INSTITUTE OF ENGINEERING AND MANAGEMENT GOURAHARI VIHAR, PO: RANIPUT, JEYPORE – 764 005

LESSON PLAN

Name of the Subject: Stuructural Mechanics Name of the Faculty: Bhupendra Pratap Dongri Semester: Third Semester Semester From: July to December

Branch: Civil Engineering **No. of Weeks:** 15 Weeks

Week	Class Day	Theory/ Practical Topics
1 st	1 st	1.1 Basic Principle of Mechanics: Force, Moment, support conditions,
		Conditions of equilibrium, C.G & MI, Free body diagram
	2^{nd}	1.2 Review of CG and MI of different sections
	3 rd	2.1 Simple Stresses and Strains
	4 th	Introduction to stresses and strains: Mechanical properties of materials -
		Rigidity, Elasticity, Plasticity
	5 th	Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility
	6 th	Malleability, Creep, Fatigue, Tenacity, Durability
2^{nd}	1 st	Types of stresses -Tensile, Compressive and Shear stresses
	2 nd	Types of strains - Tensile, Compressive and Shear strains
	$3^{\rm rd}$	Complimentary shear stress - Diagonal tensile / compressive Stresses due to
		shear, Elongation and Contraction
	4^{tn}	Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain,
		computation of stress, strain, Poisson's ratio, change in dimensions and
	th	volume etc.
	5 ^m	Hooke's law - Elastic Constants, Derivation of relationship between the
	. et	elastic constants
	1 st	2.2 Application of simple stress in engineering field
ard	2 nd	Application of simple strain in engineering field
314	3 rd	Behaviour of ductile and brittle materials under direct loads
	4 ^m	Stress Strain curve of a ductile material, Limit of proportionality, Elastic
		limit, Yield stress, Ultimate stress, Breaking stress, Percentage elongation,
	th	Percentage reduction in area
	5 ^m	Significance of percentage elongation and reduction in area of cross section,
		Deformation of prismatic bars due to uniaxial load, Deformation of prismatic
	. et	bars due to its self-weight.
	1 st	2.3 Complex stress and strain Principal stresses and strains: Occurrence of
4^{th}	and	normal and tangential stresses
	2 nd	Concept of Principal stress and Principal Planes
	3''	Major and minor principal stresses and their orientations, Mohr's Circle and
		its application to solve problems of complex stresses

	4^{th}	Stresses In Beams and Shafts
	5^{th}	3.1 Stresses in beams due to bending: Bending stress in beams – Theory of
		simple bending
	1^{st}	Assumptions
5 th	2^{nd}	Moment of resistance
	3 rd	Equation for Flexure
	4^{th}	Flexural stress distribution
	5 th	Curvature of beam
	6^{th}	Position of N.A.
6 th	1^{st}	Stresses in shafts due to torsion: Concept of torsion, basic assumptions of
		pure torsion
	2^{nd}	Torsion of solid and hollow circular sections, polar moment of inertia
	$3^{\rm rd}$	Torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
	4 th	Combined bending and direct stresses: Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections, Conditions for no tension
	5 th	Limit of eccentricity, Middle third/fourth rule, Core or Kern for square
	6^{th}	Rectangular and circular sections, chimneys, dams and retaining walls
7 th	1^{st}	4.1 Columns and Struts, Definition, Short and Long columns
	2^{nd}	End conditions, Equivalent length / Effective length, Slenderness ratio
	3 rd	Axially loaded short and long column. Euler's theory of long columns.
		Critical load for Columns with different end conditions Shear Force and
		Bending Moment
	4^{th}	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load,
		Uniformly Distributed load (UDL)
	5 th	Types of Supports: Simple support, Roller support, Hinged support, Fixed
		support
8 th	1^{st}	Types of Reactions: Vertical reaction
	2^{nd}	Horizontal reaction
	3 rd	Moment reaction
	4^{th}	Types of Beams based on support conditions
	5^{th}	Calculation of support reactions using equations of static equilibrium.
9 th	1^{st}	5.2 Shear force and bending moment in beams: Shear Force and Bending
		Moment: Signs Convention for S.F
	2^{nd}	Signs Convention for B.M, S.F and B.M of general cases of determinate
		beams with concentrated loads and udl only
	$3^{\rm rd}$	S.F and B.M diagrams for Cantilevers
	4^{th}	S.F and B.M diagrams for Simply supported beams and Over hanging beams
	5 th	Position of maximum BM, Point of contra flexure, Relation between intensity
		of load, S.F and B.M
10 th	1^{st}	Slope and Deflection
		6.1 Introduction: Shape and nature of elastic curve (deflection curve)
	2^{nd}	Relationship between slope, deflection and curvature (No derivation)
	3 rd	Importance of slope and deflection

	4^{th}	Slope and deflection of cantileverbeams under concentrated and uniformly
		distributed load (by Double Integration method, Macaulay's method)
	5 th	Slope and deflection of simply supported beams under concentrated and
		uniformly distributed load (by Double Integration method, Macaulay's
		method)
11 th	1 st	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility
	2^{nd}	Analysis of propped cantilever, fixed and two span continuous beams by
		principle of superposition
	3 rd	SF and BM diagrams (point load and udl covering full span)
	4^{th}	Trusses
		8.1 Introduction: Types of trusses, statically determinate and indeterminate
		trusses
	5 th	Degree of indeterminacy, stable and unstable trusses, advantages of trusses
12 th	1 st	8.2 Analysis of trusses:
		Analytical method (Method of joints, method of Section)
	2^{nd}	PREVIOUS YEAR QUESTIONS DISCUSSIONS
	3 rd	REVISION
	4^{th}	
	5 th	