

Designing Your Own Amplifier

by Norman H. Crowhurst

Part I: Voltage amplifier stages

HOW do you go about designing an amplifier? Reading the more advanced textbooks on the subject, you may get the impression that it is impossible to design an amplifier without a knowledge of higher mathematics. One book will start by giving a complete analysis of network theory, involving simultaneous equations in a large number of unknowns; another will approach the matter from the viewpoint of tube characteristics and give a general equation for the law relating plate current to plate voltage, applied grid voltage, and so on, in terms of a power series. The best this can do is tell you how to find the performance of an amplifier using some kind of ideal tube that never exists in practice. There are practical ways to design amplifiers, however, which are quite easy to follow, taken in simple stages; these are what will be discussed in this series.

In this article I shall discuss the design of a simple voltage-amplification stage, using various tube types. In subsequent articles we shall go on to other parts of the amplifier, including the phase splitter, the power-output stage, application of feedback, and so on.

Using Load Lines

The best way to examine the gain and operating conditions of a simple resistance-capacitance coupled stage, of the type shown in Fig. 1 for a triode tube, is to use the plate current-plate voltage characteristics published for the tube type. We can find out fairly easily all we want to know about the operation of the tube. The characteristics for a triode

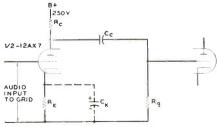


Fig. 1. Triode voltage-amplifier circuit.

tube are shown in Fig. 2. Each curve represents the variations of plate current as plate voltage is changed, with a fixed value of applied grid voltage. Usually, the curves are plotted for uniform intervals of grid voltage, which makes them convenient to use for our purpose.

Suppose the B+ (power supply) voltage is 250 and we use a plate-load resistor (Rc) of 100 K. Then, if the plate is short-circuited to ground, this plate resistor will pass 2.5 ma because it will have 250 volts across it. (The easy way to figure this is to remember that current in ma, multiplied by resistance in kilohms, gives voltage drop in volts.) If the plate potential is 100 volts, the drop across the resistor will be 150 volts so the current through it will be 1.5 ma. If the plate voltage is 150 volts the drop across the resistor will be 100 volts, so the current through the resistor will be just 1 ma.

If these plate-voltage and current values, determined by the value of resistors chosen, are joined together on the diagram of Fig. 2, we get a straight line passing through the B+ voltage of 250 (at zero current) and the plate current of 2.5 ma at zero plate voltage. This is the *load line* for this tube type with a plate-load resistor of 100 K and B+ of 250 volts.

How is the operating point fixed? We must select a suitable grid bias of such value that excursions away from this central point on the grid characteristics will give us suitable amplification. If we use a negative bias of 1 volt, the operating point will be at 142 volts on the plate with a current of 1.08 ma; this is where the —1-volt curve crosses the load line. For the moment let us assume that we have chosen this point.

Now, to get a suitable grid bias we must select a cathode resistor Rk of such value that with 1.08 ma passing through it the bias is 1 volt. With a 1-K resistor (assuming the value to be precise, which it is unlikely to be using 10% resistors) 1.08 ma will produce 1.08 volts for bias. This will get us as near to the operating

point we have chosen as is practical. We could go right on to calculate the output of the stage for a given input, and then obtain a figure for stage gain, except that we have not yet taken into account the effect of the grid resistor (Rg) in the following stage.

Assume Rg to be 470 K. Then, so far as the audio signal is concerned, 470 K will be coupled in parallel with the 100-K plate load resistor. This is because the coupling capacitor is large

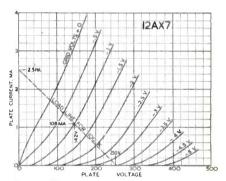


Fig. 2. Plate current-plate voltage characteristic curves for 12AX7 tube, used to evaluate circuit elements in Fig. 1.

enough that it does not allow the charge across it to change during the audio fluctuation, and accordingly the audio signal voltage at the top end of the grid resistor swings with the voltage at the plate of the stage we are considering.

So the effective plate load, for AC signals, is 100 K in parallel with 470 K, which works out to about 82 K. The 100-K resistor fixes the operating point, because the DC plate feed to the tube passes only through this resistor. But the dynamic load line, as it is called, representing the condition of the tube when an audio signal is being amplified, must be obtained by using a value of 82 K.

As a result we must draw a load line whose slope represents 82 K, passing through the operating point we have chosen at —1 volt grid bias and a plate voltage of 142. We use the same means of finding the new slope as for the old.

A conveniently close approximation would be taken by assuming 3 ma passing through 82 K (with the plate grounded). This will produce a voltage of 246 volts. We draw a couple of light markers at the 3-ma point on the plate-current scale and the 246-volt point on the voltage scale. These determine the new slope; with a parallel rule we draw a line with the same slope through the old operating point. This is shown in Fig. 3.

Now, let's see what this load line can tell us.

Gain. For a swing of grid voltage 1 volt either side of the bias point, which means from zero to —2, the plate voltage will swing (from its central point of 142) down to 85 and up to 195. This means that for 2 volts change on the grid there is a 110-volt change at the plate, or a gain of 55.

Distortion. The excursion of plate voltage for 1 volt positive on the grid that is, from -1 to zero — is from 142 volts down to 85, a change of 57 volts. For an opposite grid swing of 1 volt, the plate voltage changes from 142 to 195, or 53 volts. We assume that the cathode resistor is bypassed by Ck, Fig. 1, so that cathode voltage is constant. This difference between plate swings on opposite grid swings shows there will be some second harmonic distortion in the output waveform. We can work out approximately how much by seeing how much the center of the waveform is offset. The midpoint between 85 volts and 195 volts is $\frac{85 + 195}{2}$, or

140 volts. This is 2 volts off center. The ratio of peak-to-peak amplitude of second harmonic to peak-to-peak amplitude

of fundamental is
$$\frac{2}{195 - 85}$$
, or 1.8%

Effect of Cathode Bypass. If we do not bypass the 1-K cathode-bias resistor it will help to reduce harmonic distortion, but it will also reduce the calculated gain of 55. This can also be determined with the curves. At the quiescent operating point, the 1.08-ma normal current will produce a bias voltage drop of 1.08 volts across the 1-K cathode resistor. When the grid is made 2 volts negative with respect to the cathode, the plate current drops to 0.48 ma, which means that the voltage drop across the bias resistor decreases to 0.48 volt. This, in turn, means that the grid signal required to obtain -2 volts from grid to cathode will have to be 1.6 volts. In the opposite direction, the 1-volt gridto-cathode swing changes the current from 1.08 ma to 1.78 ma, so the grid voltage swing must be 1.7 volts in this direction.

Now see what this does to the amplification. The negative-going grid excursion of 1.6 volts gets amplified to a

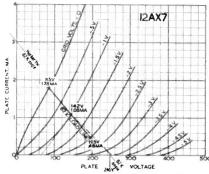


Fig. 3. Curves for 12AX7 with addition of a dynamic load line, showing change in slope caused by following stage grid resistor. Markers indicate the new slope.

plate excursion of 53 volts, a gain of 33.1. In the positive-going excursion the applied grid voltage swing of 1.7 volts gets amplified to 57 volts, a gain on this half of the applied waveform of 33.5. The *average* amplification throughout the whole applied waveform is now 33.3 in place of the original 55.

But we have an off-center effect of 0.2 part in 33.1 + 33.5, or 66.6, which means the second harmonic distortion 0.2

has now been reduced to about $\frac{0.2}{66.6}$, or 0.3%

Applying a nice large capacitor, like $50 \mu fd$, across the 1-K bias resistor will bring the gain up to the 55 figure by making the 1-volt swing either way from the bias point give the full plate swing. This happens since the cathode voltage does not have time to change by the values just calculated, because of the large charge stored in the capacitor.

Maximum Level. The voltage swing we have given is in each case that of the peak value. Ordinarily the instruments we use measure RMS values, which are 0.707 times the peak values. This means that the 1-volt peak input voltage, assuming the cathode to be bypassed, will be 0.707 volt RMS, while the RMS plate output voltage will be 55 × 0.707, or 39 volts.

Changing Circuit Values

Any variety of load lines can be drawn to represent different values of the plate coupling resistor and the following stage grid resistor. Following this method appropriate values of the cathode resistor can be evaluated, together with the available gain and voltage output, and an estimate of distortion. In general, with the 12AX7 curves we have just used, if a larger output swing or slightly greater gain is required, it can be obtained by using higher values of resistance all around.

For example, if you care to try the scheme yourself: Using a plate resistor Rc of 470 K, a grid resistor Rg of 1 megohm for the following stage, and a cathode resistor of 5.2 K, the grid bias is

1.5 volts, the voltage gain 61, and the peak-to-peak output voltage about 182, representing an RMS value of about 64 volts. The static plate voltage is 120, and the negative and positive voltage swings go to 20 and 202 volts respectively. This means that the 120 is approximately 9 volts off center, which, for 182 volts excursion, represents a distortion of about 5%.

It will be realized from these few figures that this tube is a fairly good voltage-amplifier triode because it is not very critical of the values with which it works, and 5% second harmonic distortion for a tube with that large an output swing is quite good. A stage requiring an output voltage that large will usually be operated in push-pull, so as to minimize the distortion.

But there is something further we want to find out about this stage before we pass on to other types of circuits. This is its frequency response.

Frequency Response

A typical resistance-coupled amplifying stage is maximally effective over a certain range of applied frequencies. At both ends of this range the stage gain decreases progressively for higher and lower frequencies.

The low-frequency rolloff is determined by the relation of the coupling capacitor reactance to the resistances in the circuit, which are the source resistance apparent at the plate of the stage we are considering, and the following stage grid resistor Rg. See Fig. 4. It will be realized that transposing the series elements, consisting of the source resistance and the coupling capacitor, will not affect the response of the arrangement in any way. When we arrange it as at Fig. 4B, it is quite evident that the frequency characteristics of the voltage appearing at the junction between the source resistance and Rg will be the same as the frequency characteristics at the top end of the source resistance, because this

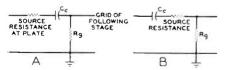


Fig. 4. Total resistances on both sides of the coupling capacitor determine the low frequency attenuation characteristics.

is merely a straightforward resistance potentiometer and cannot have any influence on frequency response.

Now we must calculate the source resistance at the plate. This involves the AC plate resistance of the tube, which we shall discuss further in a minute, but for the moment we consider it as an AC resistance between the plate of the tube and ground. If we use a very high B+ voltage and an extremely high plate-load

resistor to go with it, of many megohms, the source resistance would simply be the plate resistance of the tube. Taking the tube manual value of 62.5 K for the 12AX7, if we put a load on the output of 62.5 K we should halve the available voltage swing.

In point of fact, the 100-K plate-load resistor that we used here also reduces the available voltage swing, because the tube has an amplification factor of 100 and we have only managed to get a gain of 55 from it. We have already shunted down the plate resistance with 100 K to B+, so any further loading effects applied to the plate, through the coupling capacitor, will be applied across the parallel combination consisting of the plate resistance and the 100-K plate load shunting it. The source resistance we consider in Fig. 4, then, is the parallel combination of the effective plate resistance with the plate-load resistor.

The value for plate resistance given in the tube manual, 62.5 K, is not taken for the operating conditions that we have assumed. To get an accurate result we should take the value of plate resistance at the chosen operating point. This, it will be recalled, was a bias of 1 volt, 142 volts on the plate, and 1.08 ma plate current. The plate resistance at this operating point is the controlling factor in frequency response. Actually, the response will change slightly throughout the waveform because the plate resistance varies up and down the load line, but we cannot take this into account too readily.

As far as the load line is concerned, it is unimportant that the characteristics are curved in the regions on either side of it. The only part of interest is the slope of the section immediately adjacent to it. So, drawing a tangent to the -1volt grid curve where the load line crosses it, we get an ideal version of the tube characteristic. And using the same method we employed to construct the load line, we can calculate the value of the resistance. This tangent line passes through zero ma at 65 volts on the platecurrent scale, and 1 ma at 140 volts on the plate-current scale, a change of 75 volts for 1 ma. The effective plate resistance is 75 K. The parallel combination of the 100-K plate load



Fig. 5. Normalized low-frequency rolloff curve for one RC circuit. Point at which response is down 3 db is labeled "1", and attenuation in db can be determined for multiple and submultiple frequencies.

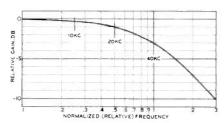


Fig. 6. Normalized high-frequency rolloff curve. It is used in same way as Fig. 5.

with a 75-K plate resistance gives a 43-K source resistance. In this case our careful calculation of plate resistance hasn't affected very much the total circuit resistance (Fig. 4) because 43 K has to be added to 470 K, which adds up to 513 K.

Use of a reactance chart shows that .05 μ fd gives a reactance of about 500 K at a frequency of 6 cps. This means that the response would be 3 db down at 6 cps, about 1 db down at 12 cps, and 0.4 db down at 20 cps. These figures can be obtained from the normalized response curve, Fig. 5. Response at the low-frequency end seems to be adequate.

At the other end of the response curve the loss is due to stray capacitance shunting the total *parallel* impedance of the circuit. This is made up again of the plate resistance of the tube, the plate-load resistor, and the grid resistor. We have already calculated the effect of 100 K in parallel with 470 K — about 82 K. The combination of the 75-K plate resistance in parallel with the 82-K effective plate-load resistance is approximately 39 K.

If the following stage is another half of a 12AX7, which has a grid-to-cathode capacitance (Cgk) of 1.6 µµfd and a grid-to-plate capacitance (Cgp) of 1.7 $\mu\mu$ fd, and if it is also working at a gain of 55, the Miller effect will raise the effective grid-to-ground capacitance markedly. Effective tube capacitance from grid to ground is Cgk + Cgp (1 + A), where A is stage gain. In this case it is 1.6 + 1.7 (1 + 55), or approximately 97 $\mu\mu$ fd. If we allow 7 $\mu\mu$ fd for various stray effects owing to the wiring, this makes a total of 104 $\mu\mu$ fd. From a reactance chart 100 $\mu\mu$ fd has a reactance of about 40 K at 40 Kc, which means the gain of this stage will be 3 db down at 40 Kc and about 1 db down at 20 Kc. Loss of gain can be determined from the normalized response curve, Fig. 6.

Now it is obvious why we need to know the plate resistance more accurately. It is the lowest resistance value of those that determine high-frequency rolloff, so that variation of the plate resistance will effect the resultant more than small variations of either of the other values in the circuit.

With a plate-load resistor of 470 K and a grid resistor of 1 megohm, the

plate resistance is 85 K. The total parallel resistance works out to be about 67 K, which means that the 3-db down point will move from about 40 to 23 Kc.

Just how important these figures will turn out to be depends on the rest of the circuit and how we are designing the amplifier, which we shall come back to later in the series. We may be using feedback, in which case we can allow rolloff at frequencies within the audible range and straighten the whole thing up to some degree by feedback. Or we may be designing a stage which doesn't have feedback, or which is required to have an extremely good response in spite of the fact that feedback is being used. But before these factors can be discussed it is necessary to know more about the rest of the problem.

Tube Manual Tables

An alternative method of design, if it is not convenient to use the curves available, is to follow the tables published in tube manuals which give information similar to that shown (right) for the 12AX7. Such tables give a limited number of suitable operating conditions, but usually no information is given about distortion. Neither is it possible to see

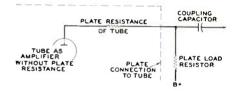


Fig. 7. Equivalent circuit used as basis for calculation of stage gain from plate resistance and the amplification factor.

what effect different bias values have on the total available swing, or on distortion.

In general, if the tube is being used for maximum gain, but is not required to have maximum voltage-handling capacity, a lower value of bias can be used to achieve better linearity and lower distortion by keeping well away from the curvature of the characteristic.

If not as much information as this is available, one has to be content with the tube parameters issued and the simple gain formula. The tube parameters given for the 12AX7 operating at 250 volts on the plate are: amplification factor. 100; plate resistance, 62.5 K; plate current, 1.2 ma for a bias of -2 volts. This is rather limited information. Moreover, the plate voltage here does not have the same meaning as the B+ voltage we have been working with. Here it means voltage on the plate; it does not allow for the drop in the plateload resistor. The only way we can obtain a figure for a bias resistor is to divide the plate current into the bias voltage given, which in this case is 1.2

	12AX	7, Plate S	upply 100	volts					
Plate-load resistor:	0.10		0.22		$0.47~\mathrm{M}\Omega$				
Grid resistor, next stage:	0.22	0.47	0.22	0.47	0.47	$1~\mathrm{M}\Omega$			
Cathode resistor:	4,700	4,800	7,000	7,400	12,000	13,000 Ω			
Max. output voltage:	6	8	6	9	9	11 RMS			
Voltage gain:	35	41	39	45	48	52			
12AX7, Plate Supply 250 volts									
Plate-load resistor:	0.	10	0.	22	0.	$47~\mathrm{M}\Omega$			
Grid resistor, next stage:	0.22	0.47	0.22	0.47	0.47	$1 M\Omega$			
Cathode resistor:	1,500	1,700	2,200	2,800	4,300	5,200 Ω			
Max. output voltage:	47	55	45	57	51	64 RMS			
Voltage gain:	43	47	49	54	57	61			

ma with a bias of 2 volts. This would require about 1,660 ohms. We shall need less than 2 volts, because the working plate voltage will be less than 250, so that we must guess that 1,200 or 1,500 ohms would be all right.

If the tube were operated from a *very* high B+ voltage, and fed through a large load resistor so as to give 250 volts on the plate, an amplification of 100 would be approached. But, since we are using a practical load of 82 K, we are effectively picking off a fraction of this 100 amplification factor across the 82 K, which is in series with the plate resistance quoted as 62.5 K. This is shown in Fig. 7. We obtain an actual amplification of $\frac{100 \times 82}{82 + 62.5} = 57$, which is a little optimistic compared to the figure we determined more accurately a

But it will be seen to give a figure which is pretty close, provided not much other information is needed. We cannot tell how much grid swing we can use, nor what plate swing we can get out of the stage, nor how much distortion to expect. But for some circumstances this much information could be very useful; it would enable us to compute, within limits, the gain of a stage.

while ago.

So much for designing a voltage-gain amplifier around a triode. What about using a pentode, which gives considerably more gain?

Pentode Voltage Amplifiers

Fig. 8 shows the plate current-plate voltage characteristics for a 6BR7, a comparatively new, low-microphony pentode

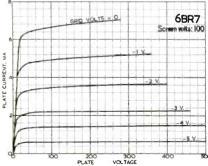


Fig. 8. Plate current-plate voltage characteristic curves for the 6BR7 pentode.

for audio work. It is possible to use these characteristics to set up the conditions and calculate the gain of the tube under any given operating conditions provided the screen voltage is 100. But the usual practice in this type of stage is to series-feed the screen, as shown in Fig. 9, rather than apply to it a stabilized 100 volts. This type of circuit gives a more stable gain figure and more consistent performance than one with a fixed screen voltage and automatic cathode bias, because the grid bias and the screen voltages tend to adjust to compensate one another.

But, since it is much more difficult to compute distortion figures from pentode characteristics for the reason that they do not produce primarily second harmonics, like triodes, there is not too much to be gained by going through the full procedure. The best way to design a simple pentode amplifier stage is to use tabular information given in tube manuals. The table below gives the published operating conditions for a 6BR7.

6BR7 Operating Characteristics

•	***		
Plate voltage:	100	250	volts
Plate current:	2.0	2.1	ma
Screen voltage:	100	100	volts
Screen current:	0.7	0.6	ma
Grid voltage:	—3	—3	volts
Plate resistance:	1.5	2.3	$M\Omega$
Mutual conduct-			
ance:	1,100 1	$,250 \mu$	mhos

As Resistance-Coupled Amplifier

Plate & screen								
supply:	100	200	300	volts				
Plate-load								
resistor:	0.25	0.25	0.25	$M\Omega$				
Screen series								
resistor:	1.0	1.0	1.2	$M\Omega$				
Cathode bias								
resistor:	2,500	1,500	1,200	Ω				
Peak output								
voltage:	35	70	100	RMS				
Voltage gain:	90	120	140					

Selecting the middle condition, for 200 volts plate and screen supply, we will get a voltage gain of 120 with a peak output (an RMS figure) of 70 volts. The thing we don't know about this is how much distortion is produced, but if we want an output well inside 70

volts we can be assured that this tube will give a reasonable waveform compared with other tubes.

In this case the plate resistance is quoted as 2.3 megohms for 250 volts on the plate, or 1.5 megohms for 100 volts on the plate. We shall be fairly safe in taking an intermediate figure of 2 megohms. In calculating response we have to use the effective resistance of the plate-load resistor, given as 250 K, in parallel with the plate resistance of 2 megohms, which comes out to about 230 K. If we use a compromise of 220 K for the plate load, which is a preferred resistor value, the resultant works out to 200 K for the parallel combination, and we can expect the gain to be about 105 with the 220-K load instead of the quoted 120.

In this case, however, the data do not include the value of the following grid resistor, as in some tables. It is to be assumed that the grid resistor will also shunt down the gain proportionately because, as with the triode, it is effectively in parallel with the plate load for AC signals. Thus, the gain with a 220-K load would be reduced to about 90 in practice. It may be better to use a plate-load resistor of 270 K in this case, with a 1 megohm resistor in the following grid. That way, for calculating frequency

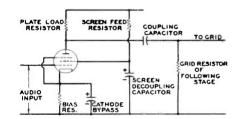


Fig. 9. Pentode voltage-amplifier stage.

response, the parallel combination of the plate resistance with the 270-K resistor works out to about 240 K, while the effective AC load for the tube is 1 megohm in parallel with 270 K, which is about 210 K and which should give a gain of just about 100.

Now for the frequency response. The value we must use with the coupling capacitor to determine low-frequency rolloff is the total series resistance, or 1 megohm in series with 240 K, a total of 1.24 megohms. For the high-frequency end the reactance of the stray capacitance has to be compared with the total parallel circuit resistance: 1 megohm in parallel with 270 K in parallel with 2 megohms plate resistance, which works out to be about 200 K.

If the following stage has an effective input capacitance of 100 $\mu\mu$ fd the stage gain will be about down 3 db at 8 Kc, which is not too good. It may be better to reduce the value of the plate-load re-

Continued on page 43

of the edge to appear on each side of the molding. In some cases it is possible to miter the edge, taking care not to damage the scrap strip of plywood. Reverse the strip so the veneered side faces out and re-attach it in this fashion to the mitered edge, restoring the squareness with a new, smooth finish now exposed to view.

If a piece is to be painted or stained dark, the edges can be filled with plastic wood of the desired color and sanded thoroughly. In still another method, you can burn the edges by concentrated application of a power sander until the wood becomes discolored. The result will be a hand-glazed finish, ideal for painting or very attractive without touching a brush to it.

Plywood edging has become much simpler with 2 recent wood-veneer products designed for easy application. One type comes coated with adhesive which sets as a warm iron presses the veneer against the plywood edge. The other (Weldwood Wood-Trim by U. S. Plywood Corp.) is packaged in rolls 1 in. wide and 8 ft. long, retailing for about 79¢ per roll. This is applied with any good wood glue and offers a choice of woods: fir, oak, walnut, mahogany, and birch.

Finishing plywood surfaces is a subject we'll discuss in the very near future in an article devoted to various types of wood finishes. Careful cutting and assembling of plywood cabinet parts will assist greatly in giving the final finish a professional appearance.

YOUR OWN AMPLIFIER

Continued from page 23

sistor so as to improve the high-frequency response.

Alternatively, if we are considering an input stage, there are reasons why it would be better to keep a high plate-load resistor, with a fairly high value of cathode-bias resistor, and shunt the stage down by using a lower value of resistor in the grid of the following stage. Both procedures will, of course, reduce the gain too. These conditions we shall discuss later in the series.

There is not much problem at the low-frequency end. A .01- μ fd coupling capacitor will have a reactance of 1.25 megohms at about 13 cps—and we certainly don't need to use as small a value as $.01~\mu$ fd.

Triode or Pentode?

We can see right away why triode tubes are preferred for most applications in audio amplifiers, except the output stage, which we shall discuss in later articles. The operating conditions are easier to calculate; the tubes have more stable gain and more consistent distortion figures. If you try fitting load lines to

the characteristics of the 6BR7 or any other pentode, you will find that a relatively small movement of the load line on the curves, representing slight changes in operating conditions (which can easily occur), will alter the proportioning of the spaces along the load line quite considerably. This is illustrated at Fig. 10.

If the load line gets far toward the "knee" of the zero grid voltage curve, the grid curves close up toward the top end as well as the bottom end of the line.

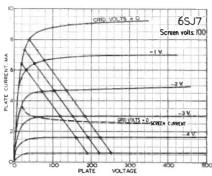


Fig. 10. Characteristic curves for 6SJ7 pentode. Position of the load line is critical for pentodes. Each load line is for resistance of 30 K; displacement is caused by variation of other parameters, and affects distortion. Center load line closes equally at ends, indicating mostly 3rd harmonic distortion. Other 2 lines indicate 2nd harmonics of opposite phase.

If the closing up is approximately similar at both ends of the load line, the resulting distortion produced is mostly third harmonic. But if the load line is moved further away the distortion contains second harmonics in opposite phase to those produced when the load line is too near the knee, so that the closing up is more toward the top end.

In short, without going into a lot of detailed work, pentode characteristics are fairly critical as to operating conditions for obtaining minimum harmonic distortion. Because in audio work it is important to achieve very low distortion, it is generally better to keep away from pentodes unless there is some good reason for using them.

AUDIO AIDS We'll pay \$5.00 for usable Audio Aids. See page 46 for details.

The Jim Lansing Signature Hartsfield—chosen by experts for your high fidelity dream set—is a magnificent new folded horn speaker system of patented design. Bass fundamentals emerge with immaculate precision. Highs, overtones, and transients appear with the pristine perfection of present performance. The design and fabrication of the enclosure follow with unerring exactitude the principles of faithful sound reproduction known to acoustical science. The rapidly growing high fidelity market has made it possible to bring to you, for the first time, highly-refined, handcrafted speaker equipment originally designed for custom theater installations. Inspect these units at your dealer's; they are obviously different.

The Hartsfield may be purchased progressively. To begin with a D208 Signature 8" Extended Range Speaker can be installed. Later, it is replaced with an 085 two-way theater system kit. The extraordinary reproduction possible with the D208-Hartsfield combination proves two things: the value of The Hartsfield's complex structure...the perfection of all Signature units—from the modest D208 to the ultimate 085. If you cherish perfect sound, the speaker you buy will be...

JAMES B. LANSING SOUND, INC. 2439 FLETCHER DR., LOS ANGELES 39, CALIFORNIA