February $7^{\text {th }}, 2019$ (Rev 05)
HES PV
320 Mary Street
Victoria, BC, V9A 3V9
Attention: Mr. Dan Partridge

Re: Structural Engineering Review for HES-PV Fast Rack Mounting Rails and Roof Connections

As requested Gerrits Engineering Ltd. (GEL) has completed a structural engineering review of the following components of the HES-PV Fast Rack (FR) Solar PV racking system;

1. HES-PV HD Rail System
2. HES-PV UL Rail System
3. $5 / 16$ " SS Lag Bolt Roof Connection
4. EJOT-8.0-110 Roof Connection

In our opinion, the above racking components are structurally adequate to be used on buildings designed as per either Part 4 or Part 9 of the National Building Code of Canada (sloped roofs) for rooftop solar PV applications in Canada with the limitations, spans and embedment details as per the attached tables.

The capacity of the base building to safely support the racking system is to be determined by others.

Our review considered only the racking components outlined herein. Application of HES-PV FR racking system with alternate anchors (e.g., S-5 clamps on standing seam metal roofs) is not considered herein. Application of alternate anchors and structural adequacy of the respective roofing system/structure must be reviewed a qualified Professional Engineer.

Please contact the undersigned for any inquiry related to this document.

Sincerely,

GERRITS ENGINEERING LIMITED

Jesse Longworth, M.A.Sc., P.Eng.
Senior Structural Engineer
Attachments:

1. HES PV Fast Rack HD Rail Maximum Span Table
2. HES PV Fast Rack UL Rail Maximum Span Table
3. HES PV SS Lag Screw Connection - General Arrangement Drawing No. 103499 Revision F (Sheet 3 of 6)
4. HES PV SS EJOT Hanger Bolt Connection - General Arrangement Drawing No. 103499 Revision F (Sheet 4 of 6)

HESPV FAST RACK HD RAIL MAXIMUM SPAN TABLE /m (in)

Specified Roof Snow Load S, kPa (PSF)	5/16" SS Lag Bolt w/ min. $L_{t}=89 m_{(2)}$			
	$\mathbf{0 . 4 (8 4)}$	$\mathbf{0 . 5}(94)$	$\mathbf{0 . 6 (1 0 3)}$	$\mathbf{0 . 7 (1 1 2)}$
$1.0(21)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$1.5(31)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.0(42)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.5(52)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$3.0(63)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$

Specified Roof Snow Load S, kPa (PSF)	EJOT-8.0-110 (3)			
	Mean Hourly Wind Pressure, $\mathrm{q}_{1 / 50} / \mathrm{kPa}\left(3\right.$ Seconds Wind Gust, $\left.\mathrm{V}_{\text {basic }} / \mathrm{mph}\right)$			
$1.0(21)$	$1.83(74)$	$\mathbf{0 . 5}(94)$	$\mathbf{0 . 6}(\mathbf{1 0 3})$	$\mathbf{0 . 7}(\mathbf{1 1 2)}$
$1.5(31)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.0(42)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.5(52)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$3.0(63)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$

Notes:

1) Combined dead, wind and snow loads considered as defined by OBC 2012 and NBCC 2015.
2) Pull out strengths for lag bolts defined for SPF Grades $1 / 2$ and seasoned wood as per CSA 086-14; Engineering Design in Wood where L_{t} is the threaded embedment length of the bolt. Minimum joist or truss top chord size is $2 \times 4(38 \times 89)$.
3) Pull out strength for EJOT, based on $311 / 32^{\prime \prime}(85 \mathrm{~mm})$ embedment depth.
4) Normal Importance Category buildings considered as defined in OBC 2012 for wind and snow loads.
5) Results are based on rough wind exposure with maximum wind exposure factor $\mathrm{Ce}=0.7$ or maximum mean roof height of 6 m .
6) Modules are not to overhang from the roof edge and/or ridge.
7) Above tabulated spans are to be reduced half if modules are installed within 1 m of a roof edge and/or ridge.
8) Valid only for roof slopes ranging from 7° to 45°.
9) Based on HD \& UL Rails made from 6005A-T61 Aluminum.
10) HD \& UL rails are not to be spliced within middle $1 / 3$ of the span.
11) Maximum live load deflection of the rails limited to $L / 180$ (where L is the rail span).
12) Results are based on minimum of 3 continuous rail spans.

HESPV FAST RACK UL RAIL MAXIMUM SPAN TABLE /m (in)

Specified Roof Snow Load S, kPa (PSF)	5/16" SS Lag Bolt w/ min. $\mathrm{L}_{\mathrm{t}}=89 \mathrm{~mm}_{(2)}$			
	Mean Hourly Wind Pressure, $\mathrm{q}_{1 / 50} / \mathrm{kPa}\left(3\right.$ Seconds Wind Gust, $\left.\mathrm{V}_{\text {basic }} / \mathrm{mph}\right)$			
$1.0(21)$	$1.83(74)$	$\mathbf{0 . 5}(94)$	$\mathbf{0 . 6}(103)$	$\mathbf{0 . 7}(\mathbf{1 1 2)}$
$1.5(31)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.0(42)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.5(52)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$3.0(63)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$

Specified Roof Snow Load S, kPa (PSF)	EJOT-8.0-110 (3)			
	Mean Hourly Wind Pressure, $\mathrm{q}_{1 / 50} / \mathrm{kPa}\left(3\right.$ Seconds Wind Gust, $\left.\mathrm{V}_{\text {basic }} / \mathrm{mph}\right)$			
$1.0(21)$	$1.83(74)$	$\mathbf{0 . 5}(94)$	$\mathbf{0 . 6}(\mathbf{1 0 3})$	$\mathbf{0 . 7}(\mathbf{1 1 2)}$
$1.5(31)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.0(42)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$2.5(52)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$
$3.0(63)$	$1.83\left(72^{\prime \prime}\right)$	$1.83\left(72^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$	$1.22\left(48^{\prime \prime}\right)$

Notes:

1) Combined dead, wind and snow loads considered as defined by OBC 2012 and NBCC 2015.
2) Pull out strengths for lag bolts defined for SPF Grades $1 / 2$ and seasoned wood as per CSA 086-14; Engineering Design in Wood where L_{t} is the threaded embedment length of the bolt. Minimum joist or truss top chord size is $2 \times 4(38 \times 89)$.
3) Pull out strength for EJOT, based on 3 11/32" (85 mm) embedment depth.
4) Normal Importance Category buildings considered as defined in OBC 2012 for wind and snow loads.
5) Results are based on rough wind exposure with maximum wind exposure factor $\mathrm{Ce}=0.7$ or maximum mean roof height of 6 m .
6) Modules are not to overhang from the roof edge and/or ridge.
7) Above tabulated spans are to be reduced half if modules are installed within 1 m of a roof edge and/or ridge.
8) Valid only for roof slopes ranging from 7° to 45°.
9) Based on HD \& UL Rails made from 6005A-T61 Aluminum.
10) HD \& UL rails are not to be spliced within middle $1 / 3$ of the span.
11) Maximum live load deflection of the rails limited to $L / 180$ (where L is the rail span).
12) Results are based on minimum of 3 continuous rail spans.

TYPICAL MOUNTING FOOT PLACEMENT PATTERN

FR-SPLICE

