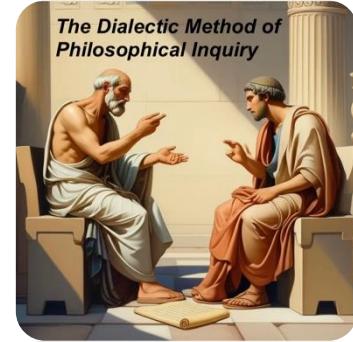


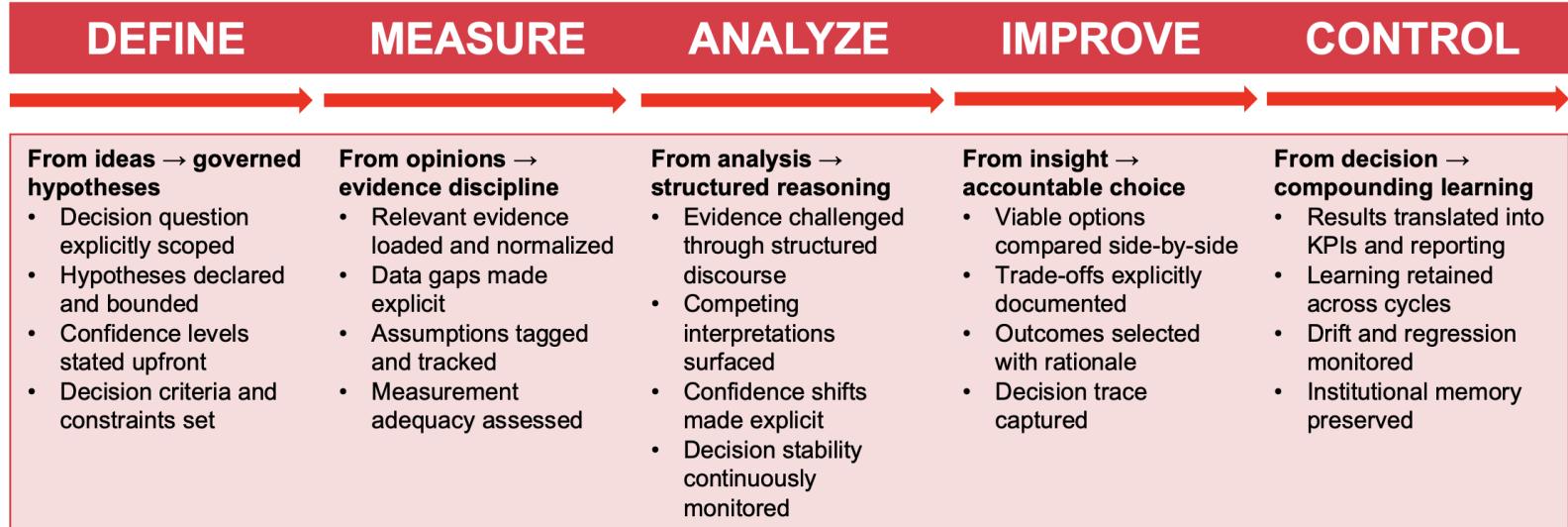
AI-Augmented Research & Insight Platform (ARIP)


*From hypothesis-driven decisions
to compounding organizational
learning to enterprise
performance*

What ARIP Is

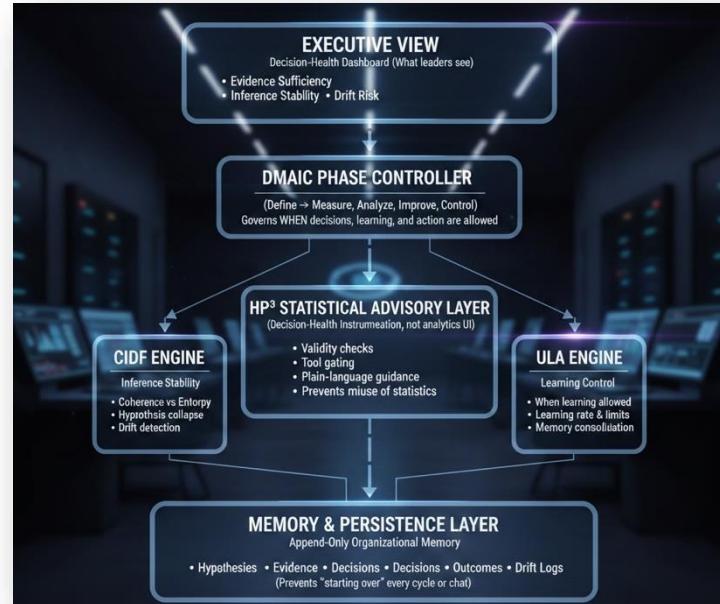
- **The AI-Augmented Research & Insight Platform** is a learning and decision-governance system that:
 - ✓ Treats decisions as hypotheses
 - ✓ Instruments reasoning, not just outputs
 - ✓ Makes judgment explicit, testable, and reusable
 - ✓ Ensures learning compounds over time
- **ARIP provides:**
 - a decision infrastructure - not a transaction or workflow tool.
 - a learning system designed to prevent accelerating bad decisions.
- ***Everybody has ideas. ARIP transforms them into hypotheses.***
 - ARIP has already produced extensive, public, hypothesis-driven research through manual execution, validating the core process being automated.

The Real Problem (Why ARIP Exists)


- Organizations don't fail because of lack of data or AI. They fail because learning does not compound.
 - ✓ Decisions are made under uncertainty
 - ✓ Reasoning is implicit, political, or forgotten
 - ✓ AI accelerates activity — not judgment
 - ✓ Teams repeat the same mistakes every cycle
- Organizations lack a system that governs how decisions are formed, stabilized, and learned from.
 - ✓ Learning is a system problem, not a talent problem.
- ***Speed without decision integrity just gets you to the wrong answer faster.***

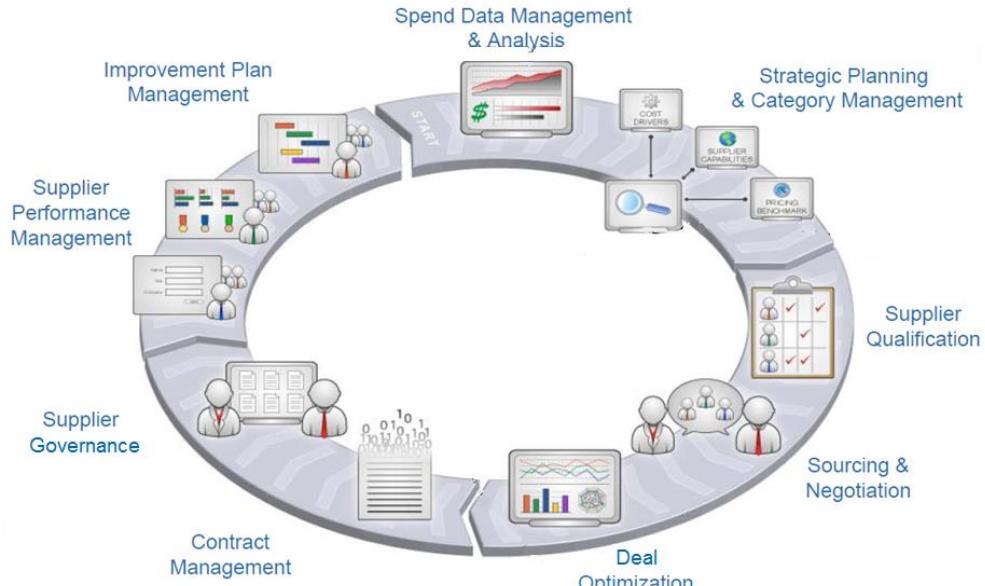
How ARIP Works

- Learning starts with a “hypothesis” that follows a governed path:



- User chooses the system “mode” to interact with AI (single or multi-platform) to “reason” the solution from hypothesis through to closure.
- Unlike traditional QM systems, what we’re building is the decision-governance and learning layer that those systems fundamentally lack.

The Learning Engine (ULA + CIDF)


- Two proprietary systems make ARIP unique and powerful.
 - ✓ **Coherence & Integrity Diagnostic Framework (CIDF)**
 - Confidence vs evidence tracking
 - Assumption accumulation detection
 - Disagreement recycling detection
 - Premature closure warnings
 - ✓ **Universal Learning Architecture (ULA)**
 - Tracks hypothesis → outcome → reuse
 - Identifies what learning persists
 - Enables organizational intelligence to compound
- **CIDF** enhances today's decision.
- **ULA** ensures tomorrow's decisions are better.

Why Procurement Became the First Proof

- **Simple Hypotheses:** “We are paying too much for this service.”
 - This is how procurement *typically* starts.
 - Process-driven with high decision density
 - Measurable outcomes (Savings, SLAs, etc.)

PROCUREMENT (Level 0)

Spend Data Management & Analysis (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: We're paying different prices for the same item across sites/vendors. (Level 2)

Hypothesis: N.....(Level 2)

Strategic Planning & Category Management (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “If we standardize specs, we can reduce suppliers from 12 to 5 without disrupting operations.”

Hypothesis: N.....(Level 2)

Supplier Qualification (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “This supplier can meet our quality and delivery requirements at the quoted price.”

Hypothesis: N.....(Level 2)

Sourcing & Negotiation (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “We can get at least 8% savings by running a competitive RFx (or renegotiating).” (Level 2)

Hypothesis: N.....(Level 2)

Deal Optimization (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “A 2-year contract at a slightly higher unit price is better overall than 1-year at the lowest price.” (Level 2)

Hypothesis: N.....(Level 2)

Contract Management (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “The contract we signed actually protects what we negotiated.” (Level 2)

Hypothesis: N.....(Level 2)

Supplier Governance (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “Supplier performance is improving quarter-over-quarter on the issues that matter.” (Level 2)

Hypothesis: N.....(Level 2)

Supplier Performance Management (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “This supplier is slipping, and we should intervene before it hits operations.” (Level 2)

Hypothesis: N.....(Level 2)

Improvement Plan Management (Level 1)

Hypothesis: [FREE TEXT FORM] (Level 2)

Hypothesis: “If we fix the top 3 process breakdowns, we'll sustain savings instead of re-losing them.” (Level 2)

Hypothesis: N.....(Level 2)

Why This Is Different From “AI in Procurement”

AI answers questions. ARIP governs reasoning.

- Coupa + AI copilot:
 - Faster analysis
 - Same decision failure modes
- HP³:
 - Encourages idea “expansion”
 - Detects false certainty
 - Enhances analytical execution
 - Makes learning transferable
- HP³ is designed to **increase decision integrity** and **reduce common AI failure modes**; we will validate these effects in pilots.

HP³:

- ✓ Sits above ERP & procurement systems
- ✓ Does not replace workflows or own data
- ✓ Evaluates decision integrity across the lifecycle
- ✓ Turns procurement into a learning system

Key distinction:

- Traditional platforms optimize *activities*.
- ✓ HP³ evaluates decision integrity **before** execution and **after** outcomes.

ARIP-HP3 Architecture

AI-agnostic. ERP-neutral. Enterprise-friendly.

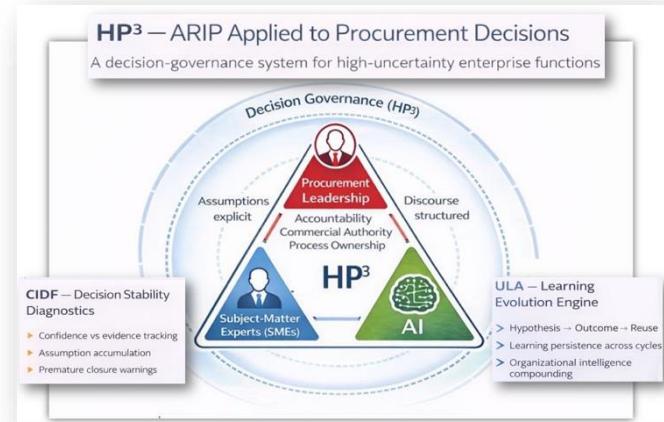
- Works with any AI platform or multiple platforms
- Minimal data retention (primarily decision telemetry)
 - Reads data, does not own it
- Deploys as (multiple go-to-market paths):
 - a. Standalone SaaS
 - b. Overlay
 - c. Licensed engine
- Procurement is just one template library.
- ARIP can support all organizational decision-making.
 - Templates change. The ARIP Learning system does not.

ARIP / HP³ Commercial Outlook

- **Revenue Trajectory (10-Year View, CAD\$)**

- **ARIP Core Platform.** Annual enterprise license (decision-governance infrastructure)
- **Domain Modules (HP³ first).** Discrete annual licenses per business function (procurement → HR → finance → risk → strategy → etc.)
- **Support Services (Non-Recurring).** Time-boxed system activation, validation, and consulting.

Scenario	Commercial Scope	Year-10 Revenue	Break-Even
Base Case	HP ³ only (function-level)	~\$40–45M	Years 3–4
Bull Case	Enterprise-wide ARIP expansion	~\$45M+	Years 3–4
Bear Case	Slower adoption, no forced scale	~\$20M	TBD


- **Operating Economics (What Matters)**

- COGS: ~15% (hosting, support, SG&A)
- Strong operating leverage post break-even
- Cash-generative without aggressive scaling

What Exists Today and What's Next

- **This is not an idea-stage concept**
 - ✓ Full technical architecture
 - ✓ Scientific foundations submitted
 - ✓ Patents initiated
 - ✓ End-to-end application design
 - ✓ Clear prototype scope
- We are not selling a narrative. We are testing whether an automated learning system performs as designed, to enhance manual ideation.
- **What's Next:** A funded, focused prototype build to validate behavior in the wild.

Phase	Description	Duration
Phase 0	Decision System Encoding	0 – 4 weeks
Phase 1	MVP: Governed Decision Layer	2 – 2.5 months
Phase 2	Pilot & Validation	2 – 4 months
Phase 3	Enterprise Scaling	Optional / staged

Funding Ask — ARIP/HP³ Prototype

- **What's Being Built**
 - ✓ Focused prototype
 - ✓ Hypothesis-driven workflows
 - ✓ CIDF decision-stability signals
 - ✓ ULA learning compounding
 - ✓ Live procurement validation
- **What Exists:** Detailed business case, comprehensive functional, and technical specifications complete and ready for project initiation.
- **The Ask:** **\$750k–\$1.0M** — validation funding, not scale capital
- **The Return:** A governed learning system prototype that ensures AI improves decision quality instead of accelerating bad decisions — proven first in procurement.

Category	Estimated Range
Engineering & Technical Development	\$350k–\$550k
Infrastructure & AI Usage	\$50k–\$100k
Product, UX, QA	\$75k–\$125k
Legal / IP / Overhead	\$50k–\$75k
Total Estimated Cost	\$525k–\$875k