

I'm not a robot
reCAPTCHA

Submit

Standard metric bolt torque chart pdf

There are several factors that determine the correct screw speed specification. Some of them are listed below.

The material that contains the external thread (screw). Reference 2 below is recommended. 60-90% screw material. Proven load attachment bias. This correction of the bolt torque graph assumes that the region of this range has a value of... 75% of the yield strength. Yield strength is defined as the greatest force a material can withstand without permanent deformation. Although material properties vary, a rough estimate of yield strength is 85-90% of initial strength. As shown in the figure, the strength of the screw varies depending on the quality of the fastener and in some cases. The internal thread (nut) material (internal thread material) should be equal to or greater than the strength of the screw (external thread material). If the nut material is limited by the fastening ratio, it is clear that increasing the strength of the bolt material will not affect the clamp capacity of the node. In addition, if the nut material is a limiting factor, the maximum mounting capability of the device (and corresponding screw tightening torque) must be evaluated accordingly.

ASTM Bolt Torque Chart

Suggested Starting Values

The below estimated torque calculations are only offered as a guide. Use of its content by anyone is the sole responsibility of that person and they assume all risk. Due to many variables that affect the torque-tension relationship like human error, surface texture, and lubrication the only way to determine the correct torque is through experimentation under actual joint and assembly conditions.

ASTM A307

Bolt Size	TPI	Proof Load (lbs) ²	Clamp Load (lbs) ²	Tightening Torque (ft lbs)	Waxed	Galv	Plain
1/4	20	1145	859	2	4	4	
5/16	18	1886	1415	4	9	7	
5/16	16	2790	2093	7	16	13	
5/16	14	3827	2870	10	26	21	
5/16	13	5108	3831	16	40	32	
5/16	12	6552	4914	23	58	46	
5/16	11	8136	6102	32	79	64	
5/16	10	12024	9018	56	141	113	
5/16	9	15200	11400	83	208	166	
1	8	20000	15000	125	313	250	
1 1/8	7	25200	18900	177	443	354	
1 1/4	7	32000	24000	250	625	500	
1 1/8	6	38100	28575	327	819	655	
1 1/2	6	46400	34800	435	1088	870	
1 1/4	5	68400	51300	748	1870	1496	
2	4 1/2	90000	67500	1125	2813	2250	
2 1/4	4 1/2	117000	87750	1645	4113	3291	
2 1/2	4	144000	108000	2250	5625	4500	
2 1/4	4	177480	133110	3050	7626	6101	
3	4	214920	161190	4030	10074	8060	
3 1/4	4	255600	191700	5192	12980	10384	
3 1/2	4	299880	224910	6560	16400	13120	
3 3/4	4	347760	260820	8151	20377	16301	
	4						

The internal thread (nut) material (internal thread material) should be equal to or greater than the strength of the screw (external thread material). If the nut material is limited by the fastening ratio, it is clear that increasing the strength of the bolt material will not affect the clamp capacity of the node. In addition, if the nut material is a limiting factor, the maximum mounting capability of the device (and corresponding screw tightening torque) must be evaluated accordingly. Unlike most bolt charts, this chart also lists the clamping force and torque values that correspond to the bolt material stress at 10,000 and 25,000 psi...regardless of the fastener. This list can be helpful in determining the correct torque value if you are working with a smaller professionalB provides several factors that determine the correct specification of the vine. Some of them are listed below... The material containing an external thread (screws) most of the butterflies, including this, is based on the thickness of the screw material, a component that contains an external conductor. In the following link 2, we recommend the preload of the fixation element between 60% and 90% of the expanding screw material. This diagram of the torture screw to generate repair was created in the center of this area by assuming value ... in 75% of the material resistance. The screw resistance is defined as the maximum force that the material can carry without permanent deformation. Although the properties of the material differ, the approximate estimate of the extension limit is between 85% and 90% of the extension limit. As shown in the table, the screw resistance varies according to the type of fixation and in some cases also depending on the diameter. A material that contains an inner wire (mother). In order to determine the paired value of the Vite-Deod assembly group, based solely on the thickness of the screw material, the mounting materials of this instruction must be followed: the limit of the mother length (internal fiber material) must be the same to or higher than maximum resistance to the screw (material with outer thread). If the basic material is a limiting factor of the fixation system, the increase in the thickness of the screw material apparently has no effect on increasing the assembly capacity. If the base material also represents a limiting factor, the maximum tightening capacity (and the corresponding pair of the screw) must be reduced corresponding to the appropriate manner. Unlike most bolt torque tables, tightening forces and torque values that correspond to the voltage of the screw material 10 000 and 25,000 psi ... regardless of the quality of the element fixation are also listed. This list may be useful for determining the appropriate reduced torque value if unique. Force. In reality, however, only the first threads actually participate in sharing the compression force of the fastener. This is due to similar thread error, slight thread size, and pitch differences causing inconsistent cosmetics for external and internal threads. The usual rule is that the minimum connection length of the minimum threads is equal to the (major) diameter of the fastener. A more conservative rule is to use a threaded connection length of 1-1/2 diameter. The screw stress elongation of the thread stresses is determined by the thread stress range of the threaded part (diameter) and the thread pitch (distance) as follows. = 0.7854 x [d - (0.9743 / n)] 2 Here: AS = Bolt - Thread -Elongation (in2) d = Nominal Screw Diameter (inch) n = Thread (inch thread) Bolt Clamps against The load force Screw Clamps is calculated from the preload force using the bolt material strength and extension stress range. It is calculated according to the formula...

Screw	Outer	Nominal Thread Dia	Nominal Thread Pitch	Force Factor (series 2)		Data
				8.8	10.9	
M6 x 20 Pitch	8.8	3.1	2.2	2.20	1.85	
M6 x 20 Pitch	8.8	6.1	4.4	2.20	1.85	
M6 x 10 Pitch	8.8	9.4	6.5	7.40	5.11	
M6 x 10 Pitch	8.8	17.0	11.5	12.00	8.13	
M7 x 10 Pitch	8.8	22.0	15.0	12.75	9.13	
M8 x 10 Pitch	8.8	27.0	24.5	29.25	19.38	
M10 x 10 Pitch	8.8	37.0	34.0	42.75	30.90	
M10 x 10 Pitch	8.8	51.0	42.5	52.25	37.35	
M12 x 12 Pitch	8.8	67.0	79.0	65.25	59.25	
M12 x 12 Pitch	8.8	87.0	100.0	87.00	79.50	
M12 x 12 Pitch	8.8	92.0	83.0	88.00	82.25	
M12 x 12 Pitch	8.8	146.0	125.0	165.00	140.25	
M12 x 12 Pitch	8.8	215.0	195.0	212.25	186.25	
M12 x 12 Pitch	8.8	275.0	255.0	270.00	240.00	
M12 x 12 Pitch	8.8	430.0	390.0	322.50	262.50	
M12 x 12 Pitch	8.8	500.0	450.0	470.00	420.00	
M12 x 12 Pitch	8.8	740.0	670.0	555.00	505.00	
M12 x 12 Pitch	8.8	89.0	77.0	89.00	77.00	
M12 x 12 Pitch	8.8	27.0	34.0	27.75	25.50	
M12 x 12 Pitch	8.8	160.0	117.0	97.50	87.25	
M12 x 12 Pitch	8.8	216.0	280.0	212.50	280.00	

8.8

10.9

10.9

The internal thread (nut) material (internal thread material) should be equal to or greater than the strength of the screw (external thread material). If the nut material is limited by the fastening ratio, it is clear that increasing the strength of the bolt material will not affect the clamp capacity of the node. In addition, if the nut material is a limiting factor, the maximum mounting capability of the device (and corresponding screw tightening torque) must be evaluated accordingly. Unlike most bolt charts, this chart also lists the clamping force and torque values that correspond to the bolt material stress at 10,000 and 25,000 psi...regardless of the fastener. This list can be helpful in determining the correct torque value if you are working with a smaller professionalB provides several factors that determine the correct specification of the vine.

Property Class	8.8	10.9	12.9 Socket Head Cap Screw
Minimum Tensile Strength MPa	M6 - M16: 800	1040	1220
Bolt Torque Specs in Newton Meters - Nm			
Dry	Lubed	Dry	Lubed
M5 x 0.80	6.1	4.6	8.8
M6 x 1.00	10.4	7.8	15
M7 x 1.00	17.6	13.1	25.1
M8 x 1.25	25.4	19.1	37.6
M10 x 1.50	50	38	72
M12 x 1.75	88	66	126
M14 x 2.00	141	106	201
M16 x 2.00	218	164	312
M18 x 2.50	301	226	431
M20 x 2.50	426	319	609
M22 x 2.50	580	435	831
M24 x 3.00	736	552	1052
M27 x 3.00	1079	809	1544
M30 x 3.50	1463	1097	2092
M33 x 3.50	1990	1493	2849
M36 x 4.00	2557	1918	3659

75% of the yield strength. Yield strength is defined as the greatest force a material can withstand without permanent deformation. Although material properties vary, a rough estimate of yield strength is 85-90% of initial strength. As shown in the figure, the strength of the screw varies depending on the quality of the fastener and in some cases. The internal thread (nut) material (internal thread material) should be equal to or greater than the strength of the screw (external thread material). If the nut material is limited by the fastening ratio, it is clear that increasing the strength of the bolt material will not affect the clamp capacity of the node. In addition, if the nut material is a limiting factor, the maximum mounting capability of the device (and corresponding screw tightening torque) must be evaluated accordingly. Unlike most bolt charts, this chart also lists the clamping force and torque values that correspond to the bolt material stress at 10,000 and 25,000 psi...regardless of the fastener. This list can be helpful in determining the correct torque value if you are working with a smaller professionalB provides several factors that determine the correct specification of the vine. Some of them are listed below... The material containing an external thread (screws) most of the butterflies, including this, is based on the thickness of the screw material, a component that contains an external conductor. In the following link 2, we recommend the preload of the fixation element between 60% and 90% of the expanding screw material. This diagram of the torture screw to generate repair was created in the center of this area by assuming value ... in 75% of the material resistance. The screw resistance is defined as the maximum force that the material can carry without permanent deformation. Although the properties of the material differ, the approximate estimate of the extension limit is between 85% and 90% of the extension limit. As shown in the table, the screw resistance varies according to the type of fixation and in some cases also depending on the diameter. A material that contains an inner wire (mother). In order to determine the paired value of the Vite-Deod assembly group, based solely on the thickness of the screw material, the mounting materials of this instruction must be followed: the limit of the mother length (internal fiber material) must be the same to or higher than maximum resistance to the screw (material with outer thread). If the basic material is a limiting factor of the fixation system, the increase in the thickness of the screw material apparently has no effect on increasing the assembly capacity. If the base material also represents a limiting factor, the maximum tightening capacity (and the corresponding pair of the screw) must be reduced corresponding to the appropriate manner. Unlike most bolt torque tables, tightening forces and torque values that correspond to the voltage of the screw material 10 000 and 25,000 psi ... regardless of the quality of the element fixation are also listed. This list may be useful for determining the appropriate reduced torque value if unique. Force. In reality, however, only the first threads actually participate in sharing the compression force of the fastener. This is due to similar thread error, slight thread size, and pitch differences causing inconsistent cosmetics for external and internal threads. The usual rule is that the minimum connection length of the minimum threads is equal to the (major) diameter of the fastener. A more conservative rule is to use a threaded connection length of 1-1/2 diameter. The screw stress elongation of the thread stresses is determined by the thread stress range of the threaded part (diameter) and the thread pitch (distance) as follows. = 0.7854 x [d - (0.9743 / n)] 2 Here: AS = Bolt - Thread -Elongation (in2) d = Nominal Screw Diameter (inch) n = Thread (inch thread) Bolt Clamps against The load force Screw Clamps is calculated from the preload force using the bolt material strength and extension stress range. It is calculated according to the formula...

Markings on Bolt Heads									
SAE GRADE 1 or 2		SAE GRADE 5		SAE GRADE 6		SAE GRADE 8			
GRADE 10.9	TORQUE FT. L.B.	COMPRESS.	TORQUE FT. L.B.	COMPRESS.	TORQUE FT. L.B.	COMPRESS.	TORQUE FT. L.B.	COMPRESS.	
1/4	5	1200 660	7	1480 924	10	2400 1320	10.5	2520 1386	
5/16	9	17 950	14	2500 1478	19	3648 2080	22	4224 2323	
3/8	15	2400 1320	25	4000 2200	34	5440 2892	37	5920 3236	
7/16	24	3291 1810	40	5486 3017	55	7343 4149	60	8229 4526	
1/2	37	4440 2442	60	7200 3900	85	10200 5610	92	11040 6072	
9/16	53	5653 3109	88	9387 5183	120	12800 7040	132	14000 7744	
5/8	74	7194 3907	120	11520 6336	167	16032 8818	180	17280 9504	
3/4	120	9600 5280	200	16000 8800	280	22400 12320	296	23600 13024	
7/8	190	13028 7166	302	20709 11390	440	30171 16594	473	32434 17839	
1	282	16920 9306	466	27960 15378	660	39600 21780	714	42840 23562	

Compression: $P = T \cdot 60 \cdot D$ & $P = T \cdot 33 \cdot D$

75% of the yield strength. Yield strength is defined as the greatest force a material can withstand without permanent deformation.

Nominal Size (Basic Screw Diameter)	D		A		H		G		P		J		T		F	
	Body Diameter		Head Diameter		Head Height		Protrusion Gage Diameter		Protrusion		Hexagon Socket Size		Key Engagement		Flange Transition Diameter	
	Max	Min	Max	Min	Ref	Max	Min	Max	Min	Ref	Max	Min	Nominal	Min	Max	Max
0 (0.0600)	0.060	0.0565	0.138	0.117	0.04	0.078	0.077	0.044	0.026	...	0.035	0.025	0.072	0.030	0.038	
1 (0.0730)	0.073	0.0695	0.168	0.143	0.054	0.104	0.102	0.050	0.030	...	0.040	0.030	0.031	0.030	0.038	
2 (0.0860)	0.086	0.0825	0.197	0.171	0.074	0.124	0.123	0.051	0.031	...	0.046	0.036	0.038	0.030	0.108	
3 (0.0990)	0.099	0.0949	0.226	0.193	0.073	0.148	0.147	0.054	0.031	1/16	0.062	0.044	0.044	0.030	0.119	
4 (0.1120)	0.112	0.1075	0.256	0.218	0.083	0.172	0.171	0.057	0.036	1/16	0.062	0.044	0.044	0.030	0.136	
5 (0.1250)	0.125	0.1202	0.281	0.240	0.090	0.196	0.195	0.059	0.037	5/64	0.078	0.061	0.061	0.030	0.153	
6 (0.1380)	0.138	0.1329	0.307	0.263	0.097	0.220	0.219	0.060	0.037	5/64	0.078	0.066	0.066	0.030	0.168	
8 (0.1640)	0.164	0.1585	0.359	0.311	0.112	0.267	0.266	0.063	0.036	3/32	0.094	0.076	0.076	0.030	0.194	
10 (0.1900)	0.190	0.1840	0.411	0.359	0.127	0.312	0.312	0.066	0.041	1/8	0.126	0.087	0.087	0.030	0.220	
12 (0.2158)	0.2158	0.2102	0.450	0.410	0.135	0.360	0.359	0.069	0.042	1/8	0.126	0.094	0.094	0.030	0.246	
14 (0.2500)	0.250	0.2435	0.531	0.480	0.161	0.424	0.423	0.072	0.043	5/32	0.156	0.111	0.111	0.030	0.280	
5/16 (0.3125)	0.3125	0.3053	0.656	0.600	0.198	0.530	0.538	0.078	0.047	3/16	0.188	0.135	0.135	0.030	0.343	
3/8 (0.3750)	0.3750	0.3678	0.781	0.720	0.234	0.653	0.652	0.088	0.050	7/32	0.219	0.159	0.159	0.0405	0.405	
7/16 (0.4375)	0.4375	0.4294	0.844	0.781	0.254	0.690	0.689	0.104	0.063	1/4	0.250	0.159	0.159	0.0405	0.468	
1/2 (0.5000)	0.500	0.4919	0.938	0.872	0.251	0.738	0.738	0.131	0.087	5/16	0.312	0.172	0.172	0.050	0.530	
5/8 (0.6250)	0.6250	0.6163	1.188	1.112	0.324	0.962	0.961	0.146	0.096	3/8	0.375	0.220	0.220	0.065	0.655	
3/4 (0.7500)	0.7500	0.7406	1.438	1.355	0.398	1.186	1.185	0.170	0.105	1/2	0.500	0.220	0.220	0.070	0.780	
7/8 (0.8750)	0.8750	0.8647	1.688	1.604	0.468	1.411	1.410	0.165	0.118	9/16	0.562	0.248	0.248	0.0905	0.905	
1 (1.0000)	1.0000	0.9886	1.938	1.841	0.540	1.635	1.634	0.181	0.130	5/8	0.625	0.297	0.297	0.1030	1.030	
1-1/8 (1.1250)	1.1250	1.1086	2.188	2.079	0.611	1.859	1.858	0.198	0.140	3/4	0.750	0.325	0.325	0.187	1.187	
1-1/4 (1.2500)	1.2500	1.2356	2.438	2.316	0.681	2.083	2.082	0.212	0.150	7/8	0.875	0.358	0.358	0.1312	1.312	
1-3/8 (1.3750)	1.3750	1.3568	2.688	2.553	0.755	2.306	2.305	0.228	0.162	7/8	0.875	0.402	0.402	0.1437	1.437	
1-1/2 (1.5000)	1.5000	1.4818	2.938	2.791	0.827	2.530	2.529	0.243	0.173	1	1.000	0.435	0.435	0.1562	1.562	

60-90% screw material. Proven load attachment bias. This correction of the bolt torque graph assumes that the region of this range has a value of... 75% of the yield strength. Yield strength is defined as the greatest force a material can withstand without permanent deformation. Although material properties vary, a rough estimate of yield strength is 85-90% of initial strength. As shown in the figure, the strength of the screw varies depending on the quality of the fastener and in some cases, the internal thread (nut) material (internal thread material) should be equal to or greater than the strength of the screw (external thread material). If the nut material is limited by the fastening ratio, it is clear that increasing the strength of the bolt material will not affect the clamp capacity of the node. In addition, if the nut material is a limiting factor, the maximum mounting capability of the device (and corresponding screw tightening torque) must be evaluated accordingly. Unlike most bolt charts, this chart also lists the clamping force and torque values that correspond to the bolt material stress at 10,000 and 25,000 psi...regardless of the fastener. This list can be helpful in determining the correct torque value if you are working with a smaller professionalB provides several factors that determine the correct specification of the vine. Some of them are listed below ... The material containing an external thread (screws) most of the butterflies, including this, including this, is based on the thickness of the screw material, a component that contains an external conductor. In the following link 2, we recommend the preload of the fixation element between 60% and 90% of the expanding screw material. This diagram of the torture screw to generate repair was created in the center of this area by assuming value ... in 75% of the material resistance. The screw resistance is defined as the maximum force that the material can carry without permanent deformation. Although the properties of the material differ, the approximate estimate of the extension limit is between 85% and 90% of the extension limit. As shown in the table, the screw resistance varies according to the type of fixation and in some cases also depending on the diameter. A material that contains an inner wire (mother). In order to determine the paired value of the Vite-Deod assembly group, based solely on the thickness of the screw material, the mounting materials of this instruction must be followed: the limit of the mother length (internal fiber material) must be the same to or higher than maximum resistance to the screw (material with outer thread). If the basic material has no effect on increasing the assembly capacity. If the base material also represents a limiting factor, the maximum tightening capacity (and the corresponding pair of the screw) must be reduced corresponding to the appropriate manner. Unlike most bolt torture tables, tightening forces and torque values that correspond to the voltage of the screw material 10 000 and 25,000 psi ... regardless of the quality of the element fixation are also listed. This list may be useful for determining the appropriate reduced torque value if unique. Force. In reality, however, only the first threads actually participate in sharing the compression force of the fastener. This is due to similar thread error, slight thread size, and pitch differences causing inconsistent cosmetics for external and internal threads. The usual rule is that the minimum connection length of the minimum threads is equal to the (major) diameter of the fastener. A more conservative rule is to use a threaded connection length of 1-