
3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 1/18

Analysis of Song Popularity on Spotify
This project is to determine what factors help determine the popularity of a song, and to what extent these
factors relate to a song's popularity. The dataset used contains songs from 1921-2020 and includes many
variables.

Acouticness, Danceability, Energy, Instrumentalness, Liveness, Speechniness, and Valence are all variables with
a range of 0-1 describing as a percentage how well the song reflects the given variablses. So a song with a
danceability of 96%, for instance, would be a song considered extremely danceable.

Valence describes how positive a song is considered.

Mode is a dummy variable showing if the song was began with a major or minor chord progression. One equals
major; zero equals minor.

Explicit is a dummy variable showing if the song contains explicit content. One equals explicit content; zero
equals no explicit content.

In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [2]: data= pd.read_csv('C:\\Users\\Woyte\\Desktop\\Data\\Spotify Data\\data.csv')
data_artist= pd.read_csv ('C:\\Users\\Woyte\\Desktop\\Data\\Spotify Data\\data
_by_artist.csv')
data_genre = pd.read_csv ('C:\\Users\\Woyte\\Desktop\\Data\\Spotify Data\\data
_by_genres.csv')
data_year = pd.read_csv ('C:\\Users\\Woyte\\Desktop\\Data\\Spotify Data\\data_
by_year.csv')
data_w_genre = pd.read_csv ('C:\\Users\\Woyte\\Desktop\\Data\\Spotify Data\\da
ta_w_genres.csv')

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 2/18

In [3]: data=data.drop('id', axis=1)
data.head()

In [4]: data_artist.head()

Out[3]:
valence year acousticness artists danceability duration_ms energy explicit instr

0 0.0594 1921 0.982

['Sergei
Rachmaninoff',
'James Levine',

'Berli...

0.279 831667 0.211 0

1 0.9630 1921 0.732 ['Dennis Day'] 0.819 180533 0.341 0

2 0.0394 1921 0.961

['KHP
Kridhamardawa

Karaton
Ngayogyakarta

Hadi...

0.328 500062 0.166 0

3 0.1650 1921 0.967 ['Frank Parker'] 0.275 210000 0.309 0

4 0.2530 1921 0.957 ['Phil Regan'] 0.418 166693 0.193 0

Out[4]:
mode count acousticness artists danceability duration_ms energy instrumentaln

0 1 9 0.590111
"Cats" 1981

Original
London Cast

0.467222 250318.555556 0.394003 0.01

1 1 26 0.862538
"Cats" 1983

Broadway
Cast

0.441731 287280.000000 0.406808 0.08

2 1 7 0.856571

"Fiddler On
The Roof”

Motion
Picture
Chorus

0.348286 328920.000000 0.286571 0.024

3 1 27 0.884926

"Fiddler On
The Roof”

Motion
Picture

Orchestra

0.425074 262890.962963 0.245770 0.073

4 1 7 0.510714

"Joseph And
The Amazing

Technicolor
Dreamcoat"...

0.467143 270436.142857 0.488286 0.009

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 3/18

In [5]: data_genre.head()

In [6]: data_year.head()

In [7]: data_w_genre.head()

Out[5]:
mode genres acousticness danceability duration_ms energy instrumentalness livenes

0 1
21st

century
classical

0.979333 0.162883 1.602977e+05 0.071317 0.606834 0.36160

1 1 432hz 0.494780 0.299333 1.048887e+06 0.450678 0.477762 0.13100

2 1 8-bit 0.762000 0.712000 1.151770e+05 0.818000 0.876000 0.12600

3 1 [] 0.651417 0.529093 2.328809e+05 0.419146 0.205309 0.21869

4 1 a
cappella 0.676557 0.538961 1.906285e+05 0.316434 0.003003 0.17225

Out[6]:
mode year acousticness danceability duration_ms energy instrumentalness liveness

0 1 1921 0.886896 0.418597 260537.166667 0.231815 0.344878 0.205710

1 1 1922 0.938592 0.482042 165469.746479 0.237815 0.434195 0.240720

2 1 1923 0.957247 0.577341 177942.362162 0.262406 0.371733 0.227462

3 1 1924 0.940200 0.549894 191046.707627 0.344347 0.581701 0.235219

4 1 1925 0.962607 0.573863 184986.924460 0.278594 0.418297 0.237668

Out[7]:
genres artists acousticness danceability duration_ms energy instrumentalness

0 ['show
tunes']

"Cats" 1981
Original

London Cast
0.590111 0.467222 250318.555556 0.394003 0.011400

1 []
"Cats" 1983

Broadway
Cast

0.862538 0.441731 287280.000000 0.406808 0.081158

2 []

"Fiddler On
The Roof”

Motion
Picture
Chorus

0.856571 0.348286 328920.000000 0.286571 0.024593

3 []

"Fiddler On
The Roof”

Motion
Picture

Orchestra

0.884926 0.425074 262890.962963 0.245770 0.073587

4 []

"Joseph And
The Amazing

Technicolor
Dreamcoat"...

0.510714 0.467143 270436.142857 0.488286 0.009400

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 4/18

In [8]: data.info()

Based on the non-null values, there's doesn't appear to be any null values in the first dataset. Still, it's best to
double check to make sure.

In [9]: data.isnull().sum()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 170653 entries, 0 to 170652
Data columns (total 18 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 valence 170653 non-null float64
 1 year 170653 non-null int64
 2 acousticness 170653 non-null float64
 3 artists 170653 non-null object
 4 danceability 170653 non-null float64
 5 duration_ms 170653 non-null int64
 6 energy 170653 non-null float64
 7 explicit 170653 non-null int64
 8 instrumentalness 170653 non-null float64
 9 key 170653 non-null int64
 10 liveness 170653 non-null float64
 11 loudness 170653 non-null float64
 12 mode 170653 non-null int64
 13 name 170653 non-null object
 14 popularity 170653 non-null int64
 15 release_date 170653 non-null object
 16 speechiness 170653 non-null float64
 17 tempo 170653 non-null float64
dtypes: float64(9), int64(6), object(3)
memory usage: 23.4+ MB

Out[9]: valence 0
year 0
acousticness 0
artists 0
danceability 0
duration_ms 0
energy 0
explicit 0
instrumentalness 0
key 0
liveness 0
loudness 0
mode 0
name 0
popularity 0
release_date 0
speechiness 0
tempo 0
dtype: int64

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 5/18

In [10]: data_genre.isnull().sum()

In [11]: data.describe()

Some basic exploratory analysis. There are some interesting numbers that would be worth looking into later.
Both the amount of instrumentalnes and speechiness in these songs skewy low. The explicit mean of .846 shows
that most songs produced since 1921 contains the use of explicit language. Seeing how this relates to year and
popularity can be interesting. Finally a mode mean of .71 shows that most songs since 1921 have begun with a
major chord progression.

The big feature to make note of is popularity. While the popularity metric is a number between the range of 1 and
100, the average popularity is onl 31.43. This means that most songs on Spotify are not very popular. Popularity
also has a standard deviation of nearly 22, a little over a fifth of its whole range. These two statistics together
show that distribution for popularity won't be even, and there will almost definitely be outliers in the distribution.

Out[10]: mode 0
genres 0
acousticness 0
danceability 0
duration_ms 0
energy 0
instrumentalness 0
liveness 0
loudness 0
speechiness 0
tempo 0
valence 0
popularity 0
key 0
dtype: int64

Out[11]:
valence year acousticness danceability duration_ms energy

count 170653.000000 170653.000000 170653.000000 170653.000000 1.706530e+05 170653.000000

mean 0.528587 1976.787241 0.502115 0.537396 2.309483e+05 0.482389

std 0.263171 25.917853 0.376032 0.176138 1.261184e+05 0.267646

min 0.000000 1921.000000 0.000000 0.000000 5.108000e+03 0.000000

25% 0.317000 1956.000000 0.102000 0.415000 1.698270e+05 0.255000

50% 0.540000 1977.000000 0.516000 0.548000 2.074670e+05 0.471000

75% 0.747000 1999.000000 0.893000 0.668000 2.624000e+05 0.703000

max 1.000000 2020.000000 0.996000 0.988000 5.403500e+06 1.000000

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 6/18

In [12]: data_corr= data.corr()
data_corr

This looks pretty dry though, so let's pretty it up a bit!

Out[12]:
valence year acousticness danceability duration_ms energy exp

valence 1.000000 -0.028245 -0.184101 0.558946 -0.191813 0.353876 -0.018

year -0.028245 1.000000 -0.614250 0.188515 0.079713 0.530272 0.220

acousticness -0.184101 -0.614250 1.000000 -0.266852 -0.076373 -0.749393 -0.246

danceability 0.558946 0.188515 -0.266852 1.000000 -0.139937 0.221967 0.24

duration_ms -0.191813 0.079713 -0.076373 -0.139937 1.000000 0.042119 -0.048

energy 0.353876 0.530272 -0.749393 0.221967 0.042119 1.000000 0.132

explicit -0.018613 0.220881 -0.246007 0.241757 -0.048880 0.132723 1.000

instrumentalness -0.198501 -0.272371 0.329819 -0.278063 0.084770 -0.281101 -0.140

key 0.028473 0.007540 -0.020550 0.024439 -0.004266 0.027705 0.005

liveness 0.003832 -0.057318 -0.024482 -0.100193 0.047168 0.126192 0.039

loudness 0.313512 0.487697 -0.561696 0.285057 -0.003037 0.782362 0.140

mode 0.015641 -0.032385 0.047168 -0.045956 -0.046085 -0.039260 -0.078

popularity 0.014200 0.862442 -0.573162 0.199606 0.059597 0.485005 0.19

speechiness 0.046381 -0.167816 -0.043980 0.235491 -0.084604 -0.070555 0.414

tempo 0.171689 0.141048 -0.207120 0.001801 -0.025472 0.250865 0.01

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 7/18

In [13]: plt.figure(figsize=(16, 8))
sns.heatmap(data_corr,annot=True)

In [14]: data_corr["popularity"].sort_values(ascending=False)

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x142d09bf1c8>

Out[14]: popularity 1.000000
year 0.862442
energy 0.485005
loudness 0.457051
danceability 0.199606
explicit 0.191543
tempo 0.133310
duration_ms 0.059597
valence 0.014200
key 0.007826
mode -0.028897
liveness -0.076464
speechiness -0.171979
instrumentalness -0.296750
acousticness -0.573162
Name: popularity, dtype: float64

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 8/18

Based on the heatmap, a song's popularity in the original dataset is most correlated to the year the song was
released. In this case, that means that the later a song was released, the more popular a song was. Or in other
words, there is strong recency bias when it comes to a song's popularity. It also has a pretty strong positive
correlation to the song's energy and its loudness. On the other hand, it has a signficiant negative correlations to
a song's acousticness and instrumentalness.

As loudness and energy are both positively correlated to popularity, it's worth pointing out that the two features
are also significantly correlated with each other as .78.

So what about the correlations for the other datasets?

In [15]: data_artist_corr= data_artist.corr()
data_year_corr= data_year.corr()
data_genre_corr= data_genre.corr()
data_w_genre_corr= data_w_genre.corr()

In [16]: plt.figure(figsize=(16, 8))
sns.heatmap(data_artist_corr,annot=True)

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x142d09bf6c8>

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 9/18

In [17]: data_artist_corr["popularity"].sort_values(ascending=False)

In [18]: plt.figure(figsize=(16, 8))
sns.heatmap(data_year_corr,annot=True)

Out[17]: popularity 1.000000
energy 0.415092
loudness 0.332941
danceability 0.246283
tempo 0.132922
duration_ms 0.010137
key 0.008743
valence 0.002005
speechiness -0.025825
count -0.044916
mode -0.099185
liveness -0.120099
instrumentalness -0.235548
acousticness -0.556790
Name: popularity, dtype: float64

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x142cf3d65c8>

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 10/18

In [19]: data_year_corr["popularity"].sort_values(ascending=False)

In [20]: plt.figure(figsize=(16, 8))
sns.heatmap(data_genre_corr,annot=True)

Out[19]: popularity 1.000000
year 0.974517
energy 0.953637
loudness 0.928369
tempo 0.843231
danceability 0.560226
duration_ms 0.484321
key -0.053469
valence -0.079516
speechiness -0.398338
liveness -0.623418
instrumentalness -0.872021
acousticness -0.945010
mode NaN
Name: popularity, dtype: float64

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x142cf53ffc8>

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 11/18

In [21]: data_genre_corr["popularity"].sort_values(ascending=False)

In [22]: plt.figure(figsize=(16, 8))
sns.heatmap(data_w_genre_corr, annot=True)

Out[21]: popularity 1.000000
loudness 0.344361
energy 0.337795
danceability 0.217992
tempo 0.146717
valence 0.023072
key 0.008577
mode -0.031231
speechiness -0.045217
duration_ms -0.071019
liveness -0.094178
instrumentalness -0.265449
acousticness -0.458698
Name: popularity, dtype: float64

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x142d1117088>

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 12/18

In [23]: data_w_genre_corr["popularity"].sort_values(ascending=False)

Most of the other datasets hold to the same relationship, though the data with songs grouped by year has some
new, interesting relationships. In fact most of the features outside of the song's valence, or positivity, seems to
correlate with its popularity in a some strong way.

Speechniness and Liveness are negatively correlated to it as well now, and tempo, energy, duration, and are all
positively correlation to it.

So now that we know what features can give information on a song's popularity, what does the popularity
variable look like in the dataset?

In [24]: plt.figure(figsize=(16, 4))
sns.distplot(data["popularity"])

This is an extremely interesting distribution. Ignoring the outlier, this could be considered a fairly normal
distrubition, if skewing ever so slightly to the left. With the outlier though, it's clear that the majority of songs
uploaded to Spotify are not popular. This could be due to how many independent artists there are on the
platform.

The outlier songs could be removed in order to simplify the dataset and potentially get more accurate
relationships with popularity, but considering just how many songs fall within the range, I'll keep them for now.

Out[23]: popularity 1.000000
energy 0.415092
loudness 0.332941
danceability 0.246283
tempo 0.132922
duration_ms 0.010137
key 0.008743
valence 0.002005
speechiness -0.025825
count -0.044916
mode -0.099185
liveness -0.120099
instrumentalness -0.235548
acousticness -0.556790
Name: popularity, dtype: float64

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x142d1d90f88>

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 13/18

In [25]: plt.figure(figsize=(16, 4))
sns.distplot(data["year"])

As one would expect, the periods between 1921-1950 show a ramping up of music featured on Spotify. There
was a dip in the 1930's, probably due to the Great Depression severely hampering the markets for many luxury
goods, including music, but they grew regardless.

What is surprising is that the amount of songs between 1950-2020 has been consistent. Spotify holds a similar
amount of songs from 1960 as they do from 2020. My initial assumption would be that the amount of songs
would continue to rise after 1950, especially given the boon Spotify and other such services have been for
independent artists. But that does not seem to be the case.

Finally, it might be hard to properly analyze some of the years before 1950. especially the years in the 1920's.
This is due to such few songs being on Spotify for them. It would be hard to determine is a certain feature of a
song is unique to the song, or an aspect of the music industry of the year more generally.

Now what are the most popular songs on Spotify?

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x142d17eb5c8>

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 14/18

In [26]: plt.figure(figsize=(16, 8))
x = data.groupby("name")["popularity"].mean().sort_values(ascending=False).hea
d(15)
axis = sns.barplot(x.index, x)
axis.set_title('Top Songs')
axis.set_ylabel('Popularity')
axis.set_xlabel('Songs')
plt.xticks(rotation = 90)

Out[26]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]),
 <a list of 15 Text xticklabel objects>)

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 15/18

In [27]: plt.figure(figsize=(16, 8))
x = data_artist.groupby("artists")["popularity"].sum().sort_values(ascending=F
alse).head(15)
ax = sns.barplot(x.index, x)
ax.set_title('Top Artists')
ax.set_ylabel('Popularity')
ax.set_xlabel('Artists')
plt.xticks(rotation = 90)

As the graphs show, the most popular songs and artists from the collection of this data appear to be the more
recent ones on the platform. This holds with the high correlation seen between the year a song is released and
its popularity.

Now that we have a good grasp of the datasets we are working with, we can safely move on to building a model.

Model Building
As the initial question of this study was 'What determines a song's popularity on Spotify?', we will be building a
model based off 'popularity' being the predicted variable, and the other factors being potential predictor variables.

To start out with, I'll be dropping the use of all but the first dataset. The other datasets either have too few
datapoints to be useful for model building or would be irrelevant to the question at hand. Therefore, we'll stick
with the original dataset. Also, we should split the data into a training test and a testing set. This is so we make
sure that we don't overfit our models to the data we have, and it'll be better prepared for any new data going
forward.

Out[27]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]),
 <a list of 15 Text xticklabel objects>)

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 16/18

In [28]: data=data.drop(["name", "artists", "release_date"], axis=1)
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

data_train_set, data_test_set = train_test_split(data, test_size=0.33, random_
state=42)

In [29]: data_train_set.head()

In [30]: data_train_set2= data_train_set.drop("popularity", axis=1)
data_labels= data_train_set["popularity"].copy()

In [31]: data_train_set2.head()

Now it's time to standardize the data. Since the data uses different scales, it's best to standardize the scaling so
that the different scaling doesn't mess up their determinative capabilities.

In [32]: pipe = Pipeline([('std', StandardScaler())])
pipe.fit(data_train_set2, data_labels)

Out[29]:
valence year acousticness danceability duration_ms energy explicit instrumentalnes

125020 0.329 1930 0.987 0.466 183400 0.240 0 0.0001

95445 0.317 1953 0.900 0.326 199907 0.402 0 0.83900

48551 0.553 1976 0.018 0.427 386667 0.730 0 0.00036

34968 0.472 2002 0.265 0.699 254467 0.668 0 0.00000

31555 0.158 1985 0.968 0.336 239467 0.167 0 0.00148

Out[31]:
valence year acousticness danceability duration_ms energy explicit instrumentalnes

125020 0.329 1930 0.987 0.466 183400 0.240 0 0.0001

95445 0.317 1953 0.900 0.326 199907 0.402 0 0.83900

48551 0.553 1976 0.018 0.427 386667 0.730 0 0.00036

34968 0.472 2002 0.265 0.699 254467 0.668 0 0.00000

31555 0.158 1985 0.968 0.336 239467 0.167 0 0.00148

Out[32]: Pipeline(memory=None,
 steps=[('std',
 StandardScaler(copy=True, with_mean=True, with_std=True))],
 verbose=False)

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 17/18

This model will start with a simple linear regression. They are often the best way to start off modeling for a
continous predicted variable like popularity.

In [34]: scaler=StandardScaler().fit(data_train_set2)
data_train_scaled = scaler.transform(data_train_set2)

from sklearn.linear_model import LinearRegression

reg= LinearRegression()
reg.fit(data_train_scaled, data_labels)

In [35]: experiment_labels = data_labels.iloc[:5]
reg.predict(data_train_scaled[:5])

In [36]: print(list(experiment_labels))

In [37]: from sklearn.metrics import mean_squared_error
data_predict = reg.predict(data_train_scaled)
mse= mean_squared_error(data_labels, data_predict)
rmse= np.sqrt(mse)
rmse

After the model was created, I decided to test it in two ways. The first way was by feeding it back in some data
from the training set. I could've also used the test set, but I don't want the test set to be used against the model
as that might accidentally overfit the model to the test set. It's best to bring in the test set only after the model has
been fully tuned.

So with the first experiment, which took the first five data points in the training set, we see that the model
predicted they'd have a popularity of -.3. 9.5, 33.44. 50.1. and 36.4. This data is also scaled differently than the
original, being on a 0-100 scale than a 0-1, so all the numbers need to be divided by 100 to reach their accurate
numbers.

As for the actual values, we have 0, 0, 39, 57, and 43. Comparing that to -.003, .095, .334, .501, and .364, we
see that the numbers weren't too far off. It was a good approximation at the least.

The RMSE basically gives the average error for the predicted variable. So the RMSE of 10.8 says that the
popularity is typically off by around 10.8, which isn't the best. This model is slightly underfitting the data. Because
of this, we should test out some other models and see how they perform with the data

Out[34]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fals
e)

Out[35]: array([-0.30200639, 9.53349374, 33.44509239, 50.10280427, 36.35057419])

[0, 0, 39, 57, 43]

Out[37]: 10.854295899445983

3/28/2021 Spotify Song Popularity

localhost:8888/nbconvert/html/OneDrive/Projects/Spotify Song Popularity.ipynb?download=false 18/18

In [38]: from sklearn.ensemble import RandomForestRegressor
forest= RandomForestRegressor()
forest.fit(data_train_scaled, data_labels)
predictions= forest.predict(data_train_scaled)
tree_mse= mean_squared_error (data_labels, predictions)
tree_rmse = np.sqrt(tree_mse)
print(tree_rmse)

An RMSE of 3.69 is better than our previous RMSE. This is more useful than the basic approximation our
regression model gave us.

Of course it's important to understand what a random forest is. It's multiple decision trees run simultaneously,
then averaging them out. As my computer can attest to, it's much more taxing and time consuming than a simple
decision tree or linear regression, but it typically performs better.

With an RMSE of 3.69, there is a chance that my model overfit my data, meaning that, while it's accurate for the
data given, it might not perform as well to any new data. I could check it by using Cross Validation or another
parameter tuning method, but overall I'm satisfied with the model as is.

In [61]: data_train_scaled[4:5]

In [59]: record = [[-1.4, 0.32, 1.25, -1.140, 0.07,
 -1.2, -0.30 , -0.5, -0.91, -0.72,
 0.158, -1.56, -0.37, 0.38]]
final_pred = forest.predict(record)
final_pred

In [63]: data_labels[4:5]

As a final test, I decided to run a test on a newly created song using the fifth record in the training set as its
nearest neighbor. This means that the predicted popularity for this new song should be very similar to the given
popularity of the fifth record if my model is performing correctly.

My model gave the new song an expected popularity of 40.33, while the song which is very similar to it had a
popularity of 40.33. Considering the songs have different parameters, missing the expected popularity of 43 is
great.

3.6977607948892675

Out[61]: array([[-1.40954437, 0.31526891, 1.24153249, -1.14371999, 0.06951001,
 -1.18067758, -0.3027854 , -0.52784128, -0.90831316, -0.71590228,
 0.16005009, -1.55454636, -0.36692644, 0.36892391]])

Out[59]: array([40.33])

Out[63]: 31555 43
Name: popularity, dtype: int64

