INSTITUTE OF ENGINEERING AND MANAGEMENT GOURAHARI VIHAR, PO: RANIPUT, JEYPORE – 764 005

LESSON PLAN

Name of the Subject: Stuructural Design-II				
Name of the Faculty: Pabani Patra				
Semester: Fifth Semester Branch: Civil Engineering				
Semester F	rom : July to De	cember No. of Weeks: 15 Weeks		
Week	Class Dav	Theory/ Practical Topics		
	1 st	1.0 Introduction: Common steel structures, Advantages & disadvantages of		
1^{st}		steel structures. Types of steel, properties of structural steel.		
	2 nd	Rolled steel sections, special considerations in steel design. Loads and load combinations.		
	3 rd	Structural analysis and design philosophy. Brief review of Principles of Limit State design		
	4 th	2.0Structural Steel Fasteners and Connections		
		Classification of boils, advantages and disadvantages of boiled connections.		
2 nd	1 st	Different terminology, spacing and edge distance of bolt holes. Types of bolted connections.		
	2 nd	Types of action of fasteners, assumptions and principles of design.Strength of plates in a joint, strength of bearing type bolts (shear capacity& bearing capacity)		
	3 rd	Reduction factors and shears capacity of HSFG bolts. Analysis & design of Joints using bearing type and HSFG bolts (except eccentric load and prying forces)		
	4^{th}	Efficiency of a joint, Welded Connections: Advantages and Disadvantages of welded connection		
3 rd	1^{st}	Types of welded joints and specifications for welding.		
	2^{nd}	Design stresses in welds		
	3^{rd}	Strength of welded joints. Reduction of design stresses for long joints		
	4^{th}	03.Design of Steel tension Members		
	1^{st}	Common shapes of tension members.		
	2^{nd}	Design strength of tension members		
4^{th}	$3^{\rm rd}$	Yielding of gross cross section, rupture of critical section		
	4^{th}	The concept of block shear		
	1^{st}	Maximum values of effective slenderness ratio		
5^{th}	2^{nd}	Analysis of tension members		
	$3^{\rm rd}$	Design of tension members		
	4^{th}	04.Design of Steel Compression members		
6 th	1 st	Common shapes of compression members		
	2 nd	Bulking class of cross sections.		
	$3^{\rm rd}$	Slenderness ratio		
	4^{th}	Design compressive stress		

7^{th}	1 st	Strength of compression members.
	2 nd	Analysis of compression members
	3 rd	Design of compression members (axial load only)
		Analysis
	4 th	5.0Steel Column bases and foundations
8 th	1 st	Types of column bases their suitability
0	2 nd	Design of slab base
	2	Design of slab base (subjected to axial loading) with concrete footing
	3 rd	Design of gusseted hase
	4 th	Design of gusseted base subjected to axial loading
		Design of gusseted base with concrete footing
9 th	1 st	6.0Design of Steel beams
		Common cross sections
	2^{nd}	Their classification
	3 rd	Plastic moment capacity of sections, moment capacity and shear resistance.
	4^{th}	Deflection limits, web buckling and web crippling.
10 th	1 st	Design of laterally supported beams against bending and shear.
	2 nd	Types of built up sections
	3 rd	Design of simple built up sections using flange plates with I-sections or web
		plates.
	4^{th}	7.0 Design of Tubular Steel structures
11 th	1 st	Tube columns and compression members, crinkling
		Round tubular sections, permissible stresses
	2 nd	Tube tension members and tubular roof trusses.
	3^{rd}	Joints in tubular trusses
	4	Design of tubular beams and purlins
	4^{tn}	8.0Design of Timber Structures
th	. et	Types of timber
12 ^m	1 st	Types of grading of timber
	2^{nd}	
		Types of defects,
	3 rd	Types of permissible stresses
	4^{th}	Design of axially loaded timber columns solid, box
13 th	1 st	Built up section except spaced columns
	2 nd	Design of simple timber structural elements in flexure Solid sections &
		flitched beams
	3 rd	Form factor and moment of resistance of built-up sections
	4 th	Check for shear, bearing and deflection
14 th	1 st	9 (Design of Masonry Structures
	1	Design consideration for masonry walls
	2 nd	Load bearing walls -Permissible stresses Slenderness ratio. Effective length.
		Effective height
	ard	Effective this have Beend it is find to find
	5 rd	Effective thickness, Eccentricity of loads, Grade of mortar
	4 ⁴⁴	Non-Load bearing walls – Panel walls, Curtain walls, Partition walls.
teth	_ et	Design consideration for masonry columns, piers and buttresses
15"	1.	REVISION