

FINAL DRAINAGE REPORT

For

PROPOSED ROADWAY AND CULVERTS

And

PRELIMINARY DRAINAGE REPORT

For

OVERALL DEVELOPMENT

PHANTOM CREEK RANCH ELBERT COUNTY, COLORADO

2N Civil Project No. 22010 Date: December 13, 2022 Revised: April 7, 2023 September 1, 2023 November 17, 2023 December 7, 2023 June 7, 2024

PREPARED FOR:

PHANTOM CREEK DEVELOPMENT, LLC

39622 County Road 21 Elizabeth, CO 80543 Mike P. Brownson

PREPARED BY:

2N CIVIL, LLC

Todd West, P.E. Reviewed By: Eric P. Tuin, P.E. 6 Inverness Ct. E #125 Englewood, CO 80112 303.925.0544

Engineer's Certification

This report and plan for the preliminary drainage design of Phantom Creek Ranch was prepared by me (or under my direct supervision) in accordance with the provisions of Elbert County Construction Standards & Specifications for the owners thereof. I understand that Elbert County does not and will not assume liability for drainage facilities designed by others.

nO SIGNATURE: Todd West, P.E. Registered Professional Engineer 37643 State of Colorado No. 37643 PROY-6-7-24 (Affix Seal)

Owner's Certification

Phantom Creek Development, LLC hereby certifies that the drainage facilities for Phantom Creek Ranch shall be constructed according to the design presented in this report. I understand that Elbert County does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that Elbert County reviews drainage plans, but cannot, on behalf of Phantom Creek Ranch, that final drainage design review will absolve Phantom Creek Development, LLC guarantee and/or their successors and/or assigns of future liability for improper design. I further understand that approval of the final plat does not imply approval of my engineer's drainage design."

SIGNATURE: Mike Brownson

Phantom Creek Development, LLC Owner

Table of Contents

A.	INTRODUCTION	.4
В.	HISTORIC DRAINAGE	.5
C.	DESIGN CRITERIA	.7
D.	DRAINAGE DESIGN PLAN	.8
E.	EROSION CONTROL	10
F.	PERMITTING REQUIREMENTS	11
G.	CONCLUSION	11
H.	REFERENCES	12

Appendix A: Vicinity Map, Soils Map, FIRM Appendix B: Hydrologic Criteria Appendix C: Drainage Basin Map Appendix D: Roadway Culvert Calculations Appendix E: Conceptual Pond Calculations

A. INTRODUCTION

This Drainage Report presents a preliminary drainage design for the development of the new single-family homesites known as Phantom Creek Ranch located in Elbert County, Colorado. This report was prepared in accordance with Elbert County Construction Standards and Specifications 2019 and Mile High Flood District (MHFD) Urban Storm Drainage Criteria Manual (latest revision). Also included is a final design for culverts associated with the main gravel roadway that provides access to all lots within the Phantom Creek Ranch development.

Location

Phantom Creek Ranch is a proposed subdivision located in a part of Section 16, Township 7 South, Range 64 West of the 6th Principal Meridian, County of Elbert, State of Colorado. The project is bounded by County Road 21 to the west, Pronghorn Avenue to the north, and private property to the south and east. A Vicinity Map is included in Appendix A.

Description of Property

The project will consist of the development of 7 single family lots numbered 1 through 7.

The existing ground cover on this site is composed of native grasses. The existing terrain generally slopes from southeast to the northwest, ranging from 0 to 16 percent grade with up to a 4:1 slope for the channel banks. The soil type present onsite consist of Hydrologic Soil Group A soils: Haplustolls, moderately coarse, nearly level, Truckton sandy loam, 3 to 9 percent slopes; Hydrologic Soil Group B soils: Bresser sandy loam, cool 5 to 9 percent slopes, Bresser-Stapleton sandy loams, 8 to 25 percent slopes, Elbeth sandy loam, 4 to 8 percent slopes, and Peyton sandy loam, 4 to 8 percent slopes; and Hydrologic Soil Group C soils: Weld loam, 0 to 4 percent slopes; as designated by the Natural Resources Conservation Services (NRCS) (see Appendix A). Hydrologic Group A soils have a high infiltration rate when thoroughly wet and a high rate of water transmission. Hydrologic Group B soils have a moderate infiltration rate when thoroughly wet and a slow rate of water transmission.

A topographic depression exists along the north end of the property with no defined outfall. Located on proposed Lot 7, the area was excavated as a source for gravel by Elbert County. This depression is located within Basin EX-1/PR-1 as shown on the overall Basin Map, and is within sub-basin PR-C on the Sub-Basin Map. This area acts as a natural detention area. In the event that this area is regraded in the future and an outfall is provided, the roadway culverts at Design Point C (shown on the Sub-Basin Map) have been sized to convey the developed flow from this basin downstream following the historic drainage path.

An existing drainageway named Phantom Creek traverses the site. It flows from the southeast to northwest direction, and ultimately converges with Running Creek, located about a mile west of the site.

Proposed Development

The proposed development for this site includes subdividing the property into 7, minimum 10-acre single family residential parcels. Access to Lots 1 through 7 will be from a proposed looped roadway intersecting with Pronghorn Avenue. These lots are located to the north of Phantom Creek. Proposed improvements include single-family homes, driveways, and associated infrastructure.

B. HISTORIC DRAINAGE

Overall Basin Description

The proposed development is located within Zone X and is not considered as residing in a flood hazard area as seen on the FEMA Map titled, "Flood Insurance Rate Map for Elbert County and Incorporated Areas", Panel 0255 of 1200, Map Number 08039C0255C, Effective March 17, 2011, see Appendix A. In general, runoff flows in the northwest direction to Phantom Creek which continues downstream to Running Creek. The property is delineated into three drainage basins. The descriptions are as follows:

EXISTING BASINS

Basin EX-1

Basin EX-1 encompasses the area that will be developed with this project. Phantom Creek collects flow from this basin, conveying it west to County Road 21 at Design Point 1. This basin encompasses 136.45 acres and has an existing imperviousness value of 3.38%. The basin contains asphalt paving from County Road 21, gravel from Pronghorn Avenue, and undeveloped land supporting native grasses and weeds. According to the results from the EPA SWMM v.5.1 model, the runoff generated for this basin is 1.55 cfs in the 2-year minor storm, and 144.77 cfs in the 100-year major storm.

Basin EX-2

Basin EX-2 is located to the southwest of the site and contributes flow to the outfall at Design Point 1. This basin encompasses 30.44 acres and has an existing imperviousness value of 5.21%. Runoff from this basin typically flows from the southeast to the northwest direction to Design Point 2. The basin contains asphalt paving from County Road 21, an existing gravel driveway, and undeveloped land supporting native grasses and weeds. According to the results from the EPA SWMM v.5.1 model, the runoff generated for this basin is 0.67 cfs in the 2-year minor storm, and 39.05 cfs in the 100-year major storm.

Basin EX-3

Basin EX-3 is located to the southeast of the site and also contributes flow to the outfall at Design Point 1. This basin encompasses 63.36 acres and has an existing imperviousness value of 2.68%. Runoff from this basin typically flows from the southeast to the northwest to Design Point 3. The basin contains two existing single-family homesites, and undeveloped land supporting native grasses and weeds. According to the results from the

EPA SWMM v.5.1 model, the runoff generated for this basin is 0.59 cfs in the 2-year minor storm, and 67.83 cfs in the 100-year major storm.

The flows from Design Point 2 and Design Point 3 continue to the northwest within Phantom Creek to Design Point 1. The routed flow at Design Point 1 is 1.79 cfs in the 2-year minor storm event, and 245.13 cfs in the 100-year major storm. The flow continues in the northwest direction to Running Creek, ultimately converging with the South Platte River. The overall Drainage Basin Map can be found in Appendix C.

PROPOSED BASINS

Basin PR-1

Basin PR-1 encompasses the same area as Basin EX-1. The impervious value increases to 9.43% with the development of the single-family lots and gravel access road. In general, the existing drainage patterns in the basin remain unchanged, except where the proposed road crosses these historic drainage paths. In that case, flow will be intercepted by the proposed roadside swales and be carried downstream (further analyzed in the Sub-Basin Map 1 found in Appendix D). According to the results from the EPA SWMM v.5.1 model, the runoff generated for this basin is 4.50 cfs in the 2-year minor storm, and 151.72 cfs in the 100-year major storm.

Proposed single-family lots are located within Basin PR-1. Each new lot will be required to mitigate the increase in runoff as described in Section D of this report.

Basin PR-1 has been further divided into sub-basins to analyze the required culvert crossings, and to account for the depression identified in this report. Basins PR-A, PR-B, and PR-C have been defined to calculate the flows at the proposed road culvert crossings at Design Points A, B, and C. Impervious values and a drainage basin map for these sub-basins can be found in Appendix D.

Flow generated from Basin PR-A will pass through the proposed 36" RCP culvert at Design Point A, combining with flow from Basins PR-B and OS-1. This culvert has been sized to convey the major storm plus an additional 20% of Q100 to account for clogging. These combined flows will be directed to Design Point B by the existing berm located on the upper limit of the existing depression.

At Design Point B, a shallow depression will be graded on the upstream side of the culverts to collect stormwater and convey it west via twin 36" RCP pipes across Lot 4 to Phantom Creek. The culvert crossing at Design Point B has been sized to convey the major storm from Basins PR-A and PR-B, plus an additional 20% of Q100 to account for clogging.

A shallow three to four feet deep depression will be graded on the upstream side of the culverts at Design Point B to direct water to these pipes. Outside of this localized depression, the roadside ditch continues to fall to the north, following the grade of the proposed gravel road. Flow that exceeds the upper limit of the depression at approximately elevation 6350' (and the headwater depth of the twin 36'' RCP pipes), will bypass these

pipes and continue downstream following the existing terrain to Design Point C, where it will be conveyed west to Phantom Creek via twin 36" RCP pipes.

The culvert crossing at Design Point C has been sized to convey the major storm from Basins PR-C and OS-1, plus an additional 20% of Q100 to account for clogging. Flow that exceeds the major storm at Design Point C will spill east to the existing depression described earlier in this report.

Off-site Basins OS-1 and OS-2 are located north of Pronghorn Avenue. These basins outfall to the site via existing 18" CMP culverts at Design Point D (Basin OS-1) and E (Basin OS-2). Based on the size of these culverts and shallow nature of the existing roadside swale, this report assumes that during the major storm, flow these off-site basins will overtop Pronghorn Avenue and drain onto the site.

Basin PR-2

Basin PR-2 encompasses the same area as Basin EX-2. Assuming future single-family developed conditions with the basin, the impervious value increases to 8.25%. According to the results from the EPA SWMM v.5.1 model, the runoff generated for this basin is 1.08 cfs in the 2-year minor storm, and 39.91 cfs in the 100-year major storm. Future development will be required to mitigate the increase in runoff per applicable County standards.

Basin PR-3

Basin PR-3 encompasses the same area as Basin EX-3 and includes areas previously developed with single-family homesites, thus the flows remain the same as the existing condition.

The ultimate discharge from the site is at Design Point 1, where twin 36" CMP culverts convey stormwater past County Road 21. Implementing the detention features described in this report will act to mitigate the increase in flow generated from the development of the lots, and reduce flows to their historic release rates.

C. DESIGN CRITERIA

Hydrologic Criteria

The preliminary drainage analysis was performed using the CUHP-SWMM Method to calculate the additional runoff generated from the development of driveways and buildings. As recommended by Elbert County and Mile High Flood District, due to one of the existing basin delineations being greater than 90 acres, the CUHP-SWMM method was utilized over the Rational Method. As directed by guidance within the CUHP program, rainfall data was obtained using NOAA Atlas 14 and developed a hyetograph for the area in the CUHP v2.0.1 spreadsheet provided by Mile High Flood District. See Appendix B. The CUHP spreadsheet developed a hydrograph for each of the existing drainage basins, which was utilized in the SWMM model to determine the amount of flow historically passes through the project site. A composite impervious value was used as part of the analysis for the

applicable basins. As recommended by Elbert County, gravel roadways have an impervious value of 40%, asphalt roadways have an impervious value of 100%, open space has an impervious value of 2%. Mile High Flood District and Elbert County recommend that single-family lots of 2.5 acres or greater have an impervious value of 12%. The proposed basin delineation for this study will be consistent with the existing basin delineation since major earthwork operations (such as overlot grading) are not associated with this project. Below is a summary table comparing the existing and proposed runoff flows in the 100-year major storm event. All hydrologic calculations for the existing and proposed major basins can be found in Appendix B.

Basin	Existing Q _{100-yr} Runoff	Existing Q _{100-yr} Routed Flow	Proposed Q _{100-yr} Runoff	Proposed Q _{100-yr} Routed Flow
EX-1/PR-1	144.77	245.13	151.72	252.38
EX-2/PR-2	39.05	39.05	39.91	39.91
EX-3/PR-3	67.83	67.83	67.83	67.83

D. DRAINAGE DESIGN PLAN

General Concept

Existing and proposed flow calculations were performed using the CUHP-SWMM method as recommended by Elbert County and Mile High Flood District for basins greater than 90 acres. This is also consistent with the existing drainage analysis. Basin delineation is consistent from existing conditions to proposed conditions, as there is no major earthwork/overlot grading associated with this project.

Conceptual Detention Pond Sizing

Each of the seven (7) new single-family lots will be required to provide sufficient water quality control measures and detention to mitigate the increase in runoff resulting from the new impervious surfaces associated with the development of the lot. These measures shall be in accordance with applicable Elbert County drainage criteria. This report includes a conceptual Extended Detention Basin (EDB) pond design for each new lot. An EDB is a sedimentation basin designed to detain stormwater for many hours after storm runoff ends. This BMP is similar to a detention basin used for flood control, however; the EDB uses a much smaller outlet that extends the emptying time of the more frequently occurring runoff events to facilitate pollutant removal. The EDB shall be equipped with an emergency spillway to convey flows that exceed the primary outlet capacity or when the outlet structure becomes blocked with debris. The emergency spillway also controls the location and direction of the overflow. The Drainage Basin Map provides conceptual spillway paths. These paths shall be directed away from structures, and towards existing drainages to mitigate erosion.

Design of the EDB is based on an assumed developed area of approximately 20,000 square feet, and a composite impervious value of approximately 50%. These values account for a 5,000 square foot roof (combined house, garage, out-building or other), 200 foot long by 12 foot wide gravel driveway, 2,000 square feet of native or landscaped area tributary to

the pond, and the portion of the internal private loop road within each lot. Since the square footage of the private loop road varies within each lot, a conceptual pond design has been included for each individual lot. Pond calculations have been provided in Appendix E.

<u>Lot 1</u>

Based on the assumed values above and Type A Soils as defined by NRCS, the required total detention storage volume for an Extended Detention Basin per MHFD is 0.042 acrefeet or 1,830 cubic feet.

<u>Lot 2</u>

Based on the assumed values above and Type A Soils as defined by NRCS, the required total detention storage volume for an Extended Detention Basin per MHFD is 0.036 acrefeet or 1,570 cubic feet.

Lot 3

Based on the assumed values above and Type B Soils as defined by NRCS, the required total detention storage volume for an Extended Detention Basin per MHFD is 0.047 acrefeet or 2,050 cubic feet.

Lot 4

Based on the assumed values above and Type B Soils as defined by NRCS, the required total detention storage volume for an Extended Detention Basin per MHFD is 0.033 acrefeet or 1,440 cubic feet.

<u>Lot 5</u>

Based on the assumed values above and Type B Soils as defined by NRCS, the required total detention storage volume for an Extended Detention Basin per MHFD is 0.041 acrefeet or 1,790 cubic feet.

Lot 6

Based on the assumed values above and Type B Soils as defined by NRCS, the required total detention storage volume for an Extended Detention Basin per MHFD is 0.064 acrefeet or 2,790 cubic feet.

<u>Lot 7</u>

Based on the assumed values above and Type B Soils as defined by NRCS, the required total detention storage volume for an Extended Detention Basin per MHFD is 0.061 acrefeet or 2,660 cubic feet.

The Drainage Basin Map includes conceptual locations for seven (7) proposed detention ponds. The ponds should be placed to intercept flow from the developed portion of the lot and outside of any historic drainage paths. Once a lot is developed, the lot owner will refine these assumptions based on actual site and house plans.

Private Roadway Drainage Design

As part of the construction of the roadway, roadside swales and culverts will be provided to direct drainage to historic paths. Sizing of culverts and roadside swales has been provided in Appendix D. The capacity of the roadside swale was analyzed in three locations: Design Point A1, Design Point B1, and Design Point C1 (refer to Sub Basin Map 2). In all other locations, the roadside swale only conveys flow from a limited section of the gravel road before the road transitions to a fill condition, and the flow from the swale dissipates across the existing terrain.

The proposed Extended Detention Basin (EDB) detention ponds discussed in this report have been sized to account for the additional imperviousness of the private road adjacent to each new lot. While it is not feasible for each new pond to intercept flow from the adjacent road, by accounting for this new gravel surface in the pond volume, the ponds will be sized to over-detain for those areas that are not hydraulically connected to each pond.

The proposed grass lined swales will intercept flow from the proposed gravel roadway, providing an informal measure of water quality treatment. The grass swales for this project have relatively shallow slopes and broad cross-sections that will convey flow in a slow and shallow manner, which will act to promote sedimentation and filtering (straining) while limiting erosion. The check dams shown on the Erosion Control Plans will further act to reduce velocities and encourage settling and infiltration.

E. EROSION CONTROL

Erosion control measures required during construction of the main roadway and culverts are shown in the Construction Drawings for this project. These Best Management Practice (BMP) measures, including vehicle tracking control, silt fence, stabilized staging area, check dams, riprap, rock berms, seeding and mulching, and erosion control blanket, will act to stabilize disturbed areas and mitigate sediment transport during construction.

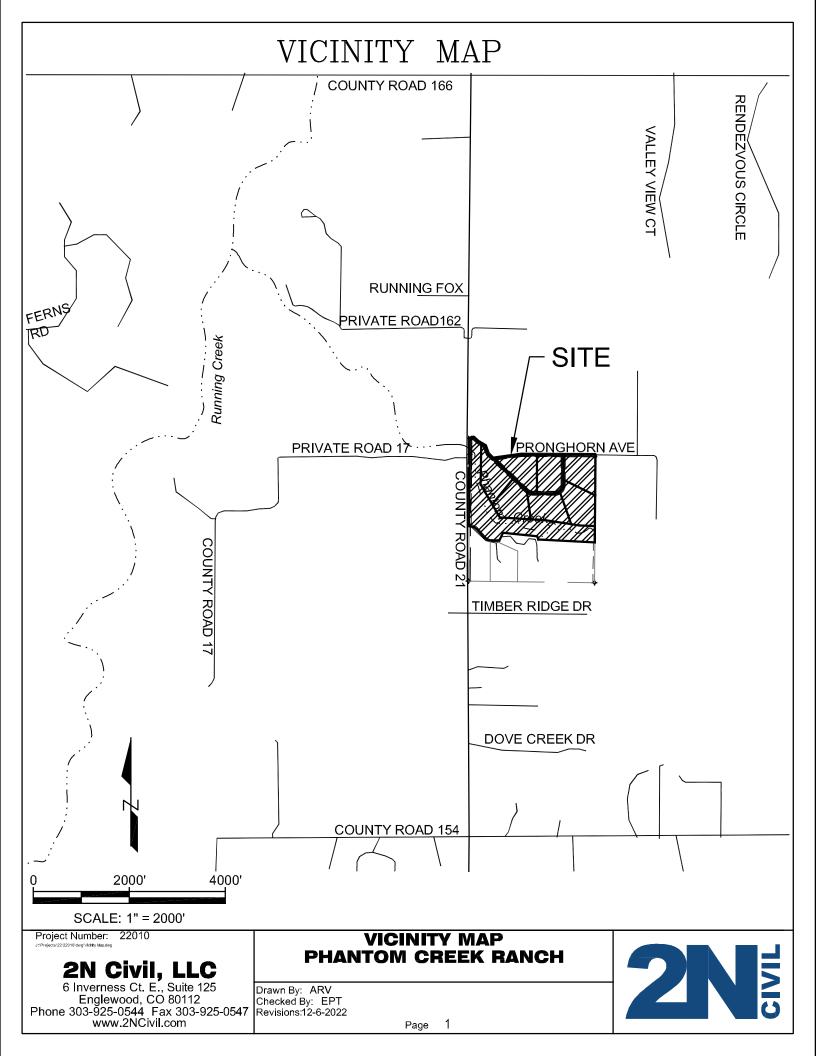
These BMPs apply to one or more of the following construction phases: initial stage, the interim stage, and the final stage. The initial BMPs shall be installed at the outset of construction, prior to any land disturbance activities. Initial controls are placed on existing grades, but they shall be based in part on proposed grading operations. The interim BMPs shall be installed during active construction, including road grading, utility installation, and road paving. Final stage BMPs shall be installed as one of the last steps in the construction process to promote final stabilization of disturbed areas.

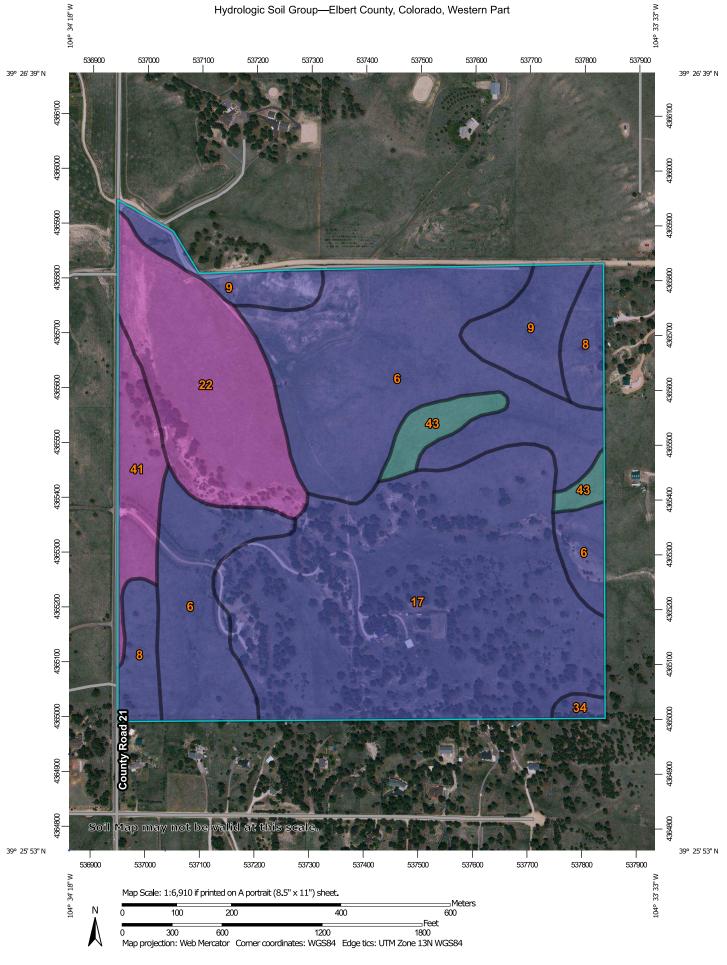
Details of these BMPs have been provided with the Construction Drawings to guide the proper installation of these features. Check dams provided within the roadside swales shall be spaced according to the steepness of the swale, such that the bottom of the upstream check should be at the same elevation as the top of the downstream check.

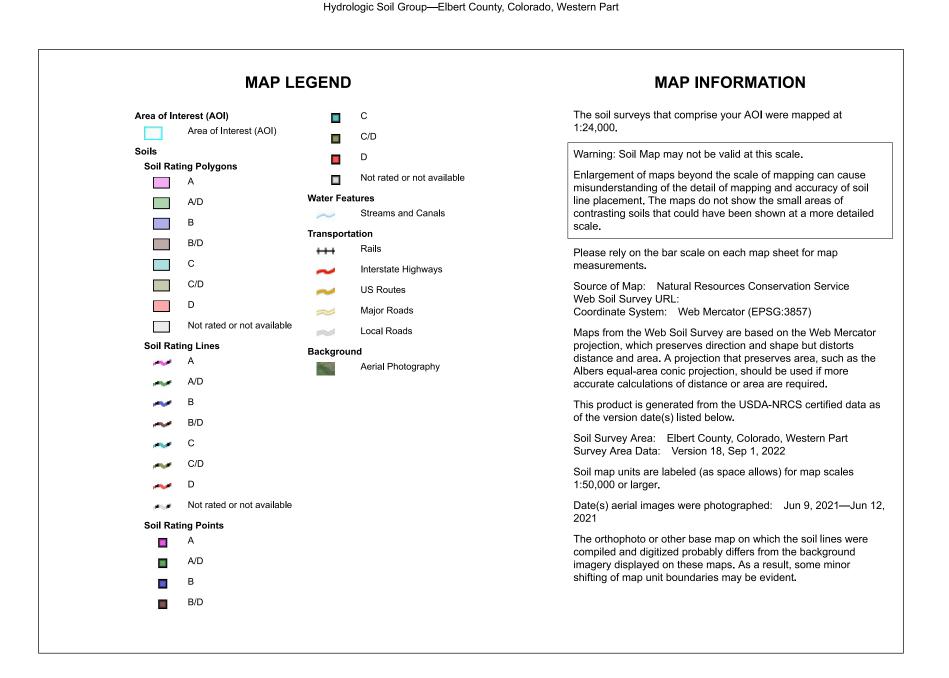
The individual homeowner is encouraged to implement steps to help prevent erosion and water pollution. Limiting the use of impervious surfaces such as asphalt or concrete driveways and walks/patios allows stormwater to soak into the ground instead of running

downstream and causing erosion. Permeable pavers can be used to allow water to pass through them, rather than run off the surface. Redirecting downspouts away from hard surfaces and onto grass or shallow depressed planting beds can help reduce the amount of runoff. Planting native vegetation and minimizing the use of fertilizers and pesticides will help reduce the impact of stormwater on the environment.

F. PERMITTING REQUIREMENTS


Construction sites that disturb one acre or greater, or are part of a larger common plan of development, are required to obtain a Construction Stormwater Discharge Permit issued by the Colorado Department of Public Health and Environment (CDPHE). Additional permit requirements such as a Grading Permit will be required by Elbert County Road and Bridge Department.


G. CONCLUSION


The additional impervious surfaces resulting from the development of the lots will cause an increase of runoff from the site. This increase will be mitigated by implementing the stormwater quality and detention features outlined in this report.

This Drainage Report was prepared in conformance with Elbert County's Construction Standards and Specifications 2019, with supplemental data from the Mile High Flood District's Urban Storm Drainage Criteria Manual Volumes 1, 2, and 3. This report provides preliminary stormwater calculations including runoff quantities for the proposed development of the lots, and roadway culvert calculations.

Appendix A Vicinity Map, Soils Map, FIRM

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
6	Bresser sandy loam, cool, 5 to 9 percent slopes	В	59.1	32.0%
8	Bresser-Stapleton sandy loams, 8 to 25 percent slopes		8.4	4.5%
9	Bresser-Truckton sandy loams, 8 to 25 percent slopes	В	12.0	6.5%
17	Elbeth sandy loam, 4 to 8 percent slopes	В	66.5	36.0%
22	Haplustolls, moderately coarse, nearly level*	A	25.1	13.6%
34	Peyton sandy loam, 4 to 8 percent slopes	В	0.9	0.5%
41	Truckton sandy loam, 3 to 9 percent slopes	A	8.0	4.3%
43	Weld loam, 0 to 4 percent slopes	С	4.9	2.6%
Totals for Area of Inter	rest		184.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services

NOAA, N/NGS12 National Geodetic Survey SSMC-2, #9202

current as of 2009.

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National

Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/. Base Map information shown on this FIRM was provided in digital format by Elbert County GIS Department and Anderson Consulting Engineers, Inc. These data are

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center at 1-800-358-9616 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The FEMA Map Service Center may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

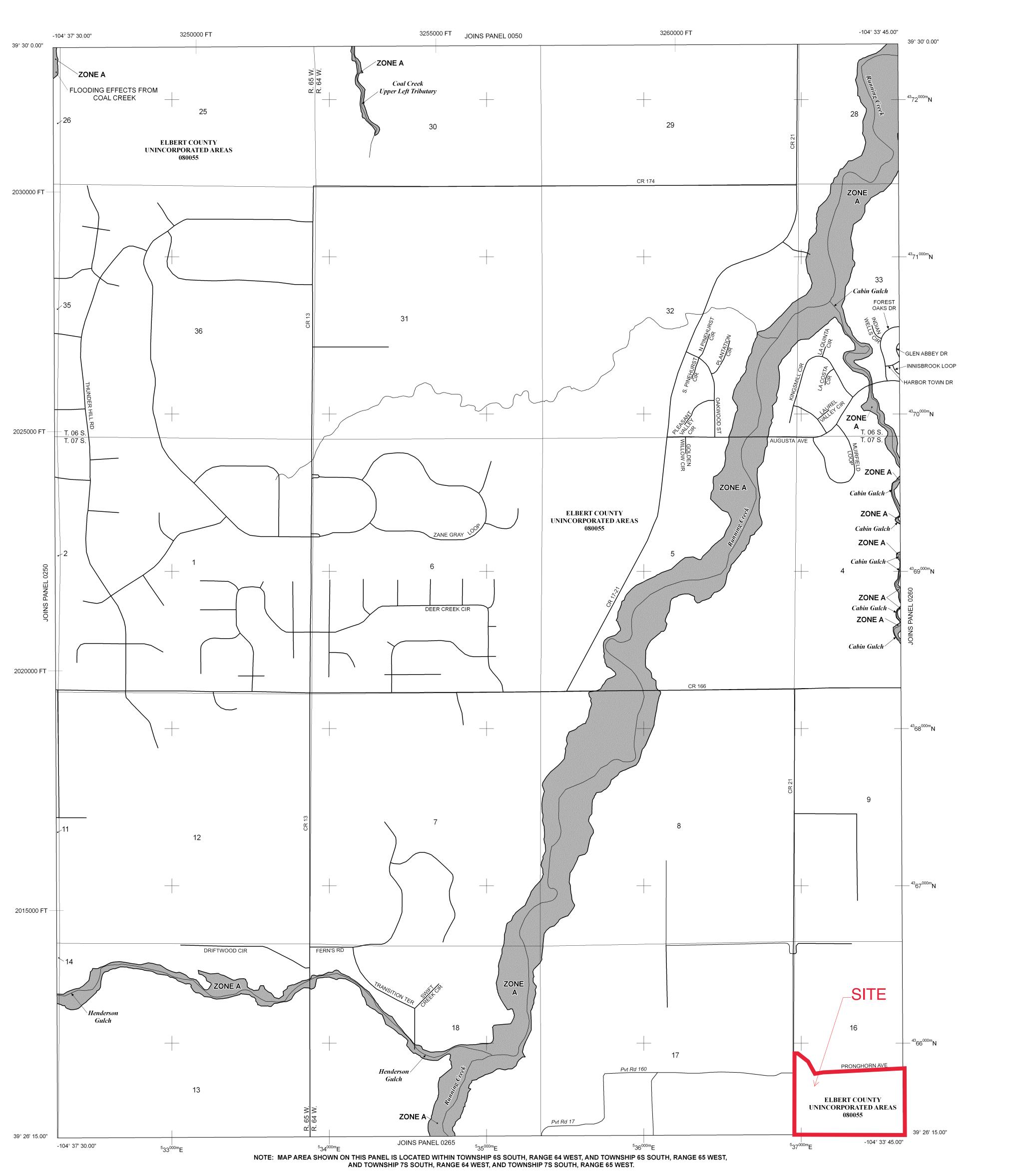
If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA Map (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/.

Elbert County Vertical Datum Offset Table

Vertical Datum

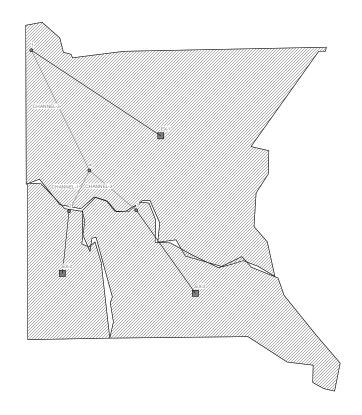
Offset (ft) N/A

Flooding Source


N/A

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).



Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

		LEGEND
		OD HAZARD AREAS (SFHAS) SUBJECT TO BY THE 1% ANNUAL CHANCE FLOOD
	nual chance flood (10	00-year flood), also known as the base flood, is the flood
Hazard Area	is the area subject	equaled or exceeded in any given year. The Special Flood to flooding by the 1% annual chance flood. Areas of
		nes A, AE, AH, AO, AR, A99, V, and VE. The Base Flood evation of the 1% annual chance flood.
ZONE A ZONE AE	No Base Flood Ele Base Flood Elevat	evations determined.
ZONE AH		1 to 3 feet (usually areas of ponding); Base Flood
ZONE AO	Flood depths of 1	to 3 feet (usually sheet flow on sloping terrain); average
	depths determined.	ed. For areas of alluvial fan flooding, velocities also
ZONE AR		ard Area Formerly protected from the 1% annual chance ontrol system that was subsequently decertified. Zone AR
	indicates that the	former flood control system is being restored to provide the 1% annual chance or greater flood.
ZONE A99	Area to be prote	cted from 1% annual chance flood by a Federal flood
	protection syste determined.	m under construction; no Base Flood Elevations
ZONE V	Coastal flood zon Elevations determ	ne with velocity hazard (wave action); no Base Flood ined.
ZONE VE	Coastal flood zo Elevations determ	one with velocity hazard (wave action); Base Flood ined.
		REAS IN ZONE AE
The floodwa		a stream plus any adjacent floodplain areas that must be
	encroachment so t ncreases in flood heig	hat the 1% annual chance flood can be carried without ghts.
	OTHER FLOOD	DAREAS
ZONE X	Areas of 0.2% an	nual chance flood; areas of 1% annual chance flood with
		of less than 1 foot or with drainage areas less than 1 areas protected by levees from 1% annual chance flood.
	OTHER AREAS	
ZONE X		to be outside the 0.2% annual chance floodplain.
ZONE D		od hazards are undetermined, but possible.
	COASTAL BAR	RIER RESOURCES SYSTEM (CBRS) AREAS
		PROTECTED AREAS (OPAs)
CBRS areas		Ily located within or adjacent to Special Flood Hazard Areas.
		dplain boundary dway boundary
	Zone	e D Boundary
••••••	••••• CBR:	S and OPA boundary
		ndary dividing Special Flood Hazard Areas of different Base d Elevations, flood depths or flood velocities.
~~ 513	Base	Flood Elevation line and value; elevation in feet*
(EL 98	,	Flood Elevation value where uniform within zone; ation in feet*
* Reference	d to the North Ameri	can Vertical Datum of 1988 (NAVD 88)
A	- A Cros	s section line
(23)	(23) Tran	sect line
97° 07' 3	0.00" Geog	graphic coordinates referenced to the North American
32° 22' 3	0.00" Datu	m of 1983 (NAD 83)
⁴² 75 ⁰⁰⁰	^m N 1000 zone)-meter Universal Transverse Mercator grid ticks, 13
600000)-foot grid ticks: Colorado State Plane coordinate
	,	em, central zone (FIPSZONE 0502), bert Conformal Conic Projection
DX551	0 Bend	th mark (see explanation in Notes to Users section of
		FIRM panel)
● M1.	.5 Rive	r Mile
	Refer	MAP REPOSITORIES to Map Repositories list on Map Index
	F	LOOD INSURANCE RATE MAP MARCH 17, 2011
F		
		ory prior to countywide mapping, refer to the Community Flood Insurance Study report for this jurisdiction.
		is available in this community, contact your insurance nsurance Program at 1-800-638-6620.
ugent of can		
		MAP SCALE 1" = 1000'
	500 0 日日日	1000 2000
	300	METERS
		PANEL 0255C
		FLOOD INSURANCE RATE MAP
		ELBERT COUNTY,
		COLORADO
		AND INCORPORATED AREAS
		DANEL 0255 OF 1200
		PANEL 0255 OF 1200
		(SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS
		<u>COMMUNITY</u> <u>NUMBER</u> <u>PANEL</u> <u>SUFFIX</u>
		ELBERT COUNTY 080055 0255 C
		Notice to User: The Map Number shown below should be used
		when placing map orders: the Community Number shown above should be used on insurance applications for the subject community.
		MAP NUMBER
		08039C0255C
		EFFECTIVE DATE:
		MARCH 17, 2011
ļ		Federal Emergency Management Agency
	~	······································

Appendix B Hydrologic Criteria

Printouts for Storm Hydrographs Existing 2-yr Storm flow in cfs

SP F. N S 5 0.00 0.00 0.00 10 0.00 0.00 0.00 15 0.00 0.00 0.00 20 0.02 0.03 0.011 25 0.22 0.21 0.11 30 0.75 0.56 0.36 35 1.27 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.24 0.28 90 0.65 0.18 0.22 90 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37	flow in cfs							
10 0.00 0.00 0.00 15 0.00 0.00 0.00 20 0.02 0.03 0.01 25 0.22 0.21 0.11 30 0.75 0.56 0.36 35 1.27 0.67 0.59 40 1.52 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.31<	ime in minutes	EX-1	EX-2	EX-3				
10 0.00 0.00 0.00 15 0.00 0.00 0.00 20 0.02 0.03 0.01 25 0.22 0.21 0.11 30 0.75 0.56 0.36 35 1.27 0.67 0.59 40 1.52 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.31<	5							
15 0.00 0.00 0.00 20 0.02 0.03 0.01 25 0.22 0.21 0.11 30 0.75 0.56 0.36 35 1.27 0.67 0.59 40 1.52 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 125 0.31								
20 0.02 0.03 0.01 25 0.22 0.21 0.11 30 0.75 0.56 0.36 35 1.27 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.3								
25 0.22 0.21 0.11 30 0.75 0.56 0.36 35 1.27 0.67 0.54 40 1.52 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.2								
30 0.75 0.56 0.36 35 1.27 0.67 0.54 40 1.52 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.								
35 1.27 0.67 0.54 40 1.52 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0								
40 1.52 0.67 0.59 45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 145								
45 1.55 0.60 0.57 50 1.45 0.53 0.52 55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 131 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 <td< td=""><td></td><td></td><td></td><td></td></td<>								
55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 <	45							
55 1.29 0.46 0.46 60 1.16 0.41 0.41 65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 131 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.02 140 0.23 0.03 0.04 150 <	50	1.45	0.53	0.52				
65 1.05 0.36 0.37 70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.02 170 0.08 0.01 0.02 175	55	1.29						
70 0.94 0.32 0.33 75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.02 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180	60	1.16	0.41	0.41				
75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.02 170 0.08 0.01 0.02 175	65	1.05	0.36	0.37				
75 0.85 0.28 0.30 80 0.78 0.24 0.28 85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.02 170 0.08 0.01 0.02 175	70	0.94	0.32	0.33				
85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 215 0.00 0.00 0.00 225 0.00 0.00 0.00 235 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00	75		0.28	0.30				
85 0.71 0.21 0.25 90 0.65 0.18 0.22 95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 215 0.00 0.00 0.00 225 0.00 0.00 0.00 235 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00	80	0.78	0.24					
95 0.58 0.17 0.20 100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 215 0.00 0.00 0.00 225 0.00 0.00 0.00 235 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 </td <td>85</td> <td></td> <td>0.21</td> <td></td>	85		0.21					
100 0.52 0.15 0.17 105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 145 0.21 0.02 0.07 150 0.18 0.01 0.05 160 0.13 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 210 <td>90</td> <td></td> <td>0.18</td> <td></td>	90		0.18					
105 0.45 0.14 0.15 110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 175 0.06 0.00 0.01 180 0.04 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 215 0.00 0.00 0.00 225 0.00 0.00 0.00 235 0.00 0.00 0.00 245 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 </td <td>95</td> <td>0.58</td> <td>0.17</td> <td>0.20</td>	95	0.58	0.17	0.20				
110 0.40 0.12 0.14 115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.05 160 0.13 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 210 0.01 0.00 0.00 220 <td>100</td> <td>0.52</td> <td>0.15</td> <td>0.17</td>	100	0.52	0.15	0.17				
115 0.37 0.11 0.13 120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 195 0.01 0.00 0.00 200 0.01 0.00 0.00 210 0.01 0.00 0.00 210 0.00 0.00 0.00 220 <td>105</td> <td>0.45</td> <td>0.14</td> <td>0.15</td>	105	0.45	0.14	0.15				
120 0.34 0.09 0.12 125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.02 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 210 0.01 0.00 0.00 220 0.00 0.00 0.00 2210 </td <td>110</td> <td></td> <td></td> <td></td>	110							
125 0.31 0.08 0.11 130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 200 0.01 0.00 0.00 210 0.00 0.00 0.00	115	0.37	0.11	0.13				
130 0.29 0.06 0.10 135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 195 0.01 0.00 0.00 200 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 <			0.09					
135 0.26 0.04 0.09 140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 200 0.01 0.00 0.00 210 0.01 0.00 0.00 211 0.00 0.00 0.00 225 0.00 0.00 0.00 225 <td></td> <td>0.31</td> <td>0.08</td> <td>0.11</td>		0.31	0.08	0.11				
140 0.23 0.03 0.08 145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 180 0.04 0.00 0.01 180 0.04 0.00 0.01 180 0.04 0.00 0.00 190 0.01 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 200 0.01 0.00 0.00 210 0.01 0.00 0.00 225 0.00 0.00 0.00		0.29	0.06	0.10				
145 0.21 0.02 0.07 150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 195 0.01 0.00 0.00 200 0.01 0.00 0.00 205 0.01 0.00 0.00 210 0.01 0.00 0.00 210 0.01 0.00 0.00 220 0.00 0.00 0.00 220 0.00 0.00 0.00 235 0.00 0.00 0.00 235 0.00 0.00 0.00 240			0.04	0.09				
150 0.18 0.01 0.06 155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 195 0.01 0.00 0.00 200 0.01 0.00 0.00 205 0.01 0.00 0.00 205 0.01 0.00 0.00 210 0.01 0.00 0.00 210 0.01 0.00 0.00 210 0.00 0.00 0.00 225 0.00 0.00 0.00 225 0.00 0.00 0.00 230 <td></td> <td></td> <td></td> <td></td>								
155 0.16 0.01 0.05 160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 190 0.01 0.00 0.00 200 0.01 0.00 0.00 200 0.01 0.00 0.00 210 0.01 0.00 0.00 210 0.01 0.00 0.00 210 0.01 0.00 0.00 220 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00								
160 0.13 0.01 0.04 165 0.11 0.01 0.03 170 0.08 0.01 0.02 175 0.06 0.00 0.01 180 0.04 0.00 0.01 185 0.02 0.00 0.00 190 0.01 0.00 0.00 195 0.01 0.00 0.00 200 0.01 0.00 0.00 205 0.01 0.00 0.00 210 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00 235 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 255								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
185 0.02 0.00 0.00 190 0.01 0.00 0.00 195 0.01 0.00 0.00 200 0.01 0.00 0.00 205 0.01 0.00 0.00 205 0.01 0.00 0.00 210 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 280								
190 0.01 0.00 0.00 195 0.01 0.00 0.00 200 0.01 0.00 0.00 205 0.01 0.00 0.00 205 0.01 0.00 0.00 210 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275								
195 0.01 0.00 0.00 200 0.01 0.00 0.00 205 0.01 0.00 0.00 210 0.01 0.00 0.00 210 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285								
200 0.01 0.00 0.00 205 0.01 0.00 0.00 210 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
205 0.01 0.00 0.00 210 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
210 0.01 0.00 0.00 215 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
215 0.00 0.00 0.00 220 0.00 0.00 0.00 225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
220 0.00 0.00 0.00 225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
225 0.00 0.00 0.00 230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
230 0.00 0.00 0.00 235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00	-							
235 0.00 0.00 0.00 240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00	-							
240 0.00 0.00 0.00 245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
245 0.00 0.00 0.00 250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
250 0.00 0.00 0.00 255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 267 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00	-							
255 0.00 0.00 0.00 260 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00			0.00	0.00				
270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00 285 0.00 0.00 0.00								
280 0.00 0.00 0.00 285 0.00 0.00 0.00								
280 0.00 0.00 0.00 285 0.00 0.00 0.00	275	0.00	0.00	0.00				
		0.00	0.00	0.00				
290 0.00 0.00 0.00	285	0.00	0.00	0.00				
	290	0.00	0.00	0.00				

<u>Printouts for Storm Hydrographs</u> Existing 100-yr Storm flow in cfs

flow in cfs							
time in minutes							
me	EX-1	EX-2	EX-3				
5	ш 0.00	0.00	<u>ш</u> 0.00				
10	0.00	0.00	0.00				
15	0.01	0.02	0.01				
20	0.06	0.06	0.02				
25	1.14	1.10	0.61				
30	32.10	20.61	21.67				
35	82.91	33.85	47.56				
40 45	120.00 138.52	38.80 39.05	61.31 67.15				
43 50	138.52	37.75	67.83				
55	144.77	35.40	65.28				
60	134.95	32.97	62.41				
65	129.35	31.20	59.65				
70	120.89	27.91	54.88				
75	110.01	24.46	49.73				
80	99.73	21.05	44.96				
85	90.09	17.86	40.42				
90	81.04	15.15	36.20				
95 100	72.77 64.82	13.14 11.54	32.24 28.38				
100	57.09	10.13	24.65				
110	49.63	8.86	21.73				
115	44.10	7.68	19.48				
120	39.76	6.57	17.58				
125	36.00	5.53	15.89				
130	32.63	4.52	14.34				
135	29.55	3.52	12.90				
140	26.65	2.53	11.55				
145 150	23.95 21.44	1.60 1.03	10.30 9.07				
155	18.95	0.68	7.84				
160	16.47	0.43	6.62				
165	13.99	0.26	5.39				
170	11.51	0.14	4.17				
175	9.03	0.06	2.95				
180	6.56	0.02	1.85				
185	4.12	0.02	1.18				
190	2.63	0.01	0.76				
195 200	1.71 1.08	0.01	0.47				
200	0.64	0.01	0.14				
210	0.35	0.00	0.05				
215	0.15	0.00	0.01				
220	0.04	0.00	0.01				
225	0.03	0.00	0.01				
230	0.02	0.00	0.01				
235 240	0.02	0.00	0.00				
240	0.01	0.00	0.00				
243	0.01	0.00	0.00				
255	0.00	0.00	0.00				
260	0.00	0.00	0.00				
265	0.00	0.00	0.00				
270	0.00	0.00	0.00				
275	0.00	0.00	0.00				
280	0.00	0.00	0.00				
285 290	0.00	0.00	0.00				
290	0.00	0.00	0.00				

Phantom Creek Ranch 2N Project No: 22010 Date: 11-30-2022 Phase I Drainage Report

SWMM 5.1 Existing Hydrology

Existing Basin Characteristics

EX-1			
Area	136.45 ac	5943718.44 sq.ft.	
Width	1646.586 ft	width= area	
% Slope	3.02%	avg max flowpa	ath
% Imperv	3.38%		
70 mper v	5.5670		
Flowpaths			
#1	1786.06 ft		
# 2	3813.38 ft		
#3	4740.83 ft		
# 4	3892.92 ft		
# 4 # 5	3815.42 ft		
-	3609.72 ft		
Average *Pold is Lon			
BOID IS LON	gest Flow Length		
EX-2			
Area	30.44 ac	1326074.583 sq.ft.	
Width	923.48 ft	width= area	
% Slope	4.16%	avg max flowpa	ath .
% Imperv	5.21%	avg max nowpa	aun
% imperv	5.21%		
Flowpaths			
#1	1121.84 ft		
# 2	1289.28 ft		
#3	1657.13 ft		
#4	1853.45 ft		
# 5	1258.05 ft		
Average	1435.95 ft		
*Bold is Lon	gest Flow Length		
EX-3			
Area	63.35 ac	2759598.82 sq.ft.	
Width	1249.51 ft	width= area	
% Slope	3.99%	avg max flowpa	ath
% Imperv	2.68%	. .	
Flowpaths			
#1	1134.30 ft		
# 2	1595.84 ft		
# 3	1967.69 ft		
#4	3763.48 ft		
# 5	2581.37 ft		
Average	2208.54 ft		
*Bold is Lon	gest Flow Length		

Phantom Creek Ranch 2N Project No: 22010 Date: 11-30-2022 Phase I Drainage Report **2N**

SWMM 5.1 Existing Hydrology

Existing Flowpaths

Average Slope for EX-1

Path # 1		Path # 2		Path # 3		Path # 4		Path # 5	
Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope
482	9.5	528	6.5	205	4.1	180	7.9	122	8.1
248	2	400	3.8	221	5.5	194	4.5	145	8.7
322	1.2	297	5.7	402	4.7	205	4.4	466	7.2
288	1.3	277	1.6	293	2.8	433	2.2	226	9.8
331	0.3	150	1.5	206	1.9	196	2.5	387	6
		279	1	223	1.5	207	4.2	280	3.3
		166	0.1	335	1.6	206	4.8	680	3
		427	2	156	1.5	156	1.5	314	2.5
		275	1.2	365	1	365	1	168	3.1
		363	1.3	150	0.1	150	0.1	230	1.3
		305	0.3	440	2	440	2	285	1.7
				275	1.2	275	1.2	343	1.1
				363	1.3	363	1.3		
				305	0.3	305	0.3		
Weighted		Weighted		Weighted		Weighted		Weighted	
Slope	3.55	Slope	2.70	Slope	2.14	Slope	2.42	Slope	4.27
Average We	ighted Slop	e:	3.02			-			

Average Slope for EX-2

Path # 1		Path # 2		Path # 3		Path # 4		Path # 5	
Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope
135	4.9	290	12.1	384	2.5	410	6.1	118	2.2
227	10.2	114	2.3	373	2	373	2	243	7.6
140	6.3	255	2.2	255	2.2	255	2.2	260	4.5
210	4.5	210	4.5	210	4.5	210	4.5	210	4.5
276	2	276	2	276	2	276	2	276	2
Weighted		Weighted		Weighted		Weighted		Weighted	
Slope	5.42	Slope	5.09	Slope	2.51	Slope	3.48	Slope	4.31
Average We	Average Weighted Slope: 4.16								

Average Slope for EX-3

Path # 1		Path # 2		Path # 3		Path # 4		Path # 5	
Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope
150	10	193	5.8	230	15.1	400	5.8	103	3.6
127	4.4	213	13.5	590	1.4	652	8.2	88	3.4
100	10.2	325	5.2	296	1.1	345	3.6	306	6.4
425	2.9	708	1.1	708	1.1	233	3.2	260	7.8
232	1.4	166	1.1	166	1.1	236	6	433	4.2
						345	7.5	437	6.5
						296	1.1	708	1.1
						708	1.1	166	1.1
						166	1.1		
Weighted		Weighted		Weighted		Weighted		Weighted	
Slope	4.48	Slope	4.14	Slope	2.81	Slope	4.42	Slope	4.11
Average We	ighted Slop	e	3.99						

Phantom Creek Ranch 2N Project No: 22010 Date: 11-30-2022 Phase I Drainage Report

SWMM 5.1 Existing Hydrology

Junction

Junction Name	Inflow	Invert Elevation	
1	None	6324	ft
2	None	6356	ft
3	None	6365	ft

Conduit

Conduit Name	Inlet Node	Outlet Node	Shape	Max. Depth	Length	Roughness	Initial Flow	Transect Name
Channel-1	2	1	Irregular	11.96	2071	0.035	0	PHANTOM-CREEK
Channel-2	3	1	Irregular	11.96	2554	0.035	0	PHANTOM-CREEK

Transect

Transect Name PHANTOM-CREEK

PHANTOM-CREEK			
Station	Elevation	Roughness	
0	6340	Left Station	0.035
15	6337.82	Right Station	0.035
30	6335.41	Channel	0.035
45	6333.88		
60	6333.01	Bank Stations	
75	6331.79	Left	60
90	6330.44	Right	175
105	6329.16		
120	6328.04		
135	6328.34		
150	6328.8		
165	6331.16		
180	6333.3		
195	6334.01		
210	6334.55		
225	6334.49		
240	6334.49		
245.86	6334.55		
255	6334.61		
270	6334.64		
285	6334.71		
300	6334.69		
315	6334.73		
330	6334.86		
345.63	6335		

Phantom Creek Ranch 2N Project No: 22010 Date: 09-01-2023 Phase I Drainage Report

SWMM 5.1 Existing Hydrology

COMPOSITE IMPERVIOUS VALUES

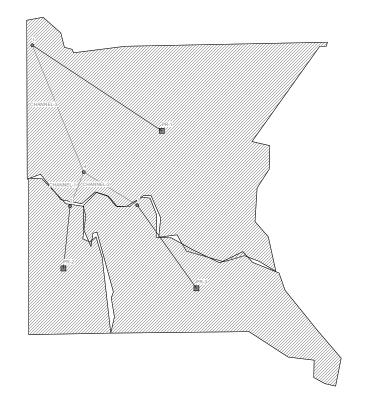
Basin EX-1		
Surface	% Impervious	Acreage
Road - Asphalt	100%	1.12
Road - Gravel	40%	2.07
Open Space/Historic	2%	133.26
Sum Area =		136.45
Weighted I% =	3.38%	
Basin EX-2		
Surface	% Impervious	Acreage
Road - Asphalt	100%	0.83
Road - Gravel	40%	0.42
Open Space/Historic	2%	29.18
Sum Area =		30.44
Weighted I% =	5.21%	
Basin EX-3		
Surface	% Impervious	Acreage
Road - Asphalt	100%	0
Road - Gravel	40%	0
Single Family - 10 ac	12%	4.32
Open Space/Historic	2%	59.04
Sum Area =		63.36
Weighted I% =	2.68%	

	HYDROLOGY - I				
Hr Depth		inches	2hr Depth	1.00 inches	
Hr Depth		inches Sq. Mi.	3hr Depth	1.12 inches	
Return Period		Years			
		Unadjusted Depth		NOAA Atlas 14 Point Pre	vrecipitation F
0:05	0.0167	0.0167			
0:10	0.0334 0.0701	0.0334 0.0701			
0:15 0:20	0.1334	0.0701			
0:25	0.2085	0.2085			
0:30	0.1168	0.1168			
0:35	0.0525	0.0525			
0:40	0.0417	0.0417			
0:45	0.0250	0.0250			
0:50 0:55	0.0250	0.0250 0.0250			
1:00	0.0250 0.0250	0.0250			
1:05	0.0250	0.0250			
1:10	0.0167	0.0167			
1:15	0.0167	0.0167			
1:20	0.0167	0.0167			
1:25	0.0167	0.0167			
1:30	0.0167	0.0167			
1:35	0.0167	0.0167			
1:40 1:45	0.0167 0.0167	0.0167 0.0167			
1:50	0.0167	0.0167			
1:55	0.0083	0.0083			
2:00	0.0083	0.0083			
2:05	0.0000	0.0000			
2:10	0.0000	0.0000			
2:15	0.0000	0.0000			
2:20	0.0000	0.0000			
2:25 2:30	0.0000 0.0000	0.0000			
2:35	0.0000	0.0000			
2:40	0.0000	0.0000			
2:45	0.0000	0.0000			
2:50	0.0000	0.0000)		
2:55	0.0000	0.0000			
3:00	0.0000	0.0000			
3:05	0.0000	0.0000			
3:10	0.0000	0.0000			
3:15	0.0000	0.0000			
3:20 3:25	0.0000 0.0000	0.0000			
3:25	0.0000	0.0000			
3:35	0.0000	0.0000			
3:40	0.0000	0.0000			
3:45	0.0000	0.0000			
3:50	0.0000	0.0000)		
3:55	0.0000	0.0000			
4:00	0.0000	0.0000			
4:05	0.0000	0.0000			
4:10 4:15	0.0000	0.0000			
4:15 4:20	0.0000 0.0000	0.0000			
4:20	0.0000	0.0000			
4:23	0.0000	0.0000			
4:35	0.0000	0.0000			
4:40	0.0000	0.0000			
4:45	0.0000	0.0000)		
4:50	0.0000	0.0000			
4:55	0.0000	0.0000			
5:00	0.0000	0.0000			
5:05 5:10	0.0000 0.0000	0.0000			
5:10	0.0000	0.0000			
5:20	0.0000	0.0000			
5:25	0.0000	0.0000			
5:30	0.0000	0.0000			
5:35	0.0000	0.0000)		
5:40	0.0000	0.0000			
5:45	0.0000	0.0000			
5:50	0.0000	0.0000			
5:55 6:00	0.0000 0.0000	0.0000			

0					
Comment	HYDROLOGY -			01 D 11	0.00
1Hr Depth		inches		2hr Depth	
6Hr Depth		inches		3hr Depth	3.15 inches
Correction Area		Sq. Mi.			
Return Period		Years	Donth		
Time 0:05	Adjusted Depth	Unaujusteu			NOAA Atlas 14 Poin
	0.0239		0.0239		
0:10	0.0717 0.1099		0.0717 0.1099		
0:15 0:20					
	0.1912		0.1912		
0:25 0:30	0.3346 0.5975		0.3346 0.5975		
0:30	0.3346		0.3346		
0:35			0.3340		
0:40	0.1482		0.1482		
0:50	0.1402		0.1195		
0:55	0.0956		0.0956		
1:00	0.0956		0.0956		
1:05	0.0956		0.0956		
1:10			0.0478		
1:15	0.0478		0.0478		
1:20	0.0287		0.0287		
1:25	0.0287		0.0287		
1:30	0.0287		0.0287		
1:35	0.0287		0.0287		
1:40	0.0287		0.0287		
1:45	0.0287		0.0287		
1:50	0.0287		0.0287		
1:55	0.0287		0.0287		
2:00	0.0287		0.0287		
2:05	0.0000		0.0000		
2:10	0.0000		0.0000		
2:15	0.0000		0.0000		
2:20	0.0000		0.0000		
2:25	0.0000		0.0000		
2:30	0.0000		0.0000		
2:35	0.0000		0.0000		
2:40	0.0000		0.0000		
2:45	0.0000		0.0000		
2:50 2:55	0.0000 0.0000		0.0000 0.0000		
3:00	0.0000		0.0000		
3:05	0.0000		0.0000		
3:10			0.0000		
3:15	0.0000		0.0000		
3:20	0.0000		0.0000		
3:25	0.0000		0.0000		
3:30	0.0000		0.0000		
3:35	0.0000		0.0000		
3:40	0.0000		0.0000		
3:45	0.0000		0.0000		
3:50	0.0000		0.0000		
3:55	0.0000		0.0000		
4:00	0.0000		0.0000		
4:05	0.0000		0.0000		
4:10	0.0000		0.0000		
4:15 4:20	0.0000 0.0000		0.0000		
4:20			0.0000		
4:30	0.0000		0.0000		
4:35	0.0000		0.0000		
4:40			0.0000		
4:45	0.0000		0.0000		
4:50	0.0000		0.0000		
4:55	0.0000		0.0000		
5:00	0.0000		0.0000		
5:05	0.0000		0.0000		
5:10	0.0000		0.0000		
5:15	0.0000		0.0000		
5:20	0.0000		0.0000		
5:25	0.0000		0.0000		
5:30	0.0000		0.0000		
5:35	0.0000		0.0000		
5:40	0.0000		0.0000		
5:45	0.0000 0.0000		0.0000 0.0000		
5:50 5:55	0.0000		0.0000		
6:00	0.0000		0.0000		
6:05	0.0000		0.0000		
0.00	5.0000				

NOAA Atlas 14 Point Precipitation Frequency Estimates: CO (Note: Use 60-minute recurrence interval depth)

Existing 2-YR Storm


Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error %
1	JUNCTION	1.55	1.79	0	01:04	0.0427	0.0741	0.000
2	JUNCTION	0.67	0.67	0	00:40	0.0153	0.0153	0.000
3	JUNCTION	0.59	0.59	0	00:40	0.0155	0.0155	0.000

Existing 100-YR Storm

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error %
1	JUNCTION				00:54	0	7.66	0.000
2	JUNCTION	39.05	39.05	0	00:45	1.02	1.02	0.000
3	JUNCTION	67.83	67.83	0	00:50	2.09	2.09	0.000

RAINGAGE-1

Printouts for Storm Hydrographs Proposed 2-yr Storm

flow in cfs

	flow in cfs		
time in minutes	1	2	3
<u>ä</u>	PR-1	PR-2	PR-3
5	0.00	0.00	0.00
10	0.00	0.00	0.00
15	0.02	0.01	0.00
20	0.20	0.08	0.01
25	0.92	0.37	0.11
30	2.53	0.92	0.36
35	3.92	1.08	0.54
40	4.48	1.08	0.59
45	4.50	0.97	0.57
50	4.19	0.86	0.52
55	3.78	0.76	0.46
60	3.46	0.67	0.41
65	3.16	0.61	0.37
70	2.89	0.54	0.33
75	2.66	0.48	0.30
80	2.46	0.42	0.28
85	2.27	0.36	0.25
90	2.08	0.32	0.22
95	1.90	0.29	0.20
100	1.72	0.27	
105	1.55	0.25	0.15
110	1.41 1.32	0.23	0.14 0.13
115 120	1.32	0.20	0.13
120	1.25	0.17	0.12
125	1.14	0.14	0.11
130	0.93	0.08	0.10
140	0.83	0.06	0.05
145	0.74	0.04	0.07
150	0.65	0.03	0.06
155	0.56	0.02	0.05
160	0.48	0.02	0.04
165	0.39	0.02	0.03
170	0.31	0.01	0.02
175	0.23	0.01	0.01
180	0.16	0.01	0.01
185	0.11	0.01	0.00
190	0.09	0.01	0.00
195	0.07	0.00	0.00
200	0.06	0.00	0.00
205	0.05	0.00	0.00
210	0.04	0.00	0.00
215	0.04	0.00	0.00
220	0.03	0.00	0.00
225	0.03	0.00	0.00
230	0.02	0.00	0.00
235	0.02	0.00	0.00
240	0.01	0.00	0.00
245	0.01	0.00	0.00
250	0.01	0.00	0.00
255	0.00	0.00	0.00
260	0.00	0.00	0.00
265 270	0.00	0.00	0.00
270	0.00	0.00	0.00
275	0.00	0.00	0.00
285	0.00	0.00	0.00
205	0.00	0.00	0.00

Printouts for Storm Hydrographs Proposed 100-yr Storm flow in cfs

SP IE I N S 5 0.00 0.00 0.00 10 0.00 0.00 0.00 15 0.13 0.06 0.01 20 0.49 0.16 0.02 25 4.02 1.81 0.61 30 43.22 22.21 21.67 35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20		flow in cfs	-	
5 0.00 0.00 0.00 10 0.00 0.00 0.00 15 0.13 0.06 0.01 20 0.49 0.16 0.02 25 4.02 1.81 0.61 30 43.22 22.21 21.67 35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24	ime in minutes	R-1	R-2	R-3
10 0.00 0.00 0.00 15 0.13 0.06 0.01 20 0.49 0.16 0.02 25 4.02 1.81 0.61 30 43.22 22.21 21.67 35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84				
15 0.13 0.06 0.01 20 0.49 0.16 0.02 25 4.02 1.81 0.61 30 43.22 22.21 21.67 35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 <td></td> <td></td> <td></td> <td></td>				
20 0.49 0.16 0.02 25 4.02 1.81 0.61 30 43.22 22.21 21.67 35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 91 84.43 15.50 36.20 92 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 <td>-</td> <td></td> <td></td> <td></td>	-			
25 4.02 1.81 0.61 30 43.22 22.21 21.67 35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48				
30 43.22 22.21 21.67 35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17				
35 98.02 35.26 47.56 40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 133 30.96 3.51 12				
40 132.11 39.90 61.31 45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 132 37.89 5.62 15.89 130 34.29 4.56 14				
45 147.86 39.91 67.15 50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.	-			
50 151.72 38.56 67.83 55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 133 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07	-			
55 146.63 36.14 65.28 60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 133 30.96 3.51 12.90 140 27.83 2.48 11.55 144 0.69 7.84 160 167.72 0.45 6.62 165 14.02 0.28 5.39	-			
60 140.62 33.71 62.41 65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 <td></td> <td></td> <td></td> <td></td>				
65 134.80 31.92 59.65 70 125.57 28.53 54.88 75 114.51 25.00 49.73 80 104.01 21.48 44.96 85 93.93 18.20 40.42 90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39				
70125.5728.5354.88 75 114.5125.0049.73 80 104.0121.4844.96 85 93.9318.2040.42 90 84.4315.5036.20 95 75.6613.4732.24 100 67.1711.8428.38 105 58.9710.3924.65 110 51.659.0721.73 115 46.227.8619.48 120 41.816.7117.58 125 37.895.6215.89 130 34.294.5614.34 135 30.963.5112.90 140 27.832.4811.55 145 24.921.5910.30 150 22.171.059.07 155 19.440.697.84 160 16.720.456.62 165 14.020.285.39 170 11.320.164.17 175 8.630.082.95 180 5.980.041.85 185 3.860.031.18 190 2.550.020.76 195 1.700.020.47 200 1.100.010.27 205 0.680.010.14 210 0.390.010.05 215 0.020.000.00 220 0.110.000.00 235 0.020.000.00 24				
75114.5125.0049.7380104.0121.4844.968593.9318.2040.429084.4315.5036.209575.6613.4732.2410067.1711.8428.3810558.9710.3924.6511051.659.0721.7311546.227.8619.4812041.816.7117.5812537.895.6215.8913034.294.5614.3413530.963.5112.9014027.832.4811.5514524.921.5910.3015022.171.059.0715519.440.697.8416016.720.456.6216514.020.285.3917011.320.164.171758.630.082.951805.980.041.851853.860.031.181902.550.020.761951.700.020.472001.100.010.272050.680.010.142100.390.010.052150.200.000.002250.030.000.002350.010.000.002460.030.000.002550.010.000.00256				
80104.0121.4844.96 85 93.9318.2040.42 90 84.4315.5036.20 95 75.6613.4732.24 100 67.1711.8428.38 105 58.9710.3924.65 110 51.659.0721.73 115 46.227.8619.48 120 41.816.7117.58 125 37.895.6215.89 130 34.294.5614.34 135 30.963.5112.90 140 27.832.4811.55 145 24.921.5910.30 150 22.171.059.07 155 19.440.697.84 160 16.720.456.62 165 14.020.285.39 170 11.320.164.17 175 8.630.082.95 180 5.980.041.85 185 3.860.031.18 190 2.550.020.76 195 1.700.020.47 200 1.100.010.27 205 0.680.010.14 210 0.390.010.05 215 0.020.000.00 235 0.010.000.00 240 0.040.000.00 255 0.000.000.00 255 0.010.000.00 255 <td></td> <td></td> <td></td> <td></td>				
8593.9318.2040.429084.4315.5036.209575.6613.4732.2410067.1711.8428.3810558.9710.3924.6511051.659.0721.7311546.227.8619.4812041.816.7117.5812537.895.6215.8913034.294.5614.3413530.963.5112.9014027.832.4811.5514524.921.5910.3015022.171.059.0715519.440.697.8416016.720.456.6217011.320.164.171758.630.082.951805.980.041.851853.860.031.181902.550.020.761951.700.020.472001.100.010.272050.680.010.142100.390.010.052150.200.000.002250.080.000.002350.010.000.002400.040.000.002550.010.000.002550.010.000.002550.010.000.002550.010.000.002560.0				
90 84.43 15.50 36.20 95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.03 1.18 190 2.55 0.02 0.76				
95 75.66 13.47 32.24 100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18				
100 67.17 11.84 28.38 105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.02 0.00 0.01 225 0.08 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01		84.43	15.50	
105 58.97 10.39 24.65 110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 225 0.08 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 255 0.00 0.00 0.00 255 0.00 0.0	95	75.66	13.47	32.24
110 51.65 9.07 21.73 115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 225 0.08 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 270 0.00 0.00 0.00 280 0.00	100	67.17	11.84	28.38
115 46.22 7.86 19.48 120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 220 0.11 0.00 0.01 230 0.06 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 270 0.00 0.00 0.00 280 0.00 0.00 0.00	105	58.97	10.39	24.65
120 41.81 6.71 17.58 125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 225 0.08 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 256 0.00 0.00 0.00 256 0.00 0.00 0.00 256 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00	110	51.65	9.07	21.73
125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 225 0.08 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 256 0.00 0.00 0.00 256 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 <t< td=""><td>115</td><td>46.22</td><td>7.86</td><td></td></t<>	115	46.22	7.86	
125 37.89 5.62 15.89 130 34.29 4.56 14.34 135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 225 0.08 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 256 0.00 0.00 0.00 256 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 <t< td=""><td>120</td><td>41.81</td><td>6.71</td><td>17.58</td></t<>	120	41.81	6.71	17.58
135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 220 0.11 0.00 0.01 235 0.05 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 270 0.00 0.00 0.00 280 0.00 0.00 0.00	125	37.89	5.62	
135 30.96 3.51 12.90 140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 220 0.11 0.00 0.01 235 0.05 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 270 0.00 0.00 0.00 280 0.00 0.00 0.00	130	34.29	4.56	14.34
140 27.83 2.48 11.55 145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 220 0.11 0.00 0.01 230 0.06 0.00 0.01 235 0.02 0.00 0.00 240 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 270 0.00 0.00 0.00 280 0.00 0.00 0.00	_	30.96		12.90
145 24.92 1.59 10.30 150 22.17 1.05 9.07 155 19.44 0.69 7.84 160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 220 0.11 0.00 0.01 225 0.08 0.00 0.01 230 0.06 0.00 0.00 244 0.04 0.00 0.00 255 0.01 0.00 0.00 255 0.01 0.00 0.00 256 0.00 0.00 0.00 270 0.00 0.00 0.00 280 0.00 0.00 0.00	140	27.83	2.48	11.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	145		1.59	10.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			
160 16.72 0.45 6.62 165 14.02 0.28 5.39 170 11.32 0.16 4.17 175 8.63 0.08 2.95 180 5.98 0.04 1.85 185 3.86 0.03 1.18 190 2.55 0.02 0.76 195 1.70 0.02 0.47 200 1.10 0.01 0.27 205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 220 0.11 0.00 0.01 225 0.08 0.00 0.01 230 0.06 0.00 0.01 235 0.02 0.00 0.00 244 0.04 0.00 0.00 255 0.01 0.00 0.00 256 0.00 0.00 0.00 260 0.01 0.00 0.00 270 0.00 0.00 0.00 280 0.00 0.00 0.00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
205 0.68 0.01 0.14 210 0.39 0.01 0.05 215 0.20 0.00 0.01 220 0.11 0.00 0.01 225 0.08 0.00 0.01 230 0.06 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 245 0.03 0.00 0.00 250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			
220 0.11 0.00 0.01 225 0.08 0.00 0.01 230 0.06 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 245 0.03 0.00 0.00 250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
225 0.08 0.00 0.01 230 0.06 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 245 0.03 0.00 0.00 250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
230 0.06 0.00 0.01 235 0.05 0.00 0.00 240 0.04 0.00 0.00 245 0.03 0.00 0.00 250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
235 0.05 0.00 0.00 240 0.04 0.00 0.00 245 0.03 0.00 0.00 250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
240 0.04 0.00 0.00 245 0.03 0.00 0.00 250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00	_			
245 0.03 0.00 0.00 250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00	-			
250 0.02 0.00 0.00 255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
255 0.01 0.00 0.00 260 0.01 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
260 0.01 0.00 0.00 265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
265 0.00 0.00 0.00 270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00				
270 0.00 0.00 0.00 275 0.00 0.00 0.00 280 0.00 0.00 0.00	-			
275 0.00 0.00 0.00 280 0.00 0.00 0.00	-			
280 0.00 0.00 0.00				
285 0.00 0.00 0.00	_			
	285	0.00	0.00	0.00

Phantom Creek Ranch 2N Project No: 22010 Date: 12-05-2022 Phase I Drainage Report

SWMM 5.1 Proposed Hydrology

Proposed Basin Characteristics

PR-1		
Area	136.45 ac	5943718.44 sq.ft.
Width	1646.586 ft	width= area
% Slope	3.02%	avg max flowpath
% Imperv	9.43%	0 1 1
Flowpaths		
#1	1786.06 ft	
# 2	3813.38 ft	
# 3	4740.83 ft	
#4	3892.92 ft	
# 5	3815.42 ft	
Average	3609.72 ft	
-	igest Flow Length	
201010201	.8000 .000 _0800	
PR-2		
Area	30.44 ac	1326074.583 sq.ft.
Width	923.48 ft	width= area
% Slope	4.16%	avg max flowpath
% Imperv	8.25%	
, ep e. t	0.2070	
Flowpaths		
#1	1121.84 ft	
# 2	1289.28 ft	
# 3	1657.13 ft	
#4	1853.45 ft	
# 5	1258.05 ft	
Average	1435.95 <i>ft</i>	
*Bold is Lor	igest Flow Length	
PR-3		
Area	63.35 ac	2759598.82 sq.ft.
Width	1249.51 ft	width= area
% Slope	3.99%	avg max flowpath
% Imperv	2.68%	c .
Flowpaths		
, #1	1134.30 ft	
# 2	1595.84 ft	
# 3	1967.69 ft	
# 4	3763.48 ft	
# 5	2581.37 ft	
Average	2208.54 ft	—
-	igest Flow Length	

Phantom Creek Ranch 2N Project No: 22010 Date: 12-05-2022 Phase I Drainage Report

SWMM 5.1 Proposed Hydrology

Proposed Flowpaths

Path # 1		Path # 2		Path # 3		Path # 4		Path # 5	
Length	% Slope								
482	9.5	528	6.5	205	4.1	180	7.9	122	8.1
248	2	400	3.8	221	5.5	194	4.5	145	8.7
322	1.2	297	5.7	402	4.7	205	4.4	466	7.2
288	1.3	277	1.6	293	2.8	433	2.2	226	9.8
331	0.3	150	1.5	206	1.9	196	2.5	387	6
		279	1	223	1.5	207	4.2	280	3.3
		166	0.1	335	1.6	206	4.8	680	3
		427	2	156	1.5	156	1.5	314	2.5
		275	1.2	365	1	365	1	168	3.1
		363	1.3	150	0.1	150	0.1	230	1.3
		305	0.3	440	2	440	2	285	1.7
				275	1.2	275	1.2	343	1.1
				363	1.3	363	1.3		
				305	0.3	305	0.3		
Weighted		Weighted		Weighted		Weighted		Weighted	
Slope	3.55	Slope	2.70	Slope	2.14	Slope	2.42	Slope	4.27

Average Slope for PR-2

Path # 1		Path # 2		Path # 3		Path # 4		Path # 5			
Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope		
135	4.9	290	12.1	384	2.5	410	6.1	118	2.2		
227	10.2	114	2.3	373	2	373	2	243	7.6		
140	6.3	255	2.2	255	2.2	255	2.2	260	4.5		
210	4.5	210	4.5	210	4.5	210	4.5	210	4.5		
276	2	276	2	276	2	276	2	276	2		
Weighted		Weighted		Weighted		Weighted		Weighted			
Slope	5.42	Slope	5.09	Slope	2.51	Slope	3.48	Slope	4.31		
Average We	ighted Slop	be:	Average Weighted Slope: 4.16								

Average Slope for PR-3

Path # 1		Path # 2		Path # 3		Path # 4		Path # 5	
Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope	Length	% Slope
150	10	193	5.8	230	15.1	400	5.8	103	3.6
127	4.4	213	13.5	590	1.4	652	8.2	88	3.4
100	10.2	325	5.2	296	1.1	345	3.6	306	6.4
425	2.9	708	1.1	708	1.1	233	3.2	260	7.8
232	1.4	166	1.1	166	1.1	236	6	433	4.2
						345	7.5	437	6.5
						296	1.1	708	1.1
						708	1.1	166	1.1
						166	1.1		
Weighted		Weighted		Weighted		Weighted		Weighted	
Slope	4.48	Slope	4.14	Slope	2.81	Slope	4.42	Slope	4.11
Average Weighted Slope 3.99			3.99						

Phantom Creek Ranch 2N Project No: 22010 Date: 12-05-2022 Phase I Drainage Report

SWMM 5.1

Proposed Hydrology

Junction

Junction Name	Inflow	Invert Elevation	
1	None	6324	ft
2	None	6356	ft
3	None	6365	ft

Conduit

Conduit Name	Inlet Node	Outlet Node	Shape	Max. Depth	Length	Roughness	Initial Flow	Transect Name
Channel-1	2	1	Irregular	11.96	2071	0.035	0	PHANTOM-CREEK
Channel-2	3	1	Irregular	11.96	2554	0.035	0	PHANTOM-CREEK

Transect

Transect Name

PHANTOM-CREEK

FHANTOWFCILLIN			
Station	Elevation	Roughness	
0	6340	Left Station	0.035
15	6337.82	Right Station	0.035
30	6335.41	Channel	0.035
45	6333.88		
60	6333.01	Bank Stations	
75	6331.79	Left	60
90	6330.44	Right	175
105	6329.16		
120	6328.04		
135	6328.34		
150	6328.8		
165	6331.16		
180	6333.3		
195	6334.01		
210	6334.55		
225	6334.49		
240	6334.49		
245.86	6334.55		
255	6334.61		
270	6334.64		
285	6334.71		
300	6334.69		
315	6334.73		
330	6334.86		
345.63	6335		

Phantom Creek Ranch 2N Project No: 22010 Date: 09-01-2023 Phase I Drainage Report

SWMM 5.1

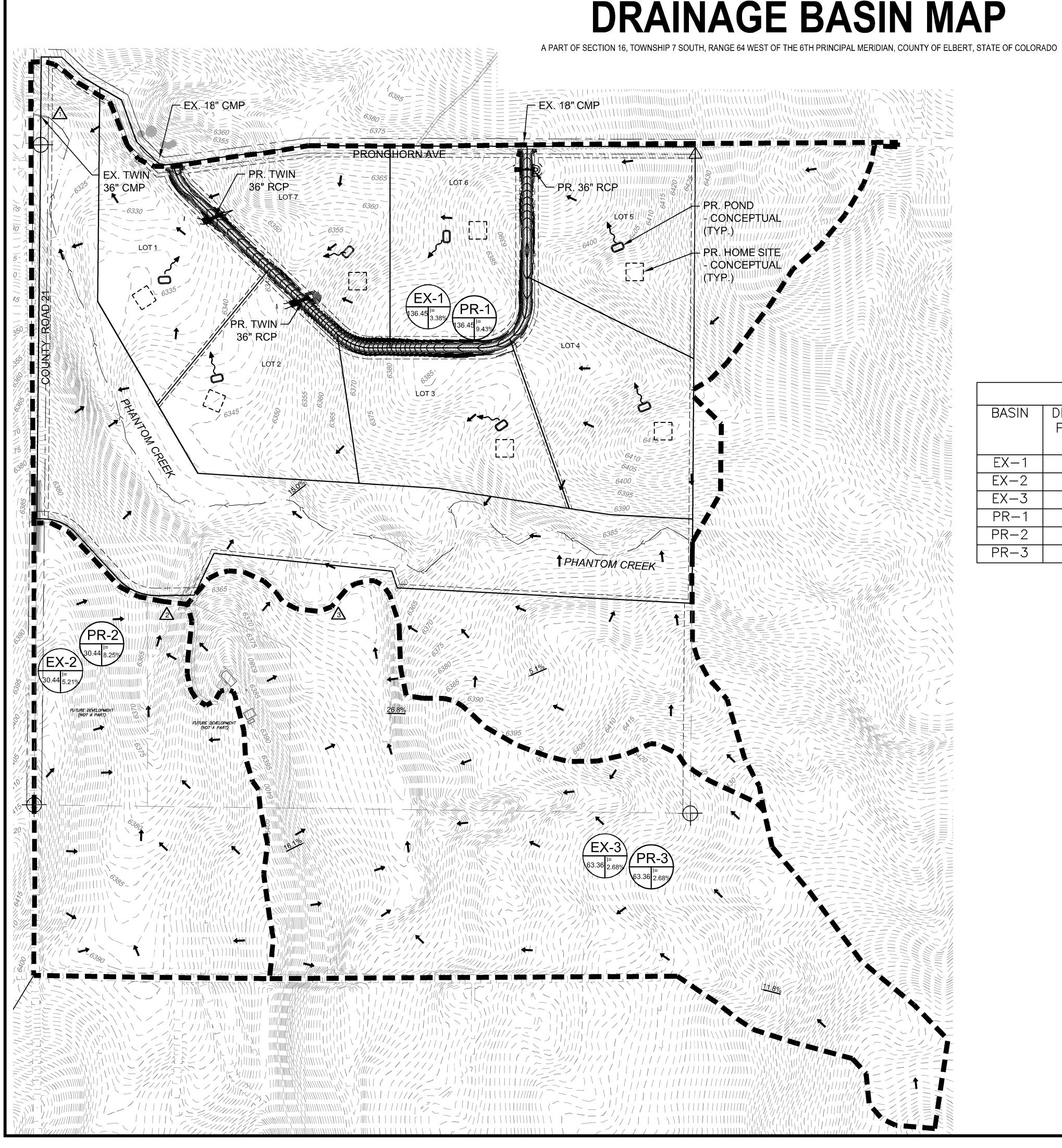
Proposed Hydrology

COMPOSITE IMPERVIOUS VALUES

Basin PR-1		
Surface	% Impervious	Acreage
Road - Asphalt	100%	1.12
Road - Gravel	40%	3.87
Open Space/Historic	2%	55.76
Single Family - 10 ac	12%	75.70
Sum Area =		136.45
Weighted I% =	9.43%	
Basin PR-2		

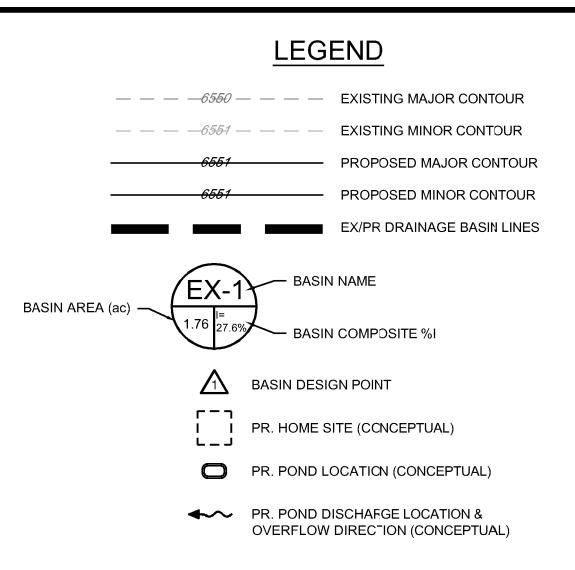
Weighted I% =	8.25%	
Sum Area =		30.44
Open Space/Historic	2%	19.95
Single Family - 10 ac	12%	9.23
Road - Gravel	40%	0.42
Road - Asphalt	100%	0.83
Surface	% Impervious	Acreage
Basin PR-Z		

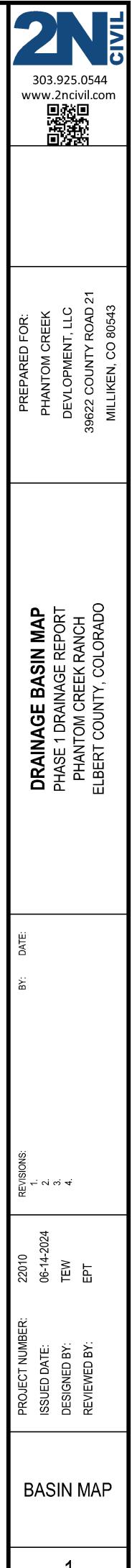
Basin PR-3		
Surface	% Impervious	Acreage
Road - Asphalt	100%	0
Road - Gravel	40%	0
Single Family - 10 ac	12%	4.32
Open Space/Historic	2%	59.04
Sum Area =		63.36
Weighted I% =	2.68%	

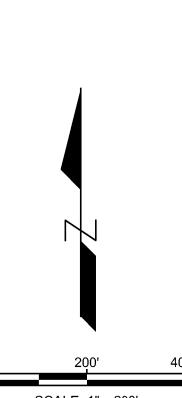

Proposed 2-YR Storm

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error %
1	JUNCTION		4.72	0	00:45	ŭ		0.000
2	JUNCTION	1.08	1.08	0	00:40	0.0259	0.0259	0.000
3	JUNCTION	0.59	0.59	0	00:40	0.0155	0.0155	0.000

Proposed 100-YR Storm


Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error %
1	JUNCTION	151.72	252.38	0	00:53	4.78	7.95	0.000
2	JUNCTION	39.91	39.91	0	00:45	1.05	1.05	0.000
3	JUNCTION	67.83	67.83	0	00:50	2.09	2.09	0.000


Appendix C Drainage Basin Map



DRAINAGE BASIN MAP

BASIN SUMMARY TABLE						
BASIN	DESIGN POINT	2–YEAR RUNOFF	100–YEAR RUNOFF	2–YEAR ROUTED	100–YEAR ROUTED	
		FLOW (cfs)	FLOW (cfs)	FLOW (cfs)	FLOW (cfs)	
EX-1	1	1.55	144.77	1.79	245.13	
EX-2	2	0.67	39.05	0.67	39.05	
EX-3	3	0.59	67.83	0.59	67.83	
PR-1	1	4.50	151.72	4.72	252.38	
PR-2	2	1.08	39.91	1.08	39.91	
PR-3	3	0.59	67.83	0.59	67.83	

SCALE: 1" = 200'

NOTE: TOPOGRAPHY WAS ACCUIRED FROM PUBLIC SOURCES ASSUMED TO BE USGS AND SHOULD NOT BE RELIED ON FOR ANY CONSTRUCTION ACTIVITIES.

Appendix D Roadway Culvert Calculations

Phantom Creek - Stormwater Calculations *Proposed Conditions - Composite % Impervious Value* 1-Sep-23

Basin PR-A

Land Use	Area	% I
Gravel (packed)	0.56	40%
Historic	0.70	2%
Single Family (2.5 ac or greater)	13.93	12%
Sum Area =	15.20	
Composite % =		12.57%

Basin PR-B

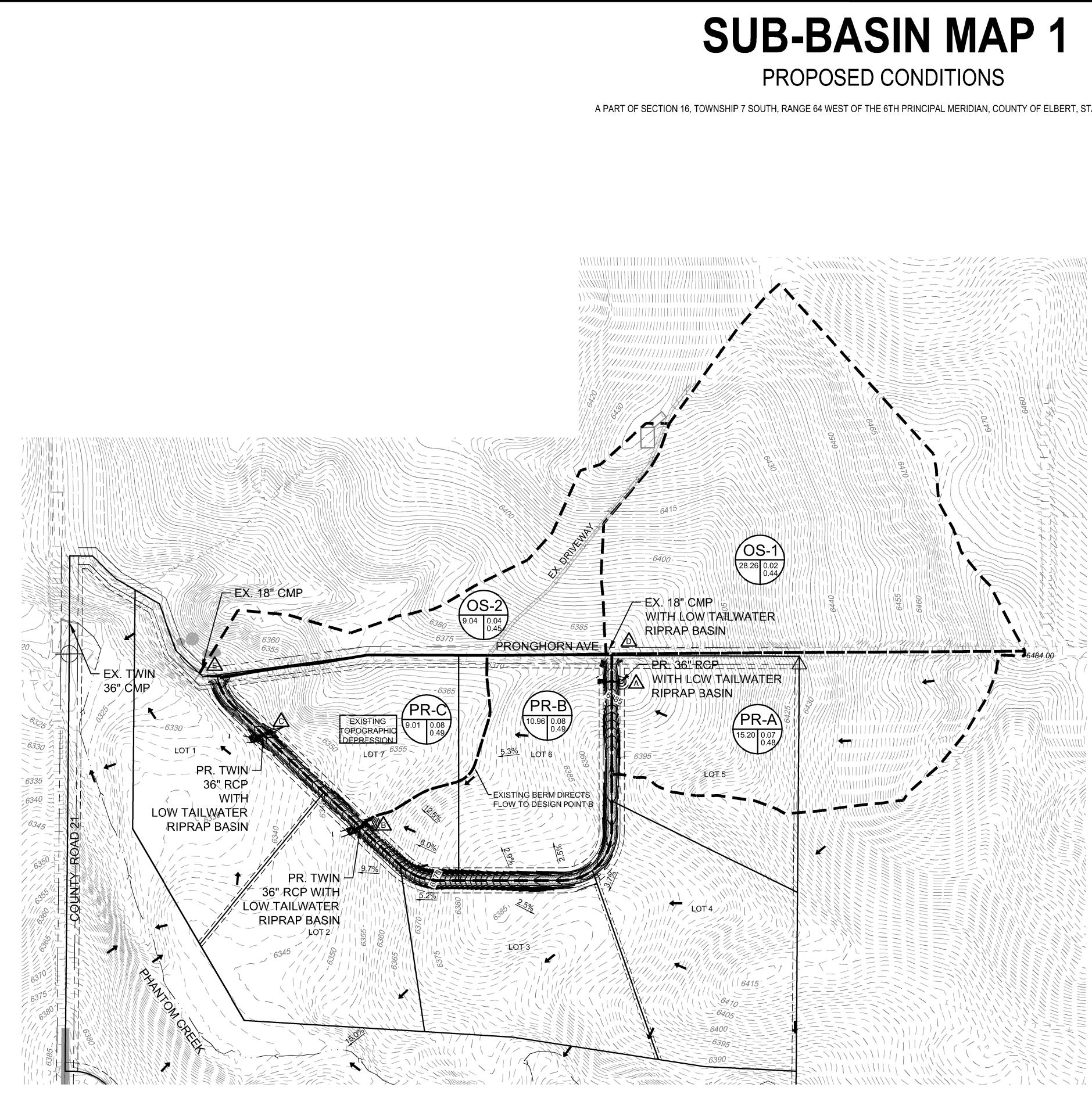
Land Use	Area	% I
Gravel (packed)	0.75	40%
Historic	0.72	2%
Single Family (2.5 ac or greater)	9.50	12%
Sum Area =	10.96	
Composite % =		13.25%

Basin PR-C

Land Use	Area	% I
Gravel (packed)	0.54	40%
Historic	0.56	2%
Single Family (2.5 ac or greater)	7.91	12%
Sum Area =	9.01	
Composite % =		13.05%

Basin OS-1

Land Use	Area	% I
Gravel (packed)	0.55	40%
Historic	27.71	2%
Sum Area =	28.26	
Composite % =		2.74%

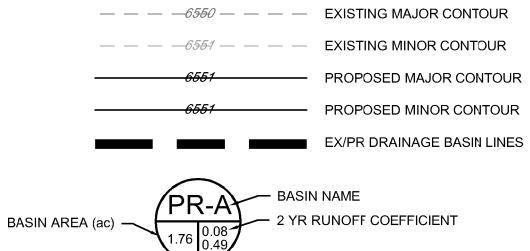

Basin OS-2

Land Use	Area	% I
Gravel (packed)	0.81	40%
Historic	8.15	2%
Roof	0.09	90%
Sum Area =	9.04	
Composite % =		6.22%

Surface Characteristics	Percentage Imperviousness (%)
Business:	1
Downtown Areas	95
Suburban Areas	75
Residential lots (lot area only):	
Single-family	
2.5 acres or larger	12
0.75 – 2.5 acres	20
0.25 – 0.75 acres	30
0.25 acres or less	45
Apartments	75
Industrial:	
Light areas	80
Heavy areas	90
Parks, cemeteries	10
Playgrounds	25
Schools	55
Railroad yard areas	50
Undeveloped Areas:	
Historic flow analysis	2
Greenbelts, agricultural	2
Off-site flow analysis (when land use not defined)	45
Streets:	
Paved	100
Gravel (packed)	40
Drive and walks	90
Roofs	90
Lawns, sandy soil	2
Lawns, clayey soil	2

Table 6-3.	Recommended	percentage	imperviousness va	lues
------------	-------------	------------	-------------------	------

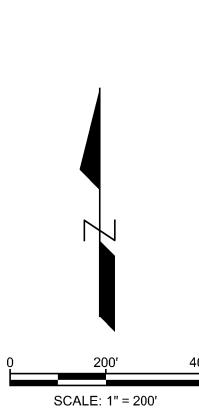
	Calculation of Peak Runoff using Rational Method																																					
Com	igner: TE npany: 2N Date: 11 roject: Ph cation: Elt	V Civil /13/2023 nantom Ci				Cells of the Cells	his color are his color are his color are	e for requi	ired user-in	e values	on overrides	ti	$= \frac{0.395(1.1 - 0)}{S_i^{0.33}}$ $= \frac{L_t}{60K\sqrt{S_t}} = 0$	$\frac{L_{t}}{60V_{t}}$		$l t_c = t_i + t_t$ $t_c = (26 - 17)$	L_{t} = $\frac{L_{t}}{60(14i + 9)}$	$\overline{0})\sqrt{S_t}$		10 (non-urban)	m, min (Compu	ited t _c , Region	al t _c)}		1-hour rainfall	ct UDFCD locati depth, P1 (in) = on Coefficients	2-yr = 1.00 a	5-yr 1.42 b	10-yr 1.68 c	this from the pulldow25-yr50-yr2.35 2.35 $I(in/hr) = \frac{a*}{(b+1)}$	100-yr 2.71 P ₁	500-yr	<u>n depths ob</u>	otained fror		A website (clic (cfs) = CIA		;)
							Rune	off Coeffi	icient, C				Ove	rland (Initial) Flo	ow Time				Chann	elized (Travel) I	Flow Time			Tin	ne of Concentr	ation			Rainfall	Intensity, I (in/hr)					Peak	k Flow, Q (cfs	s)	
Subcatch Name		Area (ac)	NRCS Hydrologic Soil Group	Percent Imperviousness	s 2-yr	5-yr	10-yr	25-yr	50-yr	100-y	r 500-yr	Overland Flow Leng L _i (ft)	U/S Elevation th (ft) (Optional)	on D/S Elevation (ft) (Optional)	n Overland Flow Slope S _i (ft/ft)	Overland Flow Time t _i (min)		d U/S Elevation (ft) (Optional)	D/S Elevation (ft) (Optional)	n Channelized Flow Slope S _t (ft/ft)				Computed t _c (min)	Regional t _c (min)	Selected t _c (min)	2-yr	5-yr	10-yr	25-yr 50-yr	100-yr	500-yr	2-yr	5-yr	10-yr	25-yr 5	50-yr	100-yr 500-yr
PR-A	A	15.20	В	12.6	0.07	0.09	0.16	0.33	0.40	0.48	0.58	300.00	6484.00	6465.87	0.060	17.45	1173.00	6465.87	6378.50	0.074	7	1.91	10.23	27.68	30.52	27.68	1.64	2.34	2.76	3.86	4.46		1.85	3.19	6.65		23.38	32.81
PR-B	3	10.96	В	13.3	0.08	0.10	0.16	0.33	0.40	0.49	0.58	300.00	6378.50	6369.88	0.029	22.18	877.32	6369.88	6349.00	0.024	7	1.08	13.54	35.72	32.48	32.48	1.50	2.13	2.51	3.52	4.06		1.29	2.21	4.52		15.49	21.67
PR-C	;	5.06	в	13.1	0.08	0.09	0.16	0.33	0.40	0.49	0.58	300.00	6365.43	6356.14	0.031	21.68	777.14	6356.14	6336.00	0.026	7	1.13	11.49	33.17	31.21	31.21	1.53	2.18	2.57	3.60	4.15		0.60	1.03	2.11		7.30	10.22
OS-1	. :	28.26	в	2.7	0.01	0.02	0.08	0.27	0.34	0.44	0.55	300.00	6459.00	6442.00	0.057	19.10	1202.72	6442.00	6379.44	0.052	7	1.60	12.56	31.66	34.90	31.66	1.52	2.16	2.55	3.57	4.12		0.53	1.04	5.71		34.64	51.06
OS-2	2	9.04	в	6.2	0.03	0.04	0.11	0.29	0.36	0.45	0.56	300.00	6435.00	6420.00	0.050	19.46	1751.62	6420.00	6333.90	0.049	7	1.55	18.81	38.27	38.28	38.27	1.35	1.92	2.27	3.18	3.67		0.40	0.73	2.20		10.43	15.09
																	_								-												_	
PR-A	.1	1.06	В	15.5	0.09	0.11	0.18	0.35	0.41	0.50	0.59	201.77	6405.00	6391.00	0.069	13.37	333.41	6391.00	6378.54	0.037	7	1.35	4.11	17.47	25.95	17.47	2.11	2.99	3.54	4.95	5.71		0.21	0.36	0.68	=	2.18	3.02
PR-B	1	0.90	В	21.0	0.13	0.16	0.23	0.38	0.45	0.52	0.61	23.00	6388.05	6386.00	0.089	3.97	778.72	6386.00	6357.00	0.037	7	1.35	9.61	13.57	28.05	13.57	2.38	3.38	3.99	5.59	6.44		0.29	0.48	0.82		2.24	3.04
PR-C	1	0.22	В	19.5	0.12	0.14	0.21	0.37	0.44	0.52	0.61	23.00	6351.67	6349.62	0.089	4.02	177.24	6349.62	6343.80	0.033	7	1.27	2.33	6.35	24.07	10.00	2.71	3.84	4.55	6.36	7.33		0.07	0.12	0.22		0.62	0.85
												-																	_									



A PART OF SECTION 16, TOWNSHIP 7 SOUTH, RANGE 64 WEST OF THE 6TH PRINCIPAL MERIDIAN, COUNTY OF ELBERT, STATE OF COLORADO.

Summary Runoff Table - Prop

DESIGN	CONTRIBUTING	CONTRIBUTING			
POINT	BASIN(S)	AREA (AC)	Q ₂ (cfs)	Q ₁₀₀ (cfs)	NOTES:
А	PR-A	15.20	1.85	32.81	Flows to Phantom Creek
В	PR-A, PR-B	26.16	3.14	54.48	Flows to Phantom Creek
С	PR-C, OS-1	37.27	1.60	69.27	Flows to Phantom Creek
D	OS-1	28.26	0.53	51.06	Flows to Phantom Creek
E	OS-2	9.04	0.40	15.09	Flows to Phantom Creek



- 100 YR RUNCFF COEFFICIENT

BASIN DESIGN POINT

posed	Conditions

NOTE: TOPOGRAPHY WAS ACCUIRED FROM PUBLIC SOURCES ASSUMED TO BE USGS AND SHOULD NOT BE RELIED ON FOR ANY CONSTRUCTION ACTIVITIES.

			.054 vil.co	
PREPARED FOR:	PHANTOM CREEK	DEVLOPMENT, LLC	39622 COUNTY ROAD 21	MILLIKEN, CO 80543
		PHASE 1 UKAINAGE KEPOKI		
BY: DATE:				
REVISIONS:	<u>-</u> ni a	υ. 4		
22010	06-14-2024	TEW	EPT	
PROJECT NUMBER:	ISSUED DATE:	DESIGNED BY:	REVIEWED BY:	
S		3-B/ IAP	ASI 21	N

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

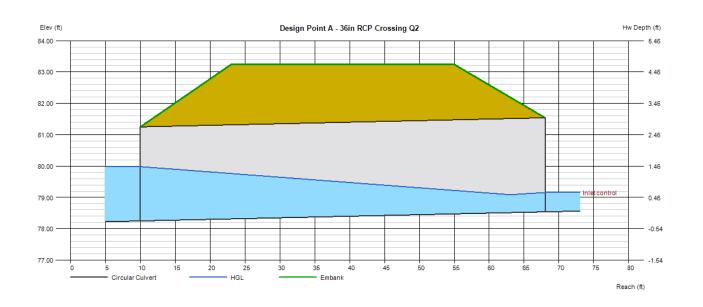
Design Point A - 36in RCP Crossing Q2

= 78.25 = 58.00 = 0.50 = 78.54 = 36.0 = Circular = 36.0 = 1 = 0.013

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c,Y,k

Embankment

Top Elevation (ft) Top Width (ft) Crest Width (ft)


=	83.24
=	32.00
=	10.00

= Circular Concrete

= Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5

	clogging factor
Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 2.22 = 2.22 = (dc+D)/2
Highlighted Qtotal (cfs) Qpipe (cfs) Qovertop (cfs) Veloc Dn (ft/s) Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) Hw Elev (ft) Hw/D (ft) Flow Regime	= 2.22 = 2.22 = 0.00 = 0.53 = 3.21 = 79.98 = 79.00 = 79.16 = 0.21 = Inlet Control
Hw/D < 1.5	⊢∕

Thursday, Aug 24 2023

Design Point A - 36in RCP Crossing Q100

= 83.24

= 32.00

= 10.00

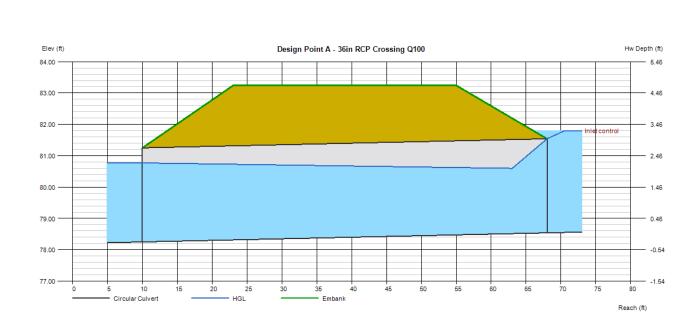
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n-Value Culvert Type **Culvert Entrance** Coeff. K,M,c,Y,k

Embankment

Top Width (ft)

Crest Width (ft)

Top Elevation (ft)


=	78.25
=	58.00
=	0.50
=	78.54
=	36.0
=	Circular
=	36.0
=	1
=	0.013
=	Circular Concrete
=	Square edge w/headwall (C)
=	0.0098, 2, 0.0398, 0.67, 0.5

Thursday, Aug 24 2023 Q100 with 20% clogging factor

Qmin (cfs)	= 39.37
Qmax (cfs)	= 39.37
Tailwater Elev (ft)	= (dc+D)/2
Highlighted	
Qtotal (cfs)	= 39.37
Qpipe (cfs)	= 39.37
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 6.21
Veloc Up (ft/s)	= 7.69
HGL Dn (ft)	= 80.77
HGL Up (ft)	= 80.58
Hw Elev (ft)	= 81.80
Hw/D (ft)	=_1.09
Flow Regime	^z Inlet Control

Calculations

Hw/D < 1.5

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Design Point B - Twin 36in RCP Crossing Q2

= 52.03

= 32.00

= 10.00

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k

Embankment

Top Width (ft)

Crest Width (ft)

Top Elevation (ft)

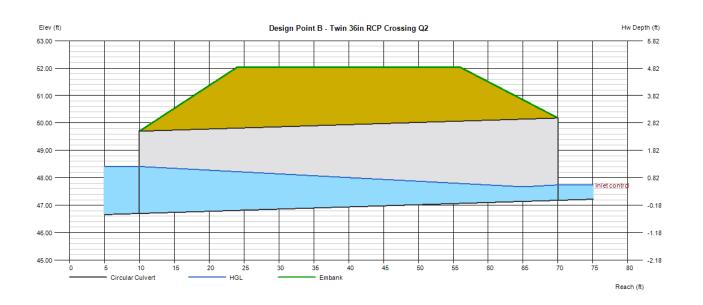
= 46.70 = 60.00 = 0.80= 47.18 = 36.0 = Circular = 36.0= 2 = 0.013 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5

clogging factor = 3.77 = 3.77

Thursday, Aug 24 2023 Q2 with 20%

Qmax (cfs) Tailwater Elev (ft) = (dc+D)/2

Highlighted


Calculations

Qmin (cfs)

Qtotal (cfs)	=	3.77
Qpipe (cfs)	=	3.77
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	0.45
Veloc Up (ft/s)	=	3.07
HGL Dn (ft)	=	48.41
HGL Up (ft)	=	47.61
Hw Elev (ft)	=	47.74
Hw/D (ft)	=	0.19
Flow Regime	A	Inlet C

19 let Control

Hw/D < 1.5

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Design Point B - Twin 36in RCP Crossing Q100

Invert Elev Dn (ft)	= 46.70	Calculations	
Pipe Length (ft)	= 60.00	Qmin (cfs)	= 65.38
Slope (%)	= 0.80	Qmax (cfs)	= 65.38
Invert Elev Up (ft)	= 47.18	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 36.0		()
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 65.38
No. Barrels	= 2	Qpipe (cfs)	= 65.38
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.34
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.10
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 49.13
		HGL Up (ft)	= 49.04
Embankment		Hw Elev (ft)	= 50.02
Top Elevation (ft)	= 52.03	Hw/D (ft)	= 0.95
Top Width (ft)	= 32.00	Flow Regime	🗾 Inlet Control
	40.00	5	

Top Width (ft) Crest Width (ft)

=	52.03
=	32.00
=	10.00

Hw/D < 1.5

Elev (ft) Design Point B - Twin 36in RCP Crossing Q100 Hw Depth (ft) 5.82 53.00 52.00 4.82 3.82 51.00 50.00 2.82 1.82 49.00 48.00 0.82 47.00 -0.18 46.00 -1.18 45.00 --2.18 10 15 20 25 30 35 40 45 50 60 65 70 75 80 - Circular Culvert HGI Embank Reach (ft)

Thursday, Aug 24 2023

Q100 with 20% clogging factor

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

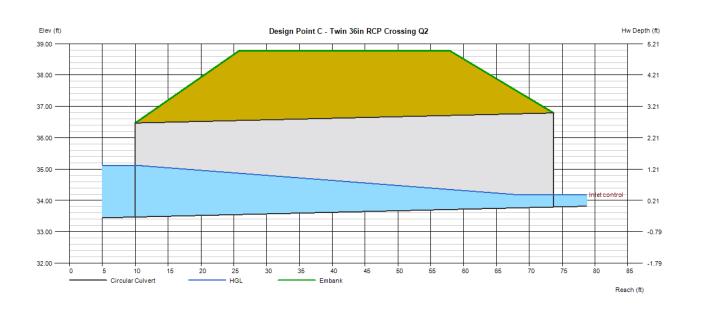
Design Point C - Twin 36in RCP Crossing Q2

= 33.47

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in) Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k

= 63.70 = 0.50 = 33.79 = 36.0 = Circular = 36.0 = 2 = 0.013 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5

Embankment


Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	38.78
=	32.00
=	10.00

Qmin (cfs) Qmax (cfs)	= 1.92 ⁴ = 1.92
\ /	
Tailwater Elev (ft)	= (dc+D)/2
Highlighted	
Qtotal (cfs)	= 1.92
Qpipe (cfs)	= 1.92
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 0.24
Veloc Up (ft/s)	= 2.58
HGL Dn (ft)	= 35.12
HGL Up (ft)	= 34.09
Hw Elev (ft)	= 34.19
Hw/D (ft)	= 0.13
Flow Regime	Inlet Control

Hw/D < 1.5

Calculations

Thursday, Aug 24 2023

Q2 with 20%

clogging factor

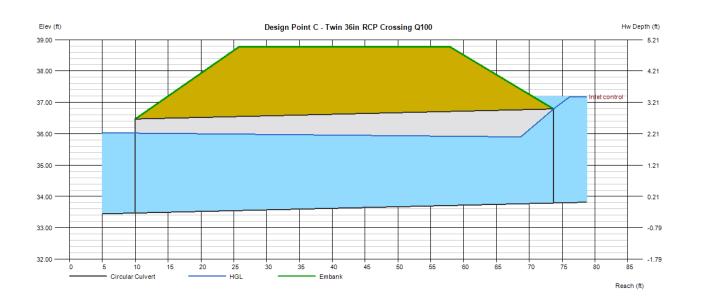
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Design Point C - Twin 36in RCP Crossing Q100

Invert Elev Dn (ft)	= 33.47	Calculations	
Pipe Length (ft)	= 63.70	Qmin (cfs)	= 83.12
Slope (%)	= 0.50	Qmax (cfs)	= 83.12
Invert Elev Up (ft)	= 33.79	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0		, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 83.12
No. Barrels	= 2	Qpipe (cfs)	= 83.12
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.49
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.87
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 36.02
		HGL Up (ft)	= 35.89
Embankment		Hw Elev (ft)	= 37.18
Top Elevation (ft)	= 38.78	Hw/D (ft)	= 1.13

Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 38.78 = 32.00 = 10.00


Qpipe (cis)
Qovertop (cfs)
Veloc Dn (ft/s)
Veloc Up (ft/s)
HGL Dn (ft)
HGL Up (ft)
Hw Elev (ft)
Hw/D (ft)
Flow Regime

Q100 with 20% clogging factor

Thursday, Aug 24 2023

- 1.13
- 켜 Inlet Control

Hw/D < 1.5

3.2.3 Rock Sizing for Riprap Apron and Low Tailwater Basin

Scour resulting from highly turbulent, rapidly decelerating flow is a common problem at conduit outlets. The following section summarizes the method for sizing riprap protection for both riprap aprons (Section 3.2.1) and low tailwater basins (Section 3.2.2).

Use Figure 9-38 to determine the required rock size for circular conduits and Figure 9-39 for rectangular conduits. Figure 9-38 is valid for $Q/D_c^{2.5}$ of 6.0 or less and Figure 9-39 is valid for $Q/WH^{1.5}$ of 8.0 or less. The parameters in these two figures are:

- 1. $Q/D^{1.5}$ or $Q/WH^{0.5}$ in which Q is the design discharge in cfs, D_c is the diameter of a circular conduit in feet, and W and H are the width and height of a rectangular conduit in feet.
- 2. Y_{t}/D_{c} or Y_{t}/H in which Y_{t} is the tailwater depth in feet, D_{c} is the diameter of a circular conduit in feet, and H is the height of a rectangular conduit in feet. In cases where Y_{t} is unknown or a hydraulic jump is suspected downstream of the outlet, use $Y_{t}/D_{t} = Y_{t}/H = 0.40$ when using Figures 9-38 and 9-39.
- 3. The riprap size requirements in Figures 9-38 and 9-39 are based on the non-dimensional parametric Equations 9-16 and 9-17 (Steven, Simons, and Watts 1971 and Smith 1975).

Circular culvert:

$$d_{50} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$$
 Equation 9-16

Rectangular culvert:

 $d_{50} = \frac{0.014H^{0.5}Q}{Y_t W}$ Equation 9-17

These rock size requirements assume that the flow in the culvert is subcritical. It is possible to use Equations 9-16 and 9-17 when the flow in the culvert is supercritical (and less than full) if the value of D_c or *H* is modified for use in Figures 9-38 and 9-39. Note that rock sizes referenced in these figures are defined in the *Open Channels* chapter. Whenever the flow is supercritical in the culvert, substitute D_a for D_c and H_a for *H*, in which D_a is defined as:

$$D_a = \frac{(D_c + Y_n)}{2}$$
 Equation 9-18

Where the maximum value of D_a shall not exceed D_c , and

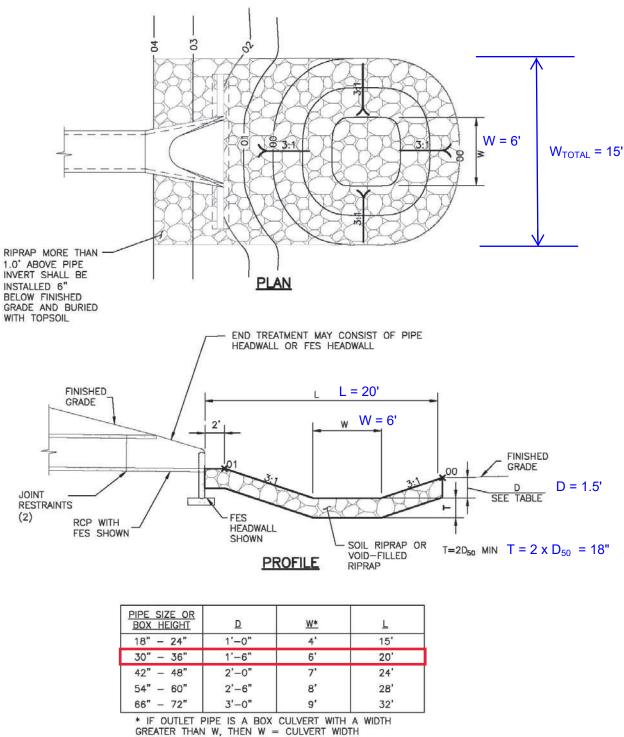
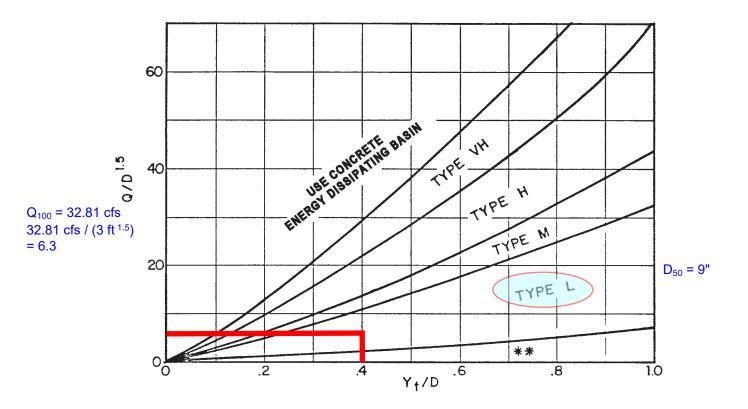
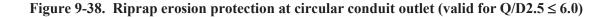


Figure 9-37. Low tailwater riprap basin

$$H_a = \frac{(H + Y_n)}{2}$$
 Equation 9-19


Where the maximum value of H_a shall not exceed H, and:

 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)


 D_c = diameter of circular culvert (ft)

 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

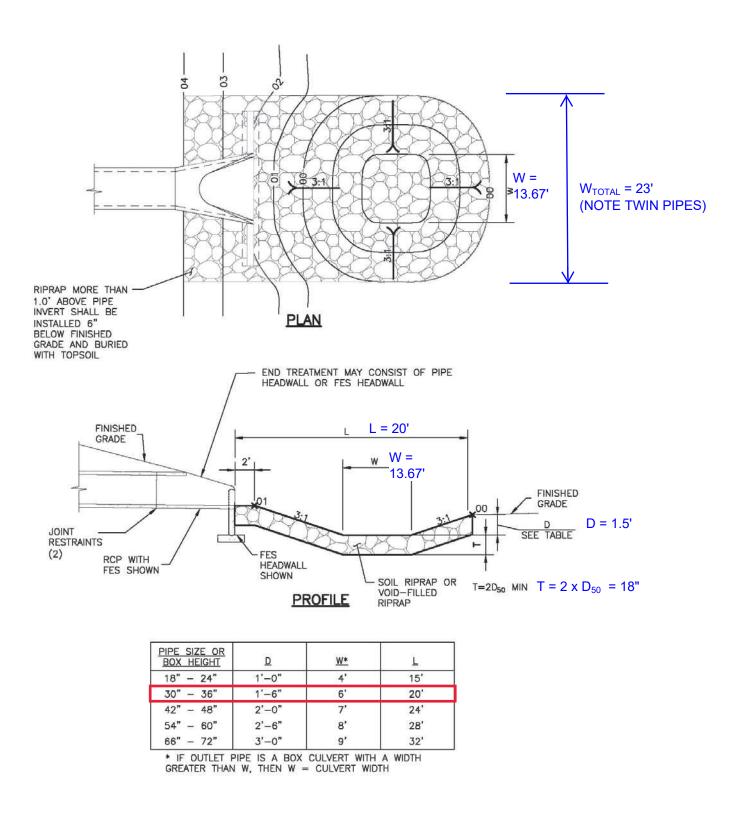
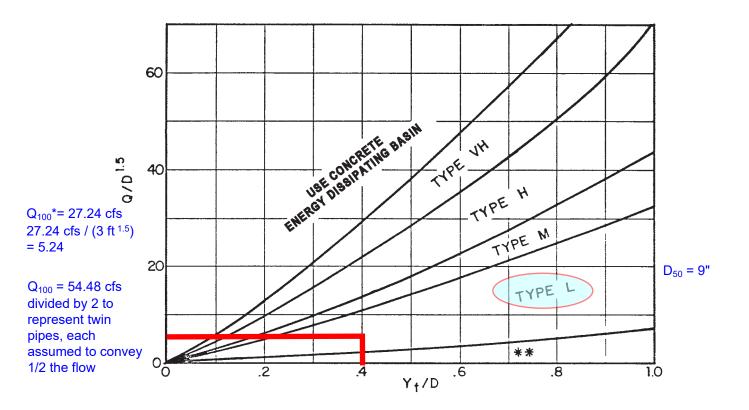
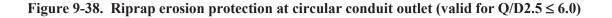


Figure 9-37. Low tailwater riprap basin

$$H_a = \frac{(H+Y_n)}{2}$$
 Equation 9-19


Where the maximum value of H_a shall not exceed H, and:

 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)


 D_c = diameter of circular culvert (ft)

 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

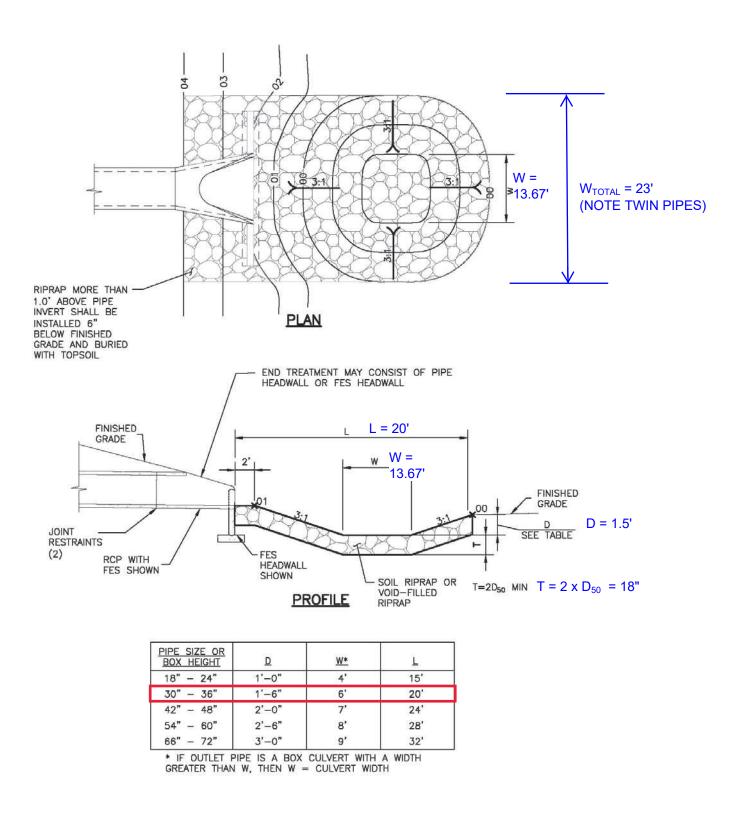
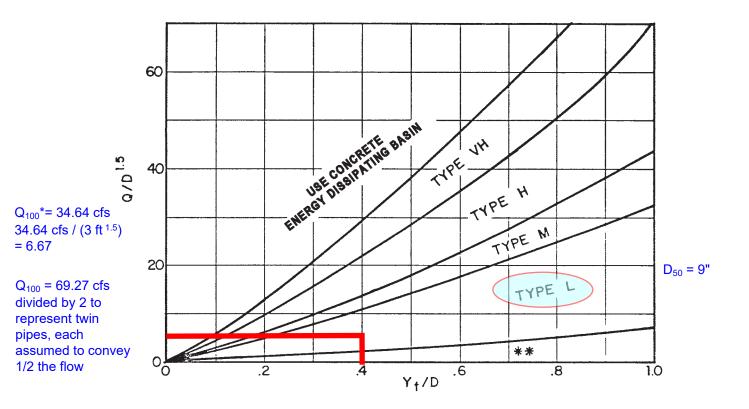
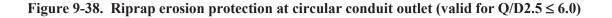


Figure 9-37. Low tailwater riprap basin

$$H_a = \frac{(H+Y_n)}{2}$$
 Equation 9-19


Where the maximum value of H_a shall not exceed H, and:

 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)


 D_c = diameter of circular culvert (ft)

 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.

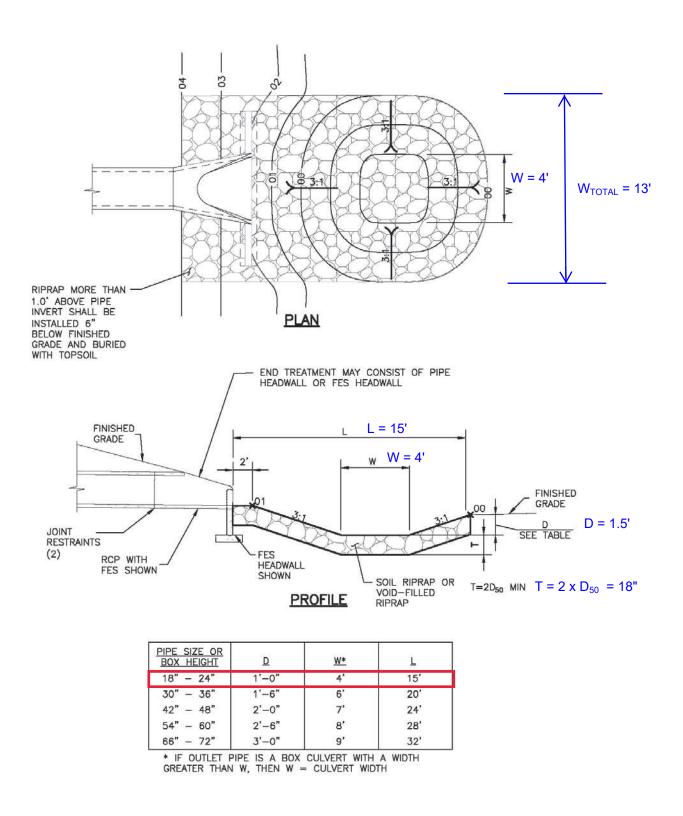


Figure 9-37. Low tailwater riprap basin

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

18in CMP Max Q Capacity

. ,	FOR L
= 78.62	Calc
= 46.24	Qmir
= 1.77	Qma
= 79.44	Tailw
= 18.0	
= Circular	High
= 18.0	Qtota

= Circular Corrugate Metal Pipe

= 0.021, 1.33, 0.0463, 0.75, 0.7

= Mitered to slope (C)

Shape Span (in) No. Barrels n-Value Culvert Type Culvert Entrance Coeff. K,M,c,Y,k

Invert Elev Dn (ft)

Invert Elev Up (ft)

Pipe Length (ft)

Slope (%)

Rise (in)

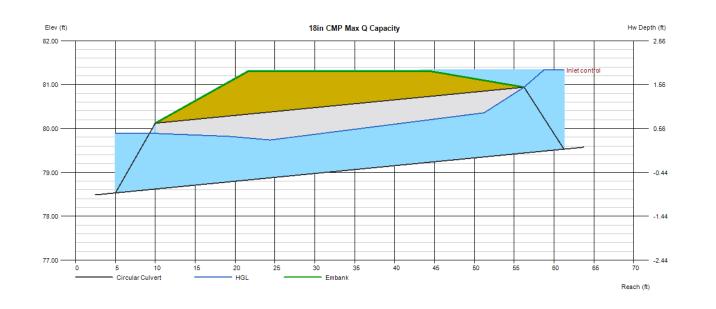
Embankment

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	81.30	
=	23.00	
=	10.00	

= 2

= 0.013


Q_{CAPACITY(MAX)} = 14.35 cfs FOR USE ON NEXT PAGE

Calculations

Qmin (cfs)	= 14.35
Qmax (cfs)	= 14.35
Tailwater Elev (ft)	= (dc+D)/2

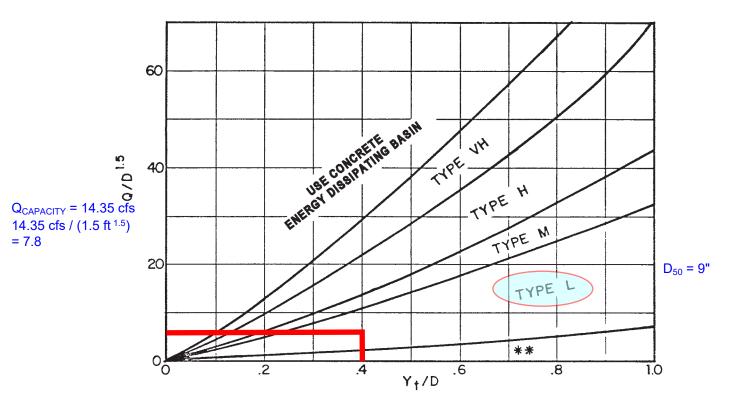
Highlighted

Qtotal (cfs)	= 14.35
Qpipe (cfs)	= 14.23
Qovertop (cfs)	= 0.12
Veloc Dn (ft/s)	= 4.47
Veloc Up (ft/s)	= 5.49
HGL Dn (ft)	= 79.89
HGL Up (ft)	= 80.47
Hw Elev (ft)	= 81.33
Hw/D (ft)	= 1.26
Flow Regime	= Inlet Control
-	

Thursday, Aug 24 2023

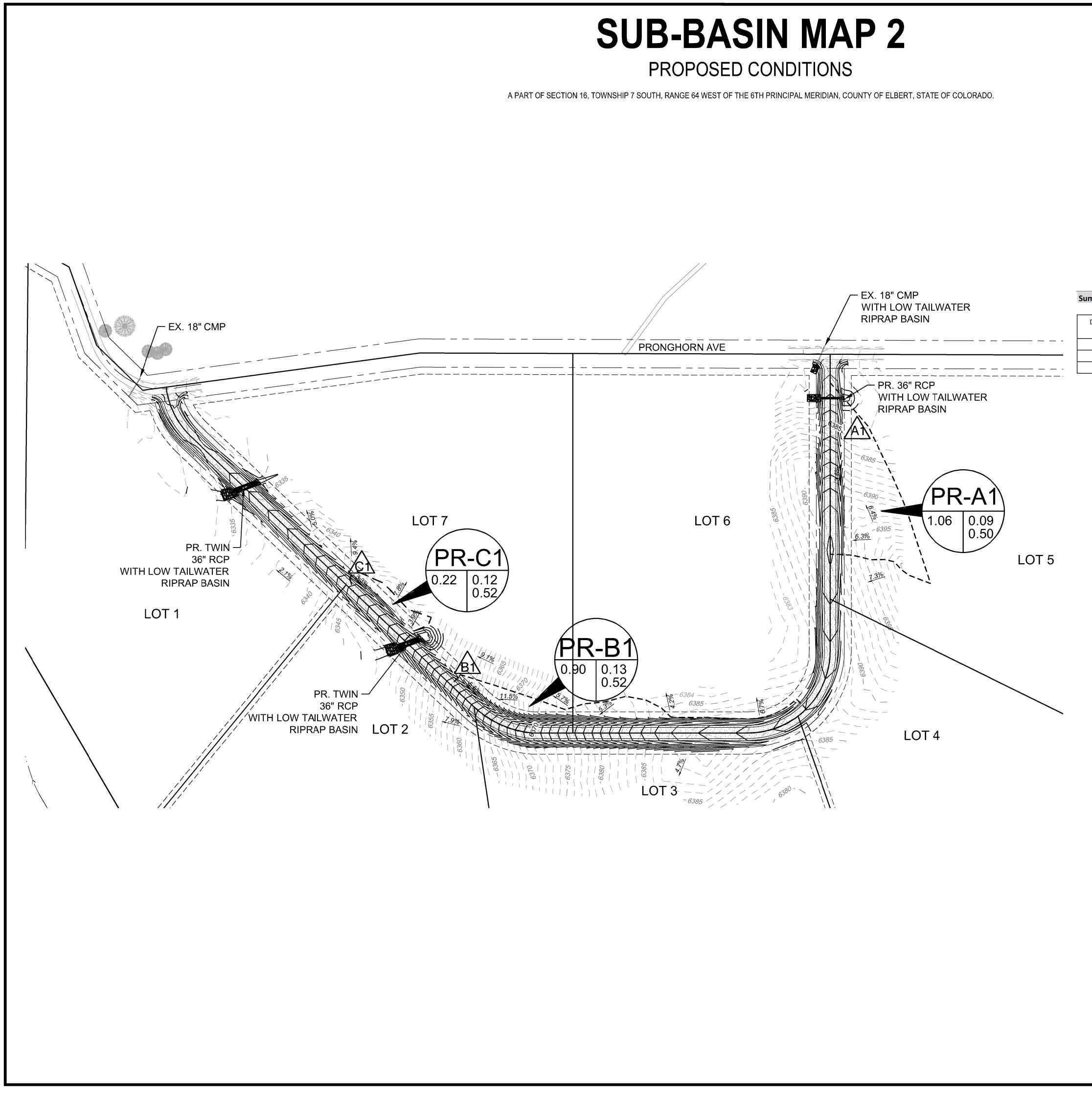
9

$$H_a = \frac{\left(H + Y_n\right)}{2}$$
 Equation 9-1

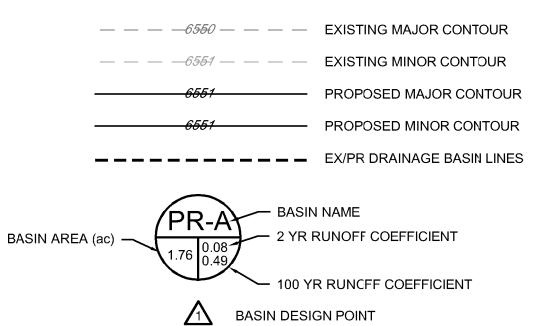

Where the maximum value of H_a shall not exceed H, and:

 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)

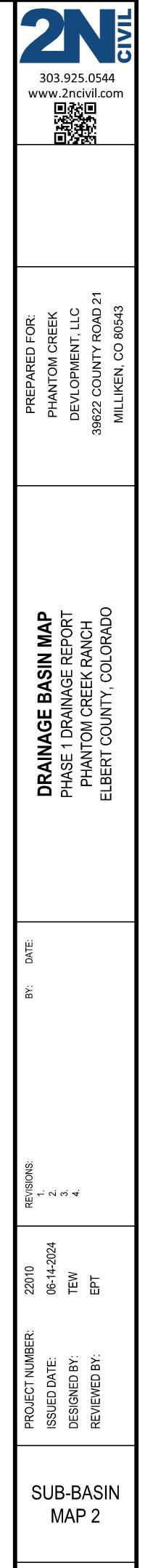

 D_c = diameter of circular culvert (ft)

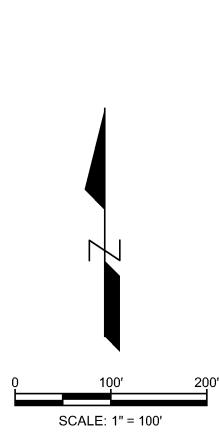

 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)



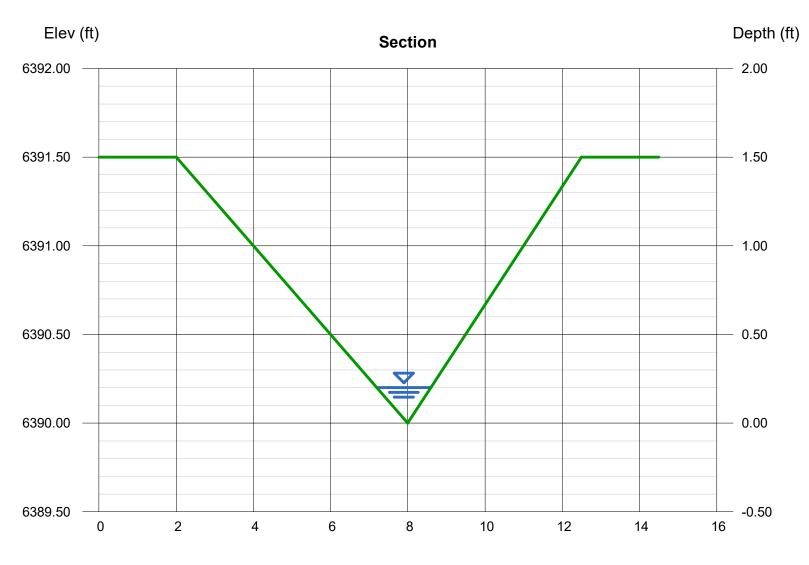
Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream.




LEGEND

Summary Runoff Table - Proposed Conditions, Roadside Swale

DESIGN	CONTRIBUTING	CONTRIBUTING			
POINT	BASIN(S)	AREA (AC)	Q ₂ (cfs)	Q ₁₀₀ (cfs)	NOTES:
A1	A1	1.06	0.21	3.02	Flows to Roadside Swale
B1	B1	0.90	0.29	3.04	Flows to Roadside Swale
C1	C1	0.22	0.07	0.85	Flows to Roadside Swale

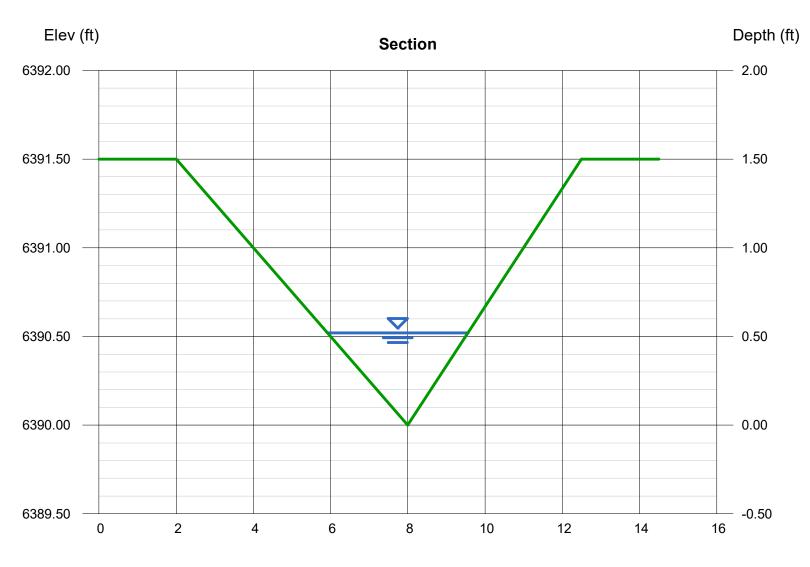

Monday, Nov 13 2023

Roadside Swale Design Point A1 - Q2

Triangular

Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.20
Total Depth (ft)	= 1.50	Q (cfs)	= 0.210
		Area (sqft)	= 0.14
Invert Elev (ft)	= 6390.00	Velocity (ft/s)	= 1.50
Slope (%)	= 3.66	Wetted Perim (ft)	= 1.46
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.19
		Top Width (ft)	= 1.40
Calculations		EGL (ft)	= 0.23
Compute by:	Known Q		
Known Q (cfs)	= 0.21		

Highlighted

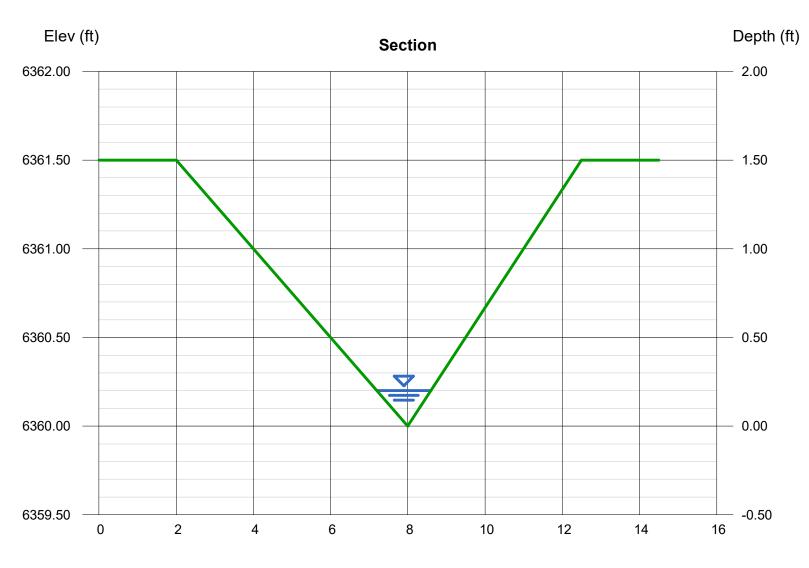

Reach (ft)

Roadside Swale Design Point A1 - Q100

Triangular

Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.52
Total Depth (ft)	= 1.50	Q (cfs)	= 3.020
		Area (sqft)	= 0.95
Invert Elev (ft)	= 6390.00	Velocity (ft/s)	= 3.19
Slope (%)	= 3.66	Wetted Perim (ft)	= 3.79
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.55
		Top Width (ft)	= 3.64
Calculations		EGL (ft)	= 0.68
Compute by:	Known Q		
Known Q (cfs)	= 3.02		

Highlighted


Monday, Nov 13 2023

Roadside Swale Design Point B1 - Q2

Triangular

0			
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.20
Total Depth (ft)	= 1.50	Q (cfs)	= 0.290
,		Area (sqft)	= 0.14
Invert Elev (ft)	= 6360.00	Velocity (ft/s)	= 2.07
Slope (%)	= 5.50	Wetted Perim (ft)	= 1.46
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.22
		Top Width (ft)	= 1.40
Calculations		EGL (ft)	= 0.27
Compute by:	Known Q		
Known Q (cfs)	= 0.29		
()			

Highlighted

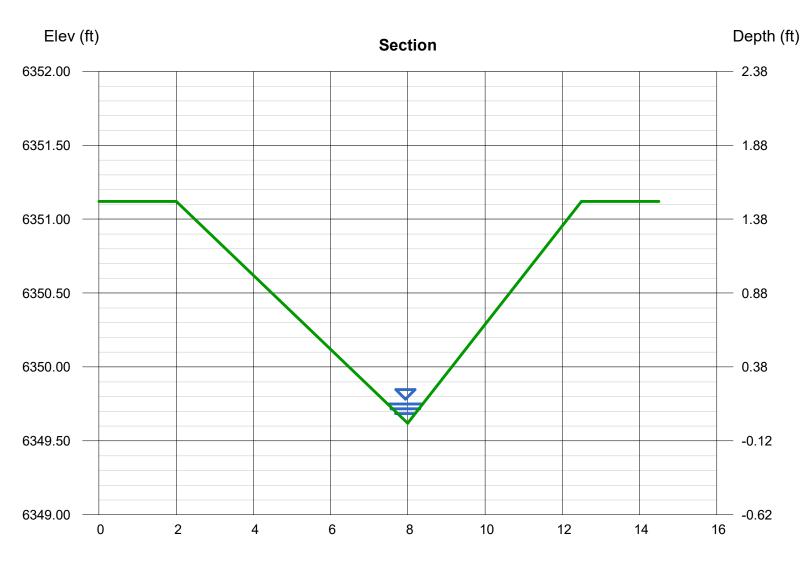
Reach (ft)

Roadside Swale Design Point B1 - Q100

Triangular

Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.49
Total Depth (ft)	= 1.50	Q (cfs)	= 3.040
		Area (sqft)	= 0.84
Invert Elev (ft)	= 6360.00	Velocity (ft/s)	= 3.62
Slope (%)	= 5.50	Wetted Perim (ft)	= 3.57
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.55
		Top Width (ft)	= 3.43
Calculations		EGL (ft)	= 0.69
Compute by:	Known Q		
Known Q (cfs)	= 3.04		
Known Q (cfs)	= 3.04		

Highlighted

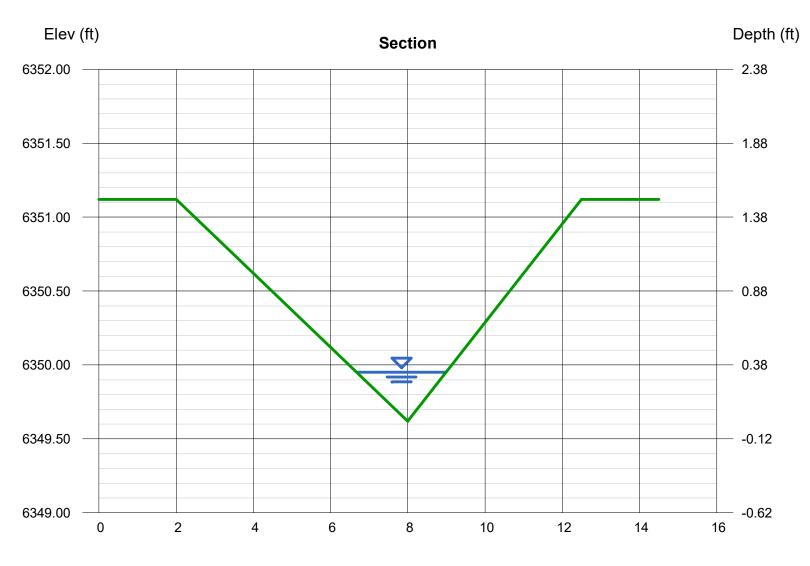

Monday, Nov 13 2023

Roadside Swale Design Point C1 - Q2

Triangular

Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.13
Total Depth (ft)	= 1.50	Q (cfs)	= 0.070
		Area (sqft)	= 0.06
Invert Elev (ft)	= 6349.62	Velocity (ft/s)	= 1.18
Slope (%)	= 3.33	Wetted Perim (ft)	= 0.95
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.12
		Top Width (ft)	= 0.91
Calculations		EGL (ft)	= 0.15
Compute by:	Known Q		
Known Q (cfs)	= 0.07		

Highlighted


Reach (ft)

Roadside Swale Design Point C1 - Q100

Triangular

Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.33
Total Depth (ft)	= 1.50	Q (cfs)	= 0.850
		Area (sqft)	= 0.38
Invert Elev (ft)	= 6349.62	Velocity (ft/s)	= 2.23
Slope (%)	= 3.33	Wetted Perim (ft)	= 2.40
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.33
		Top Width (ft)	= 2.31
Calculations		EGL (ft)	= 0.41
Compute by:	Known Q		
Known Q (cfs)	= 0.85		

Highlighted

Appendix E Conceptual Pond Calculations

Phantom Creek - Stormwater Calculations Proposed Conditions - Composite %I for Conceptual Pond Sizing

Lot 1			
Land Use	Area (sf)	Area (ac)	% I
Roof	5,000	0.11	90%
Gravel driveway (packed)	2,400	0.06	40%
Native/Landsaped Area	2,000	0.05	2%
Gravel access road (packed)	9,221	0.21	40%
Sum Area =	18,621	0.43	
Composite % =		[49.34%

Lot 2

Land Use	Area (sf)	Area (ac)	% I
Roof	5,000	0.11	90%
Gravel driveway (packed)	2,400	0.06	40%
Native/Landsaped Area	2,000	0.05	2%
Gravel access road (packed)	6,173	0.14	40%
Sum Area =	15,573	0.36	
Composite % =			51.17%

Lot 3

Land Use	Area (sf)	Area (ac)	% I
Roof	5,000	0.11	90%
Gravel driveway (packed)	2,400	0.06	40%
Native/Landsaped Area	2,000	0.05	2%
Gravel access road (packed)	11,374	0.26	40%
Sum Area =	20,774	0.48	
Composite % =		[48.38%

Lot 4

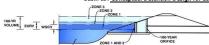
Land Use	Area (sf)	Area (ac)	% I
Roof	5,000	0.11	90%
Gravel driveway (packed)	2,400	0.06	40%
Native/Landsaped Area	2,000	0.05	2%
Gravel access road (packed)	4,426	0.10	40%
Sum Area =	13,826	0.32	
Composite % =			52.58%

Phantom Creek - Stormwater Calculations Proposed Conditions - Composite %I for Conceptual Pond Sizing

14-Jun-24

Lot 5

Land Use	Area (sf)	Area (ac)	% I
Roof	5,000	0.11	90%
Gravel driveway (packed)	2,400	0.06	40%
Native/Landsaped Area	2,000	0.05	2%
Gravel access road (packed)	8,399	0.19	40%
Sum Area =	17,799	0.41	
Composite % =			49.78%


Lot 6

Land Use	Area (sf)	Area (ac)	% I
Roof	5,000	0.11	90%
Gravel driveway (packed)	2,400	0.06	40%
Native/Landsaped Area	2,000	0.05	2%
Gravel access road (packed)	20,263	0.47	40%
Sum Area =	29,663	0.68	
Composite % =			45.87%

Lot 7

Land Use	Area (sf)	Area (ac)	% I
Roof	5,000	0.11	90%
Gravel driveway (packed)	2,400	0.06	40%
Native/Landsaped Area	2,000	0.05	2%
Gravel access road (packed)	18,672	0.43	40%
Sum Area =	28,072	0.64	
Composite % =			46.20%

MHFD-Detention, Version 4.06 (July 2022)

		_										
	/0	100-YE ORIFIC	AR	Depth Increment =		n l						
	1 AND 2					Optional				Optional		
POOL Example Zon	e Configura	tion (Reter	ntion Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume
Metanda d Tafana dia a				Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)
Watershed Information		-		Top of Micropool								
Selected BMP Type =	EDB											
Watershed Area =	0.43	acres										-
Watershed Length =	200	ft										
Watershed Length to Centroid =	100	ft										-
Watershed Slope =	0.050	ft/ft										
Watershed Imperviousness =	49.34%	percent										
Percentage Hydrologic Soil Group A =	100.0%	percent										
Percentage Hydrologic Soil Group B =	0.0%	percent										-
Percentage Hydrologic Soil Groups C/D =	0.0%	percent										-
Target WQCV Drain Time =	40.0	hours										
Location for 1-hr Rainfall Depths =	User Input											-
After providing required inputs above in	cluding 1-hour	rainfall										
depths, click 'Run CUHP' to generate rur												-
the embedded Colorado Urban Hydro		-	Optional User Overrides									-
Water Quality Capture Volume (WQCV) =	0.007	acre-feet	acre-feet									
Excess Urban Runoff Volume (EURV) =	0.024	acre-feet	acre-feet									
2-yr Runoff Volume (P1 = 1 in.) =	0.014	acre-feet	1.00 inches									
5-yr Runoff Volume (P1 = 1.42 in.) =	0.021	acre-feet	1.42 inches									
10-yr Runoff Volume (P1 = 1.68 in.) =	0.026	acre-feet	1.68 inches									
25-yr Runoff Volume (P1 = 1.69 in.) =	0.027	acre-feet	inches									
50-yr Runoff Volume (P1 = 1.99 in.) =	0.034	acre-feet	inches									·
100-yr Runoff Volume (P1 = 2.71 in.) =	0.056	acre-feet	2.71 inches									
500-yr Runoff Volume (P1 = 3.14 in.) =	0.070	acre-feet	inches									·
Approximate 2-yr Detention Volume =	0.013	acre-feet		L								
Approximate 5-yr Detention Volume =	0.020	acre-feet										·
Approximate 10-yr Detention Volume =	0.024	acre-feet										
Approximate 25-yr Detention Volume =	0.026	acre-feet										·
Approximate 50-yr Detention Volume =	0.030	acre-feet										
Approximate 100-yr Detention Volume =	0.042	acre-feet		L								
Define Zones and Basin Geometry		-										
Zone 1 Volume (WQCV) =	0.007	acre-feet										
Zone 2 Volume (EURV - Zone 1) =	0.017	acre-feet										
Zone 3 Volume (100-year - Zones 1 & 2) =	0.017	acre-feet										
Total Detention Basin Volume =	0.042	acre-feet										
Initial Surcharge Volume (ISV) =	1	ft ³										
Initial Surcharge Depth (ISD) =		ft										
Total Available Detention Depth (H _{total}) =		ft										
Depth of Trickle Channel (H _{TC}) =		ft										
Slope of Trickle Channel (S _{TC}) =		ft/ft										
Slopes of Main Basin Sides (Smain) =		H:V										
Basin Length-to-Width Ratio (R _{L/W}) =		1										
		٦.										
Initial Surcharge Area (A _{ISV})		ft ²										
Surcharge Volume Length (L_{ISV}) =		ft										
Surcharge Volume Width (W _{ISV}) =		ft										
Depth of Basin Floor (H_{FLOOR}) =		ft										
Length of Basin Floor $(L_{FLOOR}) =$		ft										
Width of Basin Floor (W _{FLOOR}) =		ft a 2										1
Area of Basin Floor (A _{FLOOR}) =		ft ²										
Volume of Basin Floor (V _{FLOOR}) = Depth of Main Basin (H _{MAIN}) =		ft ³										
Length of Main Basin (LMAIN) =		ft A										
Width of Main Basin (W _{MAIN}) =		ft ft²										
Area of Main Basin (A _{MAIN}) =		ft ³										
Volume of Main Basin (V _{MAIN}) = Calculated Total Basin Volume (V _{total}) =	<u> </u>	acre-feet										
carculated rotal basili volume (V _{total}) =	L				1							
				-								
						-						
												-
						-						
								L				
												-
						-						
				L								
					1							
												-
				<u> </u>		-						
												-
				1		1						

Volume (ac-ft)

Stage (ft)

Stage (ft)

Length (ft)

Width

(ft)

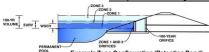
Area

(ft²)

rea (ft

Area (acre)

Volume (ft³)


Volume (ac-ft)

MHFD-Detention, Version 4.06 (July 2022)

Depth Increment =

Stage - Storage Description

Top of Micropool

ZONE 1 AND 2-ORIFICES Example Zone Configuration (Retention Pond)

1.42

1.68

2.71

Watershed Information

	EDB	Selected BMP Type =
acres	0.36	Watershed Area =
ft	200	Watershed Length =
ft	100	Watershed Length to Centroid =
ft/ft	0.050	Watershed Slope =
percent	51.17%	Watershed Imperviousness =
percent	100.0%	Percentage Hydrologic Soil Group A =
percent	0.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Orban Hydro	igraph Procedu	re.
Water Quality Capture Volume (WQCV) =	0.006	acre-feet
Excess Urban Runoff Volume (EURV) =	0.021	acre-feet
2-yr Runoff Volume (P1 = 1 in.) =	0.012	acre-feet
5-yr Runoff Volume (P1 = 1.42 in.) =	0.019	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	0.023	acre-feet
25-yr Runoff Volume (P1 = 1.69 in.) =	0.023	acre-feet
50-yr Runoff Volume (P1 = 1.99 in.) =	0.030	acre-feet
100-yr Runoff Volume (P1 = 2.71 in.) =	0.048	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.060	acre-feet
Approximate 2-yr Detention Volume =	0.012	acre-feet
Approximate 5-yr Detention Volume =	0.017	acre-feet
Approximate 10-yr Detention Volume =	0.021	acre-feet
Approximate 25-yr Detention Volume =	0.023	acre-feet
Approximate 50-yr Detention Volume =	0.027	acre-feet
Approximate 100-yr Detention Volume =	0.036	acre-feet

Define Zones and Basin Geometry

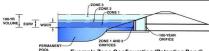
Select Zone 1 Storage Volume (Required) =	
Select Zone 2 Storage Volume (Optional) =	ĺ
Select Zone 3 Storage Volume (Optional) =	
Total Detention Basin Volume =	
Initial Surcharge Volume (ISV) =	
Initial Surcharge Depth (ISD) =	
Total Available Detention Depth $(H_{total}) =$	
Depth of Trickle Channel (H _{TC}) =	
Slope of Trickle Channel (S_{TC}) =	
Slopes of Main Basin Sides (Smain) =	
Basin Length-to-Width Ratio (R _{L/W}) =	

Initial Surcharge Area (A_{ISV}) = Surcharge Volume Length (LISV) = Surcharge Volume Width (W_{ISV}) = Depth of Basin Floor (H_{FLOOR}) = Length of Basin Floor (L_{FLOOR}) = Width of Basin Floor (W_{FLOOR}) = Area of Basin Floor (A_{FLOOR}) = Volume of Basin Floor (V_{FLOOR}) = Depth of Main Basin (H_{MAIN}) = Length of Main Basin (LMAIN) = Width of Main Basin (W_{MAIN}) = Area of Main Basin (A_{MAIN}) = Volume of Main Basin (V_{MAIN}) =

Calculated Total Basin Volume (V_{total}) =

0.006 acre-feet 0.015 0.015 acre-feet 0.015 acre-feet 0.036 acre-feet 1 ft 3 ft/ft H:V ft 2 ft ĥ ۴ ft ³

÷.


ft ³

acre-feet

Optional User Override acre-feet acre-feet 1.00 inches inches inches inches inches inches inches

MHFD-Detention, Version 4.06 (July 2022)

Project: Phantom Creek Ranch	
Basin ID: Conceptual Detention Design for Lot 3 (Ty	pe B Soils)

Depth Increment = Stage - Storage Description Example Zone Configuration (Retention Pond)

Optional User Over

1.00

1.42 1.68

2.71

ft ³

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	0.48	acres
Watershed Length =	200	ft
Watershed Length to Centroid =	100	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	48.38%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.008	acre-feet
Excess Urban Runoff Volume (EURV) =	0.025	acre-feet
2-yr Runoff Volume (P1 = 1 in.) =	0.017	acre-feet
5-yr Runoff Volume (P1 = 1.42 in.) =	0.029	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	0.037	acre-feet
25-yr Runoff Volume (P1 = 1.69 in.) =	0.040	acre-feet
50-yr Runoff Volume (P1 = 1.99 in.) =	0.051	acre-feet
100-yr Runoff Volume (P1 = 2.71 in.) =	0.080	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.097	acre-feet
Approximate 2-yr Detention Volume =	0.016	acre-feet
Approximate 5-yr Detention Volume =	0.024	acre-feet
Approximate 10-yr Detention Volume =	0.033	acre-feet
Approximate 25-yr Detention Volume =	0.032	acre-feet
Approximate 50-yr Detention Volume =	0.035	acre-feet
Approximate 100-yr Detention Volume =	0.047	acre-feet

Define Zones and Basin Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.008	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.017	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.022	acre-feet
Total Detention Basin Volume =	0.047	acre-feet
Initial Surcharge Volume (ISV) =	1	ft ³
Initial Surcharge Depth (ISD) =		ft
Total Available Detention Depth (H _{total}) =		ft
Depth of Trickle Channel (H _{TC}) =		ft
Slope of Trickle Channel (S _{TC}) =		ft/ft
Slopes of Main Basin Sides (Smain) =		H:V
Basin Length-to-Width Ratio (R _{L/W}) =		1
Initial Surcharge Area (A _{ISV}) =		ft ²
Surcharge Volume Length (Leng) =		e .

Surc Surch De Ler Wie A Volu D L Wi Area of Main Basin (A_{MAIN}) = Volume of Main Basin (V_{MAIN}) =

Calculated Total Basin Volume (V_{total}) =

epth of Trickle Channel (H _{TC}) =	π
ope of Trickle Channel (S _{TC}) =	ft/ft
of Main Basin Sides (S _{main}) =	H:V
ength-to-Width Ratio (R _{L/W}) =	
nitial Surcharge Area $(A_{ISV}) =$	ft 2
harge Volume Length $(L_{ISV}) =$	ft
harge Volume Width $(W_{ISV}) =$	ft
epth of Basin Floor $(H_{FLOOR}) =$	ft
ngth of Basin Floor $(L_{FLOOR}) =$	ft
dth of Basin Floor $(W_{FLOOR}) =$	ft
area of Basin Floor $(A_{FLOOR}) =$	ft 2
ume of Basin Floor $(V_{FLOOR}) =$	ft ³
Depth of Main Basin $(H_{MAIN}) =$	ft
ength of Main Basin $(L_{MAIN}) =$	ft
Vidth of Main Basin (WMAIN) =	ft

	Depth Increment =		ft	r				-	-	
	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	Description	(ft)	Override Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool									
							-			
Overrides										
cre-feet										
cre-feet cre-feet										
iches										
iches										
iches										
iches										
iches										
iches										
iches	L									
							-			
	<u> </u>									
										_
	-									
	-									-
		-			-	-		-	-	
		1				1		1	1	
	1			1						

Stage (ft)

Override

Stage (ft)

Width (ft)

Length (ft)

Area (ft²)

Area (acre)

Override

Area (ft²)

Volume (ft³)

Volume (ac-ft)

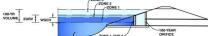
MHFD-Detention, Version 4.06 (July 2022)

Depth Increment =

Stage - Storage Description

Top of Micropool

Project:	Phantom Creek Ranch
asin ID:	Conceptual Detention Design for Lot 4 (Type B Soils)


Optional User Ove

1.00 1.42 1.68

2.71

ft/ft H:V

acre-feet

ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

]	EDB	Selected BMP Type =
acres	0.32	Watershed Area =
ft	200	Watershed Length =
ft	100	Watershed Length to Centroid =
ft/ft	0.050	Watershed Slope =
percent	52.58%	Watershed Imperviousness =
percent	0.0%	Percentage Hydrologic Soil Group A =
percent	100.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

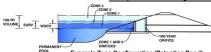
Ba

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Orban Hydro	igraph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.006	acre-feet
Excess Urban Runoff Volume (EURV) =	0.018	acre-feet
2-yr Runoff Volume (P1 = 1 in.) =	0.012	acre-feet
5-yr Runoff Volume (P1 = 1.42 in.) =	0.021	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	0.027	acre-feet
25-yr Runoff Volume (P1 = 1.69 in.) =	0.028	acre-feet
50-yr Runoff Volume (P1 = 1.99 in.) =	0.036	acre-feet
100-yr Runoff Volume (P1 = 2.71 in.) =	0.055	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.066	acre-feet
Approximate 2-yr Detention Volume =	0.012	acre-feet
Approximate 5-yr Detention Volume =	0.018	acre-feet
Approximate 10-yr Detention Volume =	0.024	acre-feet
Approximate 25-yr Detention Volume =	0.023	acre-feet
Approximate 50-yr Detention Volume =	0.025	acre-feet
Approximate 100-yr Detention Volume =	0.033	acre-feet

Define Zones and Basin Geometry Sel Sel

Select Zone 1 Storage Volume (Required) =	
Select Zone 2 Storage Volume (Optional) =	
Select Zone 3 Storage Volume (Optional) =	
Total Detention Basin Volume =	
Initial Surcharge Volume (ISV) =	Ī
Initial Surcharge Depth (ISD) =	
Total Available Detention Depth (H _{total}) =	Ī
Depth of Trickle Channel (H _{TC}) =	Ī
Slope of Trickle Channel (S _{TC}) =	
Slopes of Main Basin Sides (Smain) =	
Basin Length-to-Width Ratio (R _{L/W}) =	Ī


ft ft

	O miles						
ser	Overrides acre-feet						
	acre-feet						
	inches						
	inches						
	inches						
	inches						
	inches						
	inches						
	inches						
			-		-	-	
		-			 		_
							_
							_
		-			 		_

0.006 acre-feet 0.000 acterieet 0.012 acre-feet 0.015 acre-feet 0.033 acre-feet 1 ft 3 1

Initial Surcharge Area $(A_{ISV}) =$
Surcharge Volume Length $(L_{ISV}) =$
Surcharge Volume Width (W _{ISV}) =
Depth of Basin Floor $(H_{FLOOR}) =$
Length of Basin Floor $(L_{FLOOR}) =$
Width of Basin Floor $(W_{FLOOR}) =$
Area of Basin Floor (A _{FLOOR}) =
Volume of Basin Floor (V _{FLOOR}) =
Depth of Main Basin $(H_{MAIN}) =$
Length of Main Basin (L_{MAIN}) =
Width of Main Basin (W _{MAIN}) =
Area of Main Basin $(A_{MAIN}) =$
Volume of Main Basin (V_{MAIN}) =
Calculated Total Basin Volume (V _{total}) =

MHFD-Detention, Version 4.06 (July 2022)

Depth Increment = Stage - Storage Example Zone Configuration (Retention Pond)

Optional User Overr

1.00

1.42 1.68

2.71

Watershed Information

	EDB	Selected BMP Type =
acres	0.41	Watershed Area =
ft	200	Watershed Length =
ft	100	Watershed Length to Centroid =
ft/ft	0.050	Watershed Slope =
percent	49.78%	Watershed Imperviousness =
percent	0.0%	Percentage Hydrologic Soil Group A =
percent	100.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

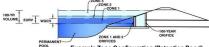
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	igraph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.007	acre-feet
Excess Urban Runoff Volume (EURV) =	0.022	acre-feet
2-yr Runoff Volume (P1 = 1 in.) =	0.015	acre-feet
5-yr Runoff Volume (P1 = 1.42 in.) =	0.025	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	0.033	acre-feet
25-yr Runoff Volume (P1 = 1.69 in.) =	0.035	acre-feet
50-yr Runoff Volume (P1 = 1.99 in.) =	0.044	acre-feet
100-yr Runoff Volume (P1 = 2.71 in.) =	0.069	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.083	acre-feet
Approximate 2-yr Detention Volume =	0.014	acre-feet
Approximate 5-yr Detention Volume =	0.021	acre-feet
Approximate 10-yr Detention Volume =	0.029	acre-feet
Approximate 25-yr Detention Volume =	0.028	acre-feet
Approximate 50-yr Detention Volume =	0.030	acre-feet
Approximate 100-yr Detention Volume =	0.041	acre-feet

Define Zones and Basin Geometry S

Jenne Zones and Dasin Geometry		
Select Zone 1 Storage Volume (Required) =	0.007	acre-feet
Select Zone 2 Storage Volume (Optional) =	0.015	acre-feet
Select Zone 3 Storage Volume (Optional) =	0.019	acre-feet
Total Detention Basin Volume =	0.041	acre-feet
Initial Surcharge Volume (ISV) =	1	ft ³
Initial Surcharge Depth (ISD) =		ft
Total Available Detention Depth (H _{total}) =		ft
Depth of Trickle Channel (H _{TC}) =		ft
Slope of Trickle Channel (S _{TC}) =		ft/ft
Slopes of Main Basin Sides (Smain) =		H:V
Basin Length-to-Width Ratio (R _{L/W}) =		

Initial Surcharge Area (A _{ISV}) =	ft ²
Surcharge Volume Length $(L_{ISV}) =$	ft
Surcharge Volume Width (W _{ISV}) =	ft
Depth of Basin Floor $(H_{FLOOR}) =$	ft
Length of Basin Floor $(L_{FLOOR}) =$	ft
Width of Basin Floor $(W_{FLOOR}) =$	ft
Area of Basin Floor (A _{FLOOR}) =	ft ²
Volume of Basin Floor (V _{FLOOR}) =	ft ³
Depth of Main Basin $(H_{MAIN}) =$	ft
Length of Main Basin (L _{MAIN}) =	ft
Width of Main Basin (W_{MAIN}) =	ft
Area of Main Basin (A _{MAIN}) =	ft ²
Volume of Main Basin (V _{MAIN}) =	ft ³
Calculated Total Basin Volume (V _{total}) =	acre-feet


	Depth Increment =		ft							
			Optional Override Stage (ft)	Length	Width	Area	Optional Override	Area	Volume	Volume
)	Stage - Storage Description	Stage (ft)	Stage (ft)	Length (ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	Volume (ac-ft)
	Top of Micropool									
acre-feet										
acre-feet inches										
inches										
inches										
inches										
inches										
inches										
inches										
					-			-		-
		l								
									<u> </u>	

Stage (ft)

Stage (ft)

Top of Micropool

Project:	Phantom Creek Ranch
Basin ID:	Conceptual Detention Design for Lot 6 (Type B Soils)

Depth Increment = Stage - Storage Description Example Zone Configuration (Retention Pond)

> Optional User Override acre-fee acre-fee

1.00 inches

1.42 inches

1.68 inches inches inches

2.71 inches inches

ft

ft 3

acre-fe

Watershed Information

	EDB	Selected BMP Type =
acres	0.68	Watershed Area =
ft	200	Watershed Length =
ft	100	Watershed Length to Centroid =
ft/ft	0.050	Watershed Slope =
percent	45.87%	Watershed Imperviousness =
percent	0.0%	Percentage Hydrologic Soil Group A =
percent	100.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	igraph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.011	acre-feet
Excess Urban Runoff Volume (EURV) =	0.033	acre-feet
2-yr Runoff Volume (P1 = 1 in.) =	0.022	acre-feet
5-yr Runoff Volume (P1 = 1.42 in.) =	0.039	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	0.051	acre-feet
25-yr Runoff Volume (P1 = 1.69 in.) =	0.055	acre-feet
50-yr Runoff Volume (P1 = 1.99 in.) =	0.071	acre-feet
100-yr Runoff Volume (P1 = 2.71 in.) =	0.111	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.134	acre-feet
Approximate 2-yr Detention Volume =	0.021	acre-feet
Approximate 5-yr Detention Volume =	0.032	acre-feet
Approximate 10-yr Detention Volume =	0.044	acre-feet
Approximate 25-yr Detention Volume =	0.043	acre-feet
Approximate 50-yr Detention Volume =	0.047	acre-feet
Approximate 100-yr Detention Volume =	0.064	acre-feet

Define Zones and Basin Geometry

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.011	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.022	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.031	acre-feet
Total Detention Basin Volume =	0.064	acre-feet
Initial Surcharge Volume (ISV) =	1	ft ³
Initial Surcharge Depth (ISD) =		ft
Total Available Detention Depth (H _{total}) =		ft
Depth of Trickle Channel (H _{TC}) =		ft
Slope of Trickle Channel (STC) =		ft/ft
Slopes of Main Basin Sides (S _{main}) =		H:V
Basin Length-to-Width Ratio (R _{L/W}) =		
		•
Initial Surcharge Area (A _{ISV}) =		ft ²

Surcharge Volume Length (LISV) = Surcharge Volume Width (W_{ISV}) = Depth of Basin Floor (H_{FLOOR}) = Length of Basin Floor (L_{FLOOR}) = Width of Basin Floor (W_{FLOOR}) = Area of Basin Floor (A_{FLOOR}) = Volume of Basin Floor (V_{FLOOR}) = Depth of Main Basin (H_{MAIN}) = Length of Main Basin (LMAIN) = Width of Main Basin (W_{MAIN}) = Area of Main Basin (A_{MAIN}) = Volume of Main Basin (V_{MAIN}) = ÷

Calculated Total Basin Volume (V_{total}) =

Image: second	
Image: sector	
Image: section of the sectio	
Image: section of the sectio	
Image: section of the sectio	
Image: section of the sectio	
Image: section of the sectio	
Image: section of the sectio	
5	
Image: sector	
Image: set of the set	
Image: sector	
Image: sector	
Image Image <th< td=""><td></td></th<>	
$ \begin{vmatrix}$	
Image: sector	
Image Image <th< td=""><td></td></th<>	
Image: sector	
Image: sector	
Image: sector	
Image: sector	
Image: sector	
Image: sector	
Image: second	
	 -
	-
	-
	-

Width

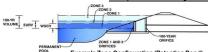
(ft)

Length (ft)

Area

(ft²)

Area (ft²


Area (acre)

Volume (ft³)

Volume (ac-ft)

MHFD-Detention, Version 4.06 (July 2022)

MHFD-Detention, Version 4.06 (July 2022)

Depth Increment = Stage - Storage Example Zone Configuration (Retention Pond)

Optional User Overr

1.00

1.42 1.68

2.71

Watershed Information

	EDB	Selected BMP Type =
acres	0.64	Watershed Area =
ft	200	Watershed Length =
ft	100	Watershed Length to Centroid =
ft/ft	0.050	Watershed Slope =
percent	46.20%	Watershed Imperviousness =
percent	0.0%	Percentage Hydrologic Soil Group A =
percent	100.0%	Percentage Hydrologic Soil Group B =
percent	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	igraph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.010	acre-feet
Excess Urban Runoff Volume (EURV) =	0.031	acre-feet
2-yr Runoff Volume (P1 = 1 in.) =	0.021	acre-feet
5-yr Runoff Volume (P1 = 1.42 in.) =	0.037	acre-feet
10-yr Runoff Volume (P1 = 1.68 in.) =	0.048	acre-feet
25-yr Runoff Volume (P1 = 1.69 in.) =	0.052	acre-feet
50-yr Runoff Volume (P1 = 1.99 in.) =	0.067	acre-feet
100-yr Runoff Volume (P1 = 2.71 in.) =	0.105	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.127	acre-feet
Approximate 2-yr Detention Volume =	0.020	acre-feet
Approximate 5-yr Detention Volume =	0.031	acre-feet
Approximate 10-yr Detention Volume =	0.042	acre-feet
Approximate 25-yr Detention Volume =	0.041	acre-feet
Approximate 50-yr Detention Volume =	0.044	acre-feet
Approximate 100-yr Detention Volume =	0.061	acre-feet

Define Zones and Basin Geometry

efine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.010	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.021	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.029	acre-feet
Total Detention Basin Volume =	0.061	acre-feet
Initial Surcharge Volume (ISV) =	1	ft ³
Initial Surcharge Depth (ISD) =		ft
Total Available Detention Depth (H _{total}) =		ft
Depth of Trickle Channel $(H_{TC}) =$		ft
Slope of Trickle Channel (STC) =		ft/ft
Slopes of Main Basin Sides (Smain) =		H:V
Basin Length-to-Width Ratio (R _{L/W}) =		
Initial Surcharge Area $(A_{ISV}) =$		ft ²

acre-feet

ft	Surcharge Volume Length $(L_{ISV}) =$
ft	Surcharge Volume Width (W _{ISV}) =
ft	Depth of Basin Floor (H _{FLOOR}) =
ft	Length of Basin Floor $(L_{FLOOR}) =$
ft	Width of Basin Floor $(W_{FLOOR}) =$
ft 2	Area of Basin Floor (A _{FLOOR}) =
ft ³	Volume of Basin Floor (V _{FLOOR}) =
ft	Depth of Main Basin (H _{MAIN}) =
ft	Length of Main Basin $(L_{MAIN}) =$
ft	Width of Main Basin (W _{MAIN}) =
ft 2	Area of Main Basin (A _{MAIN}) =
ft 3	Volume of Main Basin (V _{MAIN}) =
acre	Calculated Total Basin Volume (Vtotal) =

Control Sage Optimal Sage (h) Lingh Sage (h) With (h) Are (h) Optimal Override Area (h) Volum (h) Top of Micropool -	Volumia (ac-la constant)
Top of Micropool Image: state st	
Image: sector	
acre-feet Image: Section of the section o	
interfet	
cre-feet Image: second se	
cre-feet Image: second se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
cre-feet Image: sector se	
Image: second	
ches com com <td></td>	
Image: state	
ches Image: Ches	
ches see see <td></td>	
ches de la	
	—
Image: second	
	_
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	1
Image: sector of the sector	1
Image: state	1
$ \begin{vmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	+
$ \begin{vmatrix} $	+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_
	_
	_
	_
	-
Image: sector	_
Image: sector	_
Image: sector	-
	-
	-
	-
	-
	+
	+
	+
	1
	1
	1
	1
	+
	1
	+
	+
	+
	1
	1