						•

Some basic exploratory analysis. There are some interesting numbers that would be worth looking into later. Both the amount of instrumentalnes and speechiness in these songs skewy low. The explicit mean of .846 shows that most songs produced since 1921 contains the use of explicit language. Seeing how this relates to year and popularity can be interesting. Finally a mode mean of .71 shows that most songs since 1921 have begun with a major chord progression.

The big feature to make note of is popularity. While the popularity metric is a number between the range of 1 and 100, the average popularity is onl 31.43. This means that most songs on Spotify are not very popular. Popularity also has a standard deviation of nearly 22, a little over a fifth of its whole range. These two statistics together show that distribution for popularity won't be even, and there will almost definitely be outliers in the distribution.

```
data_corr= data.corr()
data_corr
```

Out[12]:

exi	energy	duration_ms	danceability	acousticness	year	valence	
-0.01	0.353876	-0.191813	0.558946	-0.184101	-0.028245	1.000000	valence
0.22	0.530272	0.079713	0.188515	-0.614250	1.000000	-0.028245	year
-0.24	-0.749393	-0.076373	-0.266852	1.000000	-0.614250	-0.184101	acousticness
0.24	0.221967	-0.139937	1.000000	-0.266852	0.188515	0.558946	danceability
-0.04	0.042119	1.000000	-0.139937	-0.076373	0.079713	-0.191813	duration_ms
0.13:	1.000000	0.042119	0.221967	-0.749393	0.530272	0.353876	energy
1.00	0.132723	-0.048880	0.241757	-0.246007	0.220881	-0.018613	explicit
-0.14	-0.281101	0.084770	-0.278063	0.329819	-0.272371	-0.198501	instrumentalness
0.00	0.027705	-0.004266	0.024439	-0.020550	0.007540	0.028473	key
0.03!	0.126192	0.047168	-0.100193	-0.024482	-0.057318	0.003832	liveness
0.14	0.782362	-0.003037	0.285057	-0.561696	0.487697	0.313512	loudness
-0.07	-0.039260	-0.046085	-0.045956	0.047168	-0.032385	0.015641	mode
0.19	0.485005	0.059597	0.199606	-0.573162	0.862442	0.014200	popularity
0.41	-0.070555	-0.084604	0.235491	-0.043980	-0.167816	0.046381	speechiness
0.01	0.250865	-0.025472	0.001801	-0.207120	0.141048	0.171689	tempo
•							

This looks pretty dry though, so let's pretty it up a bit!

In [13]: plt.figure(figsize=(16, 8)) sns.heatmap(data_corr,annot=True)

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x142d09bf1c8>

				_		_			_	_	_	_			
valence -	- 1	-0.028	-0.18	0.56	-0.19	0.35	-0.019	-0.2	0.028	0.0038	0.31	0.016	0.014	0.046	0.17
year -	-0.028	1	-0.61	0.19	0.08	0.53	0.22	-0.27	0.0075	-0.057		-0.032	0.86	-0.17	0.14
acousticness -	-0.18	-0.61	1	-0.27	-0.076	-0.75	-0.25	0.33	-0.021	-0.024	-0.56	0.047	-0.57	-0.044	-0.21
danceability -	0.56	0.19	-0.27	1	-0.14	0.22	0.24	-0.28	0.024	-0.1	0.29	-0.046	0.2	0.24	0.0018
duration_ms -	-0.19	0.08	-0.076	-0.14	1	0.042	-0.049	0.085	-0.0043	0.047	-0.003	-0.046	0.06	-0.085	-0.025
energy -	0.35	0.53	-0.75	0.22	0.042	1	0.13	-0.28	0.028	0.13	0.78	-0.039	0.49	-0.071	0.25
explicit -	-0.019	0.22	-0.25	0.24	-0.049	0.13	1	-0.14	0.0054	0.04	0.14	-0.079	0.19	0.41	0.012
instrumentalness -	-0.2	-0.27	0.33	-0.28	0.085	-0.28	-0.14	1	-0.015	-0.047	-0.41	-0.037	-0.3	-0.12	-0.11
key -	0.028	0.0075	-0.021	0.024	-0.0043	0.028	0.0054	-0.015	1	0.00021	0.017	-0.12	0.0078	0.024	0.0026
liveness -	0.0038	-0.057	-0.024	-0.1	0.047	0.13	0.04	-0.047	0.00021	1	0.056	0.0026	-0.076	0.13	0.0077
loudness -	0.31		-0.56	0.29	-0.003	0.78	0.14	-0.41	0.017	0.056	1	-0.011	0.46	-0.14	0.21
mode -	0.016	-0.032	0.047	-0.046	-0.046	-0.039	-0.079	-0.037	-0.12	0.0026	-0.011	1	-0.029	-0.058	0.012
popularity -	0.014	0.86	-0.57	0.2	0.06		0.19	-0.3	0.0078	-0.076		-0.029	1	-0.17	0.13
speechiness -	0.046	-0.17	-0.044	0.24	-0.085	-0.071		-0.12	0.024	0.13	-0.14	-0.058	-0.17	1	-0.012
tempo -	0.17	0.14	-0.21	0.0018	-0.025	0.25	0.012	-0.11	0.0026	0.0077	0.21	0.012	0.13	-0.012	1
	valence -	year -	acousticness -	danceability -	duration_ms -	energy -	explicit -	instrumentalness -	key -	liveness -	loudness -	- mode	popularity -	speechiness -	tempo -

In [14]: data_corr["popularity"].sort_values(ascending=False)

Out[14]:	popularity	1.000000
	year	0.862442
	energy	0.485005
	loudness	0.457051
	danceability	0.199606
	explicit	0.191543
	tempo	0.133310
	duration_ms	0.059597
	valence	0.014200
	key	0.007826
	mode	-0.028897
	liveness	-0.076464
	speechiness	-0.171979
	instrumentalness	-0.296750
	acousticness	-0.573162
	Name: popularity,	dtype: float64

Based on the heatmap, a song's popularity in the original dataset is most correlated to the year the song was released. In this case, that means that the later a song was released, the more popular a song was. Or in other words, there is strong recency bias when it comes to a song's popularity. It also has a pretty strong positive correlation to the song's energy and its loudness. On the other hand, it has a significiant negative correlations to a song's acousticness and instrumentalness.

As loudness and energy are both positively correlated to popularity, it's worth pointing out that the two features are also significantly correlated with each other as .78.

So what about the correlations for the other datasets?

In [15]: data_artist_corr= data_artist.corr()
 data_year_corr= data_year.corr()
 data_genre_corr= data_genre.corr()
 data w genre corr= data w genre.corr()

In [16]: plt.figure(figsize=(16, 8))
 sns.heatmap(data_artist_corr,annot=True)

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x142d09bf6c8>

															- 1.00
mode -	1	0.075	0.12	-0.11	-0.033	-0.11	-0.025	0.023	-0.074	-0.049	-0.012	-0.012	-0.099	-0.093	- 1.00
count -	0.075	1	0.023	-0.026	-0.008	-0.034	0.0038	0.0092	-0.033	0.015	0.00052	-0.00042	-0.045	-0.034	-0.75
acousticness -	0.12	0.023	1	-0.42	-0.059	-0.8	0.29	0.034	-0.63	-0.035	-0.26	-0.21	-0.56	-0.037	0.75
danceability -	-0.11	-0.026	-0.42	1	-0.11		-0.31	-0.1		0.26	0.12	0.6	0.25	0.032	-050
duration_ms -	-0.033	-0.008	-0.059	-0.11	1	-0.0015	0.12	-0.021	-0.083	0.014	-0.045	-0.2	0.01	-0.012	0.50
energy -	-0.11	-0.034	-0.8		-0.0015	1	-0.29	0.1	0.79	0.071	0.31	0.38		0.043	- 0.25
instrumentalness -	-0.025	0.0038	0.29	-0.31	0.12	-0.29	1	-0.059	-0.45	-0.15	-0.13	-0.26	-0.24	-0.019	
liveness -	0.023	0.0092	0.034	-0.1	-0.021	0.1	-0.059	1	0.053	0.18	-0.032	0.013	-0.12	-0.0021	- 0.00
loudness -	-0.074	-0.033	-0.63		-0.083	0.79	-0.45	0.053	1	0.047	0.27	0.39	0.33	0.032	
speechiness -	-0.049	0.015	-0.035	0.26	0.014	0.071	-0.15	0.18	0.047	1	-0.016	0.11	-0.026	0.014	0.25
tempo -	-0.012	0.00052	-0.26	0.12	-0.045	0.31	-0.13	-0.032	0.27	-0.016	1	0.2	0.13	0.0047	
valence -	-0.012	-0.00042	-0.21	0.6	-0.2	0.38	-0.26	0.013	0.39	0.11	0.2	1	0.002	0.038	0.50
popularity -	-0.099	-0.045	-0.56	0.25	0.01		-0.24	-0.12	0.33	-0.026	0.13	0.002	1	0.0087	
key -	-0.093	-0.034	-0.037	0.032	-0.012	0.043	-0.019	-0.0021	0.032	0.014	0.0047	0.038	0.0087	1	0.75
	mode -	count -	acousticness -	danceability -	duration_ms -	energy -	nstrumentalness -	liveness -	loudness -	speechiness -	tempo -	valence -	popularity -	key -	_

In [17]:	data_artist_corr[<pre>"popularity"].sort_values(ascending=False)</pre>
Out[17]:	popularity	1.000000
	energy	0.415092
	loudness	0.332941
	danceability	0.246283
	tempo	0.132922
	duration_ms	0.010137
	key	0.008743
	valence	0.002005
	speechiness	-0.025825
	count	-0.044916
	mode	-0.099185
	liveness	-0.120099
	instrumentalness	-0.235548
	acousticness	-0.556790
	Name: popularity,	dtype: float64

In [18]: plt.figure(figsize=(16, 8))
sns.heatmap(data_year_corr,annot=True)

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x142cf3d65c8>

															- 1 00
mode -															1.00
year -	1	-0.92	0.5		0.93	-0.84	-0.61	0.92	-0.38	0.79	-0.2	0.97	-0.048		- 0.75
acousticness -	-0.92	1	-0.57	-0.55	-0.97	0.88	0.51	-0.86	0.27	-0.86	-0.038	-0.95	-0.076		
danceability -	0.5	-0.57	1	-0.13	0.54	-0.48	-0.38	0.6	0.27	0.6	0.24	0.56	0.18		- 0.50
duration_ms -	0.52	-0.55	-0.13	1	0.58	-0.43	-0.23		-0.54	0.44	-0.051	0.48	0.13		
energy -	0.93	-0.97	0.54	0.58	1	-0.84	-0.5	0.93	-0.42	0.9	0.093	0.95	0.072		- 0.25
instrumentalness -	-0.84	0.88	-0.48	-0.43	-0.84	1	0.49	-0.8	0.27	-0.79	-0.052	-0.87	0.13		
liveness -	-0.61	0.51	-0.38	-0.23	-0.5	0.49	1	-0.52	0.33	-0.43	0.27	-0.62	0.11		- 0.00
loudness -	0.92	-0.86	0.6	0.45	0.93	-0.8	-0.52	1	-0.4	0.85	0.027	0.93	-0.02		- 0.25
speechiness -	-0.38	0.27	0.27	-0.54	-0.42	0.27	0.33	-0.4	1	-0.39	-0.059	-0.4	0.14		0.25
tempo -	0.79	-0.86	0.6	0.44	0.9	-0.79	-0.43	0.85	-0.39	1	0.3	0.84	0.021		0.50
valence -	-0.2	-0.038	0.24	-0.051	0.093	-0.052	0.27	0.027	-0.059	0.3	1	-0.08	0.23		
popularity -	0.97	-0.95	0.56	0.48	0.95	-0.87	-0.62	0.93	-0.4	0.84	-0.08	1	-0.053		0.75
key -	-0.048	-0.076	0.18	0.13	0.072	0.13	0.11	-0.02	0.14	0.021	0.23	-0.053	1		
mode -	year -	acousticness -	danceability -	duration_ms -	energy -	nstrumentalness -	liveness -	loudness -	speechiness -	tempo -	valence -	popularity -	- key	-	_

t[19]:	popularity	1.000000	
	year	0.974517	
	energy	0.953637	
	loudness	0.928369	
	tempo	0.843231	
	danceability	0.560226	
	duration_ms	0.484321	
	key	-0.053469	
	valence	-0.079516	
	speechiness	-0.398338	
	liveness	-0.623418	
	instrumentalness	-0.872021	
	acousticness	-0.945010	
	mode	NaN	
	Name: popularity,	dtype: float64	

- In [20]: plt.figure(figsize=(16, 8))
 sns.heatmap(data_genre_corr,annot=True)
- Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x142cf53ffc8>

mode -	- 1	0.077	-0.071	-0.053	-0.08	-0.013	-0.0027	-0.064	-0.059	-0.043	-0.01	-0.031	-0.06
acousticness -	0.077	1	-0.32	-0.014	-0.87	0.27	-0.077	-0.74	-0.086	-0.4	-0.18	-0.46	-0.079
danceability -	-0.071	-0.32	1	-0.16	0.3	-0.38	-0.055		0.24	0.083	0.65	0.22	0.03
duration_ms -	-0.053	-0.014	-0.16	1	-0.048	0.23	0.019	-0.14	0.033	-0.047	-0.26	-0.071	-0.029
energy -	-0.08	-0.87	0.3	-0.048	1	-0.32	0.17	0.85	0.12	0.43	0.31	0.34	0.097
instrumentalness -	-0.013	0.27	-0.38	0.23	-0.32	1	-0.051	-0.54	-0.2	-0.2	-0.42	-0.27	-0.069
liveness -	-0.0027	-0.077	-0.055	0.019	0.17	-0.051	1	0.12	0.19	0.0023	0.00073	-0.094	0.0073
loudness -	-0.064	-0.74		-0.14	0.85	-0.54	0.12	1	0.095	0.41	0.38	0.34	0.083
speechiness -	-0.059	-0.086	0.24	0.033	0.12	-0.2	0.19	0.095	1	0.0014	0.093	-0.045	0.022
tempo -	-0.043	-0.4	0.083	-0.047		-0.2	0.0023		0.0014	1	0.14	0.15	0.082
valence -	-0.01	-0.18	0.65	-0.26	0.31	-0.42	0.00073	0.38	0.093	0.14	1	0.023	0.064
popularity -	-0.031	-0.46	0.22	-0.071	0.34	-0.27	-0.094	0.34	-0.045	0.15	0.023	1	0.0086
key -	-0.06	-0.079	0.03	-0.029	0.097	-0.069	0.0073	0.083	0.022	0.082	0.064	0.0086	1
	mode -	acousticness -	danceability -	duration_ms -	energy -	instrumentalness -	liveness -	loudness -	speechiness -	tempo -	valence -	popularity -	key -

t[21]: popularity	1.000000	
loudness	0.344361	
energy	0.337795	
danceability	0.217992	
tempo	0.146717	
valence	0.023072	
key	0.008577	
mode	-0.031231	
speechiness	-0.045217	
duration_ms	-0.071019	
liveness	-0.094178	
instrumentalness	-0.265449	
acousticness	-0.458698	
Name: popularity	, dtype: float64	

In [22]:	<pre>plt.figure(figsize=(16, 8))</pre>	
	<pre>sns.heatmap(data_w_genre_corr,</pre>	annot= True)

sns.heatmap(data_w_genre_corr, annot=True) Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x142d1117088>

																1 00
acousticness -	1	-0.42	-0.059	-0.8	0.29	0.034	-0.63	-0.035	-0.26	-0.21	-0.56	-0.037	0.12	0.023		- 1.00
danceability -	-0.42	1	-0.11		-0.31	-0.1		0.26	0.12	0.6	0.25	0.032	-0.11	-0.026		- 0.75
duration_ms -	-0.059	-0.11	1	-0.0015	0.12	-0.021	-0.083	0.014	-0.045	-0.2	0.01	-0.012	-0.033	-0.008		-0.75
energy -	-0.8		-0.0015	1	-0.29	0.1	0.79	0.071	0.31	0.38		0.043	-0.11	-0.034		- 0.50
instrumentalness -	0.29	-0.31	0.12	-0.29	1	-0.059	-0.45	-0.15	-0.13	-0.26	-0.24	-0.019	-0.025	0.0038		0.50
liveness -	0.034	-0.1	-0.021	0.1	-0.059	1	0.053	0.18	-0.032	0.013	-0.12	-0.0021	0.023	0.0092		-0.25
loudness -	-0.63		-0.083	0.79	-0.45	0.053	1	0.047	0.27	0.39	0.33	0.032	-0.074	-0.033		
speechiness -	-0.035	0.26	0.014	0.071	-0.15	0.18	0.047	1	-0.016	0.11	-0.026	0.014	-0.049	0.015		- 0.00
tempo -	-0.26	0.12	-0.045	0.31	-0.13	-0.032	0.27	-0.016	1	0.2	0.13	0.0047	-0.012	0.00052		
valence -	-0.21	0.6	-0.2	0.38	-0.26	0.013	0.39	0.11	0.2	1	0.002	0.038	-0.012	-0.00042		0.25
popularity -	-0.56	0.25	0.01	0.42	-0.24	-0.12	0.33	-0.026	0.13	0.002	1	0.0087	-0.099	-0.045		
key -	-0.037	0.032	-0.012	0.043	-0.019	-0.0021	0.032	0.014	0.0047	0.038	0.0087	1	-0.093	-0.034		0.50
mode -	0.12	-0.11	-0.033	-0.11	-0.025	0.023	-0.074	-0.049	-0.012	-0.012	-0.099	-0.093	1	0.075		
count -	0.023	-0.026	-0.008	-0.034	0.0038	0.0092	-0.033	0.015	0.00052	-0.00042	-0.045	-0.034	0.075	1		0.75
	acousticness -	danceability -	duration_ms -	energy -	instrumentalness -	liveness -	loudness -	speechiness -	tempo -	valence -	popularity -	key -	mode -	count -	_	_

In [23]:	data_w_genre_corr[<pre>"popularity"].sort_values(ascending=False)</pre>
Out[23]:	popularity	1.000000
	energy	0.415092
	loudness	0.332941
	danceability	0.246283
	tempo	0.132922
	duration_ms	0.010137
	key	0.008743
	valence	0.002005
	speechiness	-0.025825
	count	-0.044916
	mode	-0.099185
	liveness	-0.120099
	instrumentalness	-0.235548
	acousticness	-0.556790
	Name: popularity,	dtype: float64

Most of the other datasets hold to the same relationship, though the data with songs grouped by year has some new, interesting relationships. In fact most of the features outside of the song's valence, or positivity, seems to correlate with its popularity in a some strong way.

Speechniness and Liveness are negatively correlated to it as well now, and tempo, energy, duration, and are all positively correlation to it.

So now that we know what features can give information on a song's popularity, what does the popularity variable look like in the dataset?

This is an extremely interesting distribution. Ignoring the outlier, this could be considered a fairly normal distrubition, if skewing ever so slightly to the left. With the outlier though, it's clear that the majority of songs uploaded to Spotify are not popular. This could be due to how many independent artists there are on the platform.

The outlier songs could be removed in order to simplify the dataset and potentially get more accurate relationships with popularity, but considering just how many songs fall within the range, I'll keep them for now.

```
In [25]: plt.figure(figsize=(16, 4))
    sns.distplot(data["year"])
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x142d17eb5c8>

As one would expect, the periods between 1921-1950 show a ramping up of music featured on Spotify. There was a dip in the 1930's, probably due to the Great Depression severely hampering the markets for many luxury goods, including music, but they grew regardless.

What is surprising is that the amount of songs between 1950-2020 has been consistent. Spotify holds a similar amount of songs from 1960 as they do from 2020. My initial assumption would be that the amount of songs would continue to rise after 1950, especially given the boon Spotify and other such services have been for independent artists. But that does not seem to be the case.

Finally, it might be hard to properly analyze some of the years before 1950. especially the years in the 1920's. This is due to such few songs being on Spotify for them. It would be hard to determine is a certain feature of a song is unique to the song, or an aspect of the music industry of the year more generally.

Now what are the most popular songs on Spotify?

Out[26]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]), <a list of 15 Text xticklabel objects>)

Out[27]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]), <a list of 15 Text xticklabel objects>)

As the graphs show, the most popular songs and artists from the collection of this data appear to be the more recent ones on the platform. This holds with the high correlation seen between the year a song is released and its popularity.

Now that we have a good grasp of the datasets we are working with, we can safely move on to building a model.

Model Building

As the initial question of this study was 'What determines a song's popularity on Spotify?', we will be building a model based off 'popularity' being the predicted variable, and the other factors being potential predictor variables.

To start out with, I'll be dropping the use of all but the first dataset. The other datasets either have too few datapoints to be useful for model building or would be irrelevant to the question at hand. Therefore, we'll stick with the original dataset. Also, we should split the data into a training test and a testing set. This is so we make sure that we don't overfit our models to the data we have, and it'll be better prepared for any new data going forward.

In [28]: data=data.drop(["name", "artists", "release_date"], axis=1)
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
data_train_set, data_test_set = train_test_split(data, test_size=0.33, random_
state=42)

In [29]: data_train_set.head()

```
Out[29]:
```

	valence	year	acousticness	danceability	duration_ms	energy	explicit	instrumentalne
125020	0.329	1930	0.987	0.466	183400	0.240	0	0.0001
95445	0.317	1953	0.900	0.326	199907	0.402	0	0.8390
48551	0.553	1976	0.018	0.427	386667	0.730	0	0.0003
34968	0.472	2002	0.265	0.699	254467	0.668	0	0.0000
31555	0.158	1985	0.968	0.336	239467	0.167	0	0.0014
•								•

```
In [31]: data_train_set2.head()
```

```
Out[31]:
```

		valence	year	acousticness	danceability	duration_ms	energy	explicit	instrumentalne
125	020	0.329	1930	0.987	0.466	183400	0.240	0	0.0001
95	445	0.317	1953	0.900	0.326	199907	0.402	0	0.8390
48	551	0.553	1976	0.018	0.427	386667	0.730	0	0.0003
34	968	0.472	2002	0.265	0.699	254467	0.668	0	0.0000
31	555	0.158	1985	0.968	0.336	239467	0.167	0	0.0014
									•

Now it's time to standardize the data. Since the data uses different scales, it's best to standardize the scaling so that the different scaling doesn't mess up their determinative capabilities.

This model will start with a simple linear regression. They are often the best way to start off modeling for a continous predicted variable like popularity.

```
In [34]:
         scaler=StandardScaler().fit(data_train_set2)
         data train scaled = scaler.transform(data train set2)
         from sklearn.linear model import LinearRegression
         reg= LinearRegression()
         reg.fit(data_train_scaled, data_labels)
Out[34]: LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=Fals
         e)
In [35]: experiment labels = data labels.iloc[:5]
         reg.predict(data train scaled[:5])
Out[35]: array([-0.30200639, 9.53349374, 33.44509239, 50.10280427, 36.35057419])
In [36]: print(list(experiment labels))
         [0, 0, 39, 57, 43]
In [37]:
         from sklearn.metrics import mean squared error
         data predict = reg.predict(data train scaled)
         mse= mean squared error(data labels, data predict)
         rmse= np.sqrt(mse)
         rmse
```

```
Out[37]: 10.854295899445983
```

After the model was created, I decided to test it in two ways. The first way was by feeding it back in some data from the training set. I could've also used the test set, but I don't want the test set to be used against the model as that might accidentally overfit the model to the test set. It's best to bring in the test set only after the model has been fully tuned.

So with the first experiment, which took the first five data points in the training set, we see that the model predicted they'd have a popularity of -.3. 9.5, 33.44. 50.1. and 36.4. This data is also scaled differently than the original, being on a 0-100 scale than a 0-1, so all the numbers need to be divided by 100 to reach their accurate numbers.

As for the actual values, we have 0, 0, 39, 57, and 43. Comparing that to -.003, .095, .334, .501, and .364, we see that the numbers weren't too far off. It was a good approximation at the least.

The RMSE basically gives the average error for the predicted variable. So the RMSE of 10.8 says that the popularity is typically off by around 10.8, which isn't the best. This model is slightly underfitting the data. Because of this, we should test out some other models and see how they perform with the data

```
In [38]: from sklearn.ensemble import RandomForestRegressor
forest= RandomForestRegressor()
forest.fit(data_train_scaled, data_labels)
predictions= forest.predict(data_train_scaled)
tree_mse= mean_squared_error (data_labels, predictions)
tree_rmse = np.sqrt(tree_mse)
print(tree_rmse)
```

```
3.6977607948892675
```

An RMSE of 3.69 is better than our previous RMSE. This is more useful than the basic approximation our regression model gave us.

Of course it's important to understand what a random forest is. It's multiple decision trees run simultaneously, then averaging them out. As my computer can attest to, it's much more taxing and time consuming than a simple decision tree or linear regression, but it typically performs better.

With an RMSE of 3.69, there is a chance that my model overfit my data, meaning that, while it's accurate for the data given, it might not perform as well to any new data. I could check it by using Cross Validation or another parameter tuning method, but overall I'm satisfied with the model as is.

```
In [61]: data_train_scaled[4:5]
                               0.31526891, 1.24153249, -1.14371999,
Out[61]: array([[-1.40954437,
                                                                      0.06951001,
                 -1.18067758, -0.3027854 , -0.52784128, -0.90831316, -0.71590228,
                  0.16005009, -1.55454636, -0.36692644, 0.36892391]])
In [59]: record = [[-1.4, 0.32, 1.25, -1.140, 0.07,
                 -1.2, -0.30 , -0.5, -0.91, -0.72,
                  0.158, -1.56, -0.37, 0.38]]
         final pred = forest.predict(record)
         final pred
Out[59]: array([40.33])
In [63]: data_labels[4:5]
Out[63]: 31555
                  43
         Name: popularity, dtype: int64
```

As a final test, I decided to run a test on a newly created song using the fifth record in the training set as its nearest neighbor. This means that the predicted popularity for this new song should be very similar to the given popularity of the fifth record if my model is performing correctly.

My model gave the new song an expected popularity of 40.33, while the song which is very similar to it had a popularity of 40.33. Considering the songs have different parameters, missing the expected popularity of 43 is great.