

HEV AC Drive Integrated Solution for Elevator

HEV System

System Configuration

Features

Distinguished Core Control Technology

- Advanced elevator logical algorithm and variable frequency driving technology
- · Better time series, ride safety and reliability

Perfect Ride Comfort

- •Sophisticated vector multispeed control leads to the optimum smooth curve
- Leading technology of start compensation without weighing(ARB)
- Genuine direct docking technology, higher operating efficiency

High Reliability & Stability accuracy

- Industry CPU32bit,high antijamming,high accuracy
- Passed all factory standard test, trustworthy
- Key parts from world-class suppliers

Professional Electric Solution

- Sophisticated electric control technology
- Perfect electric selection&solution
- Reasonable system designing&power supply solution

Fully Services

- Sophisticated elevator technology experience
- Professional service team, quick troubleshooting
- Advanced production and strict quality control assure 100% qualified

(>)

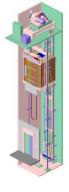
Inverter Specifications

Model No.	Rated Power (kW)	Input Current (A)	Output Current (A)	Motors (kW)
HEV-7R5G3	7.5	18	17	7.5
HEV-011G3	11	28	27	11
HEV-015G3	15	37	34	15
HEV-018G3	18.5	39	37	18.5
HEV-022G3	22	46.5	45	22
HEV-037G3	37	77	75	37
HEV-F-055G3	55	90	113	55

HEV Inverter

Covering most elevators' sizes

(-) |


Model Selection of Inverters

150							
120							
105							
90							
60							
Speed (m/min) Load (kg)	630	825	900	1050	1150	1350	1600

	HEV-037G3	
	HEV-022G3	
	HEV-018G3	
HEV-015G3		
	HEV-011G3	
	HEV-7R5G3	
Color	Inverter Model	

Remark:

■The above model selection is merely as reference, users can select inverters as per their actual operation experience.

Braking Resistors

Inverter Model	Resistor	Power	Connection	Min Resistance
HEV-7R5G3	11Ω, 2pcs	1.5kW×2	In series	20Ω
HEV-011G3	12Ω, 3pcs	1.5 kW \times 3	In series	35Ω
HEV-015G3	11Ω, 3pcs	1.5kW×3	In series	18Ω
HEV-018G3	16Ω, 4pcs	$2kW \times 4$	2 in parallel,2 in series	15Ω
HEV-022G3	16Ω, 4pcs	$2kW \times 4$	2 in parallel,2 in series	15Ω
HEV-037G3	16Ω, 6pcs	$2kW \times 6$	3 in parallel,2 in series	9Ω

Remark:

■ The above is only as reference, users may configure resistors as per their experience, but resistance and power value shall match the user manual.

■ The above selection of models refers to corrugated resistors.

Control Unit

♦ Input : 38 inputs, 6.5mA> I > 3mA;

 $X1\sim X3$, AC110V \pm 10%;

 $X4\sim X38$, DC24V $\pm 10\%$:

◆Output : 10 Outputs, MOSFET: 4;

Relay contact: 6;

◆Car Com: Independent CAN interface;

◆Outer Com: Independent CAN interface;

USA Freescale CPU

HEV Control Unit

◆Parallel Group Control: RS422 interface, 8 sets group control (with group control unit)

◆Max Speed: 4m/s;

Japan Renesas CPU

◆Terminal Type: Phoenix BCH-350, general connection plug;

◆Encoder: Standard sine&cosine; UVW difference (with PGC interface) optional,15 pin female;

◆Keypad onboard: Parameter setting, commissionning and trouble inquiry and etc.

Remark: The definition of input and output refers to the user manual.

(-)

Elevator Cabinet Communication

- ◆ Rated Voltage: DC24V;
- **◆**Communication: CAN:
- ◆ Double door function:
- ◆Max for 48 landing, expansion units(8landing/pc) need to be added for more than 24 landing;
- ◆Built in operation box installation, less cables;
- ◆Effective level: 0 volt low level, constant open contact[except overload switch];
- ◆ Automatic stop bell voice announcement;
- ◆Serial or point to point communication for overload switch, safety trigger board and light signal

CAN-B3 COM

CAN-B3-E Expansion

HEV System

Communication and Digital Display Outside Elevator Cabinet

Parts Photos				100		
Models	CAN-C2	BX-CAN-C2	ECANC-LE	CAN-CDB2	CAN-LCD	CANC-HDB
Туре	e Communication unit outside elevator cabinet (LOP)			Display in elevator cabinet (COP)	LCD Display	Horizontal type digital display
СОМ	CAN			CAN	CAN	CAN
Display module	Dot matrix			Dot matrix	5" LCD	Dot matrix
Display Color	Red,orange			Red,orange	White letters on blue	Red

00

Remark: AMP MLC Plugs used for CAN-C2 and CANC-HDB

Commissioning

★Low Speed Operation

Parameter Setting

♦ Set parameters of motor and encoder, other parameters as defaulted values

Determination of Magnetic Pole Angle

♦ Static auto tuning, use EHPkeypad. (must be done during the engine room inspection status)

Low Speed Running

Observe running status, ensure correct running direction without flystart (the elevator shall be stayed at intermediate landing)

★High Speed Operation

Floor Height Auto Tuning

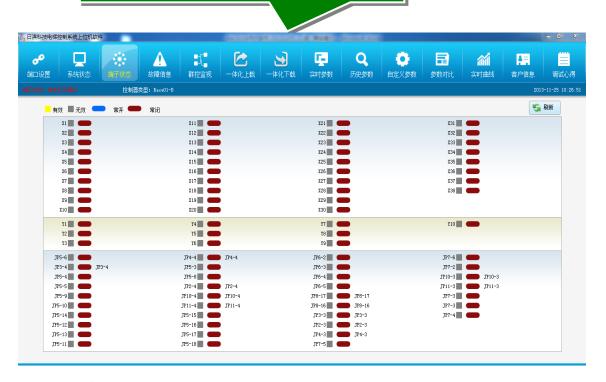
- Set the quantity and length of magnet vanes, and series of deceleration switch:
- Slow running stops the elevator to stop at the bottom floor:
- ♦ Enter the mode of floor height measurement

Leveling Adjustment

mode to stop the elevator at the intermediate landing, recover to the normal running mode, use EHP to ensure the elevator to run normally;

♦ Use F5.13 and F5.12. optimize leveling

Ride Comfort Adjustment


- ♦ Apply F7.10,adjust the start effectiveness of the elevator:
- ♦ In case some obvious abnormal voice occurs from motors, reduce the value of F7.08 and F7.09

Production Inspection

Host PC Commissioning Software

★ Parameter setting, up/download, function setting

Function Inspection of Control Panel

Elevator Door Control System

Elevator Door Control Unit

★Quick Commissioning

◆Model: GRACE05-1200

◆Input Voltage: Single phase AC220V±5% (50/60Hz)

◆Output voltage: Three phases 0~220V

◆Output Frequency: 0~20Hz

◆Rated Current: 1.5A

◆Motor Type: Asynch/Synchronous (Max 250W)

◆Control Mode: Vector Control

◆Input Signal: Opto-coupler isolation

◆Output Signal:Opto-isolation+relay

Setting magnet pole angle

Measure door width

Back to electricity

Added-Value System

Smart IC System

Smart Building System

Multimedia LCD

Wireless Remote Monitoring System

Five Parties Calling System

Residential Quarter Elevator Monitoring

R&D and Production Devices

Automatic PCB Production Line

PCB Inspection Line

