Discipline	Semester :3 rd	Name of the Teaching Faculty: SAMBEED
:MECHANICALENGG	27 0	SOURAV MAHAKUL
Subject: THERMAL	No. of	Semester From : july To: December
ENGINEERING-I	days/per	
	week class	No. of Weeks: 15
	allotted:04	
Week	Class Day	Theory / Practical Topics
1 ST	1 ST	Thermodynamic Systems (closed, open, isolated) enthalpy, Internal energy and units of measurement).
	2 ND	
		Thermodynamic properties of a system (pressure, volume, temperature, entropy,
	3 RD	Thermodynamic properties of a system (pressure, volume,
		temperature, entropy,
	∆TH	Intensive and extensive properties
2 ND	1 ST	* *
		Define thermodynamic processes, path, cycle , state, path function, point function
	2 ND	Define thermodynamic processes, path, cycle , state, path
		function, point function
	3 RD	Thermodynamic Equilibrium.
	4 TH	Quasi-static Process.
3 RD	1 ST	Conceptual explanation of energy and its sources
	2 ND	Work , heat and comparison between the two
	3 RD	Mechanical Equivalent of Heat.
	4 TH	•
4 TH	1 ST	Work transfer, Displacement work
	2 ND	State & explain Zeroth law of thermodynamics.
	_	State & explain First law of thermodynamics.
	3 RD	Limitations of First law of thermodynamics
	4 TH	Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
5 TH	1 ST	Application of First law of Thermodynamics (steady flow
		energy equation and its application to turbine and compressor)
	2 ND	Second law of thermodynamics (Claucius& Kelvin Plank
		statements).
	3 RD	Second law of thermodynamics (Claucius& Kelvin Plank
		statements).
	4 TH	Application of second law in heat engine, heat pump,
		refrigerator & determination of efficiencies & C.O.P
6 TH	1 ST	Application of second law in heat engine, heat pump, refrigerator
		& determination of efficiencies & C.O.P (solve simple numerical)
	2 ND	(solve simple numerical)
	3 RD	(solve simple numerical)
	4 TH	(solve simple numerical)
7 ^{тн}	1ST	Laws of perfect gas:
		Boyle's law, Charle's law, Avogadro's law, Dalton's law of
		partial pressure, Guy lussac law, General gas equation,
		characteristic gas constant, Universal gas constant.
	2 ND	Laws of perfect gas:
	_	Boyle's law, Charle's law, Avogadro's law, Dalton's law of
		partial pressure, Guy lussac law, General gas equation,
		characteristic gas constant, Universal gas constant.
		Characteristic gas constant, Universal gas constant.

	3 RD	Explain specific heat of gas (Cp and Cv)
	4 TH	Relation between Cp&Cv
8 TH	1 ST	Enthalpy of a gas.
	2 ND	Work done during a non- flow process.
	3 RD	Application of first law of thermodynamics to various non flow
		process (Isothermal, Isobaric, Isentropic and polytrophic
	4 TH	process)
9 TH	1 ST	Solve simple problems on above.
9111	2 ND	Solve simple problems on above.
	3 RD	Free expansion & throttling process
	4 TH	Explain & classify I.C engine.
	•	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
10 TH	1 ST	Terminology of I.C Engine such as bore, dead centers, stroke
		volume, piston speed &RPM.
	2 ND	Explain the working principle of 2-stroke & 4- stroke engine C.I
		& S.I engine
	3 RD	Explain the working principle of 2-stroke & 4- stroke engine C.I
		& S.I engine
	4 TH	Explain the working principle of 2-stroke & 4- stroke engine C.I
		& S.I engine
11 TH	1 ST	Differentiate between 2-stroke & 4- stroke engine C.I & S.I
		engine
	2^{ND}	Differentiate between 2-stroke & 4- stroke engine C.I & S.I
	aPD	engine
	3 RD	Carnot cycle
	4 TH	Otto cycle
12 TH	1 ST	Diesel cycle.
	2 ND	Dual cycle
	3 RD	Solve simple numerical
	4 TH	Solve simple numerical
13 TH	1 ST	Solve simple numerical
	2 ND	C-1
	-	Solve simple numerical
	3 RD	Solve simple numerical
	4^{TH}	Solve simple numerical
14 TH	1 ST	Define Fuel.
	2 ND	Types of fuel.
	3 RD	Application of different types of fuel.
	4 TH	Application of different types of fuel.
15TH	1 ST	Heating values of fuel.
	2 ND	Quality of I.C engine fuels Octane number, Cetane number.
	3 RD	Quality of I.C engine fuels Octane number, Cetane number. Quality of I.C engine fuels Octane number, Cetane number.
	4 TH	
	4	Quality of I.C engine fuels Octane number, Cetane number.

Learning Resouces:

- 01. Thermal Engineering, byR.S.Khurmi,S.Chand
- 02. Thermal EngineeringbyA.R.Basu, DhanpatRai
- 03. Thermal Engineering, by A.S. Sarao, Satya Prakash
- 04. Engineering Thermodynamics, by P.K. Nag, TMH
- 05. Thermal Engineeringby Mahesh M Rathore, TMH