## Reports.

Washington (State).

## HathiTrust



# www.hathitrust.org 

Public Domain, Google-digitized
http://www.hathitrust.org/access_use\#pd-google

We have determined this work to be in the public domain, meaning that it is not subject to copyright. Users are free to copy, use, and redistribute the work in part or in whole. It is possible that current copyright holders, heirs or the estate of the authors of individual portions of the work, such as illustrations or photographs, assert copyrights over these portions. Depending on the nature of subsequent use that is made, additional rights may need to be obtained independently of anything we can address. The digital images and OCR of this work were produced by Google, Inc. (indicated by a watermark on each page in the PageTurner). Google requests that the images and OCR not be re-hosted, redistributed or used commercially. The images are provided for educational, scholarly, non-commercial purposes.

## SH <br> 11 <br> . 12 <br> A31 <br> 1919/21



## SH



STATE OF WASHINGTON DEPARTMENT OF FISHERIES AND GAME

## W2

THIRTIETH AND THIRTY-FIRST ANNUAL REPORTS
of the

## State Fish Commissioner

TO THE
GOVERNOR OF THE STATE OF WASHINGTON April 1, 1919, to March 31, 1921

L. H. DARWIN, STATE FISH COMMISSIONER<br>Seattle, Wash.

OLYMPIA

With the Compliments of the COLLEGE OF FISFARIES, UNIVERSITY OF WASHINGTON,

Seattle, Wash.
SH ..... 11
STATE OF WASHINGTON

- WV DEPARTMENT OF FISHERIES AND GAME
AS 1
1919/21
THIRTIETH AND THIRTY-FIRST ANNUAL REPORTS
of the


# State Fish Commissioner 

TO THE

## GOVERNOR OF THE STATE OF WASHINGTON

 April 1, 1919, to March 31, 1921L. H. DARWIN, STATE FISH COMMISSIONER Seattle, Wash.
OLYMPIA

Sempte, Wasmmeton, April 1, 1921.
To His Excellency, Louis F. Hart, Governor of Washington.
Sin: In compliance with the provision of the law requiring the same, I have the honor to submit herewith the Thirtieth and Thirty-first Annual Reports of the Fish Commissioner of the State of Washington for the years ending March 31, 1920, and March 31, 1921, respectively.

Respectfully submitted,
L. H. Darwin,

State Fish Commissioner.

## THIRTIETH AND THIRTY-FIRST ANNUAL REPORTS

After thirty-one years, the office of the State Fish Commissioner, which has existed practically since statehood, passes out of existence today.

Under the terms of the new Civil Administrative Code, those duties heretofore performed by the State Fish Commissioner, in connection with the food and shell fish of the state, will be performed by the Supervisor of Fisheries, under the direction of the Director of Fisheries and Game.

With the passing out of existence of the office, it seems to me appropriate tc briefly review its work during the past eight years that I have been its head.

The number of salmon hatcheries in the state during that time has been increased from seventeen to thirty-one, while the total hatching capacity is now nearly three times as great as it was eight years ago.

The last year of the work in this oftice is memorable, in that it witnessed the taking of the largest number of salmon eggs in the history of the depart-ment-186,906,525.

Today, there are twenty-elght acres of concrete dyked oyster lands on the oyster reserves of the State of Washington. whereas, eight years ago there was only one.

The number of fishing licenses issued during the past eight years has increased about 70 per cent, while the number of persons employed in the fishing industry has been considerably more than doubled, owing to the introduction of certain appliances which require from seven to eight men to operate.

Eight years ago, when taking charge of the department, I discovered there were practically no laws attempting to protect any of our vast food and shell fish resources, other than salmon. Since that time, with the aid of scientific research, we have ascertained the habits, spawning seasons and spawning places of our herring, smelt, clams, shrimp, etc. Five of the biggest herring spawning reservations have been located, set aside by myself under the terms of the law, and marked with monuments, and closed seasons prescribed, which permit the herring to spawn in these refuges undisturbed.

The legislature has passed bills, which we have sponsored, providing for closed seasons in which fishing is prohibited for smelt, clams, shrimp, etc.

Although the laws existing in 1913 provided for the designation of the mouths of all the rivers in the state, I was unable to find one where this law had been complied with.

Today, I believe that every river mouth in Washington, with the possible exception of a few of the upper tributaries of the Columbia River, has been designated by monuments, and plats are on file in this office, and also in the offices of the auditors of the respective counties, showing the location of these monuments.

The legislature having prescribed a number of fishing areas on Puget Sound, we have complied with the laws and designated their boundaries with monuments.

Boats suitable for patrolling the different waters of the state, for the enforcement of the fishery laws, have been provided at a minimum of expense, with the result that for the first time in the state's history we have annually
made numerous arrests of law violators, whose fines have each year amounted to many thousands of dollars.

So far as I am able to ascertain from the records, there has not been a single year during the last eight when we have not collected more fines than the sum total of fines collected during all the preceding years of statehood prior to 1913.

The laws which were in effect in 1913 were inadequate to place in possession of the State Fisheries Department those statistics which every one now admits are necessary in order for the state to be informed as to the conditions of its fishery. What laws were in effect had not been enforced.

Out of some 87,000 reports, which should have been made to the Fish Commissioner's office during the biennium of 1911-1912, just 140 were actually made. In 1918, out of some 22,000 reports due under the then existing laws, our records show that over 21,000 were actually made. And in the years 19131914, without any change whatsoever in the laws, but only enforcing them to the best of our ability, the revenues of the department were almost doubled, as compared with the highest preceding biennium.

The 1915 session of the legislature passed laws containing plans which we had formulated for proper statistical information on our fishery industry. These laws continue in force until this day, and as a result of them there is no other state in the Union that possesses anything like as accurate knowledge of the year to year cash value and disposition of its fishery resources as the State of Waslington. Those who first opposed giving the state this information, now willingly do so, having come to realize its value.

When I first took charge of the Fish Commissioner's office, it was quartered in a couple of small, upstairs rooms on a side street in the city of Bellingham. More suitable quarters were at once obtained, and an exhibit of the fishery resources of this state installed that is not equalled even by the exhibit of the . ['nited States Bureau of Fisheries in Washington, D. C.

This exhibit has been viewed by many thousands every year, and has proven so interesting as to elicit favorable rental consideration for its housing, and a donation of a water supply by the city of Seattle, and free lights from the Puget Sound Traction, Light \& Power Company, in Seattle, where the office was removed on February 13, 1914.

We have recently adonted a new style of hatchery trough, which will completely revoluntionize hatchery operations in this state, tremendously lessening the cost of hatchery construction and operation, and permitting the work to be carried on by a less number of emploves with comfort and ease as against prior conditions of more or less bodily discomfort.

## NEW LAWS MAKE INDIVIDCAL FISH TAXING CNIT.

Commencing with the first Biennial Report I made to the Governor and continuing in each one since, I have earnestly reconmended the taking of the individual fish as the taxing unit and doing away with the super or surtaxes, such as the tax on every case of salmon canned by the canner, and on each ton of salmon handled fresh, salted, or kippered by the wholesaler. Particularly in the case of the so-called tonnage tax was it impossible of equitable enforcement.

You recommended this plan of taxation to the 1921 session of the legislature. At vour direction, I drew the bill providing therefor, which absolutely
equalized the tax on a certain per cent of the value of the food and shell fish product of our waters-approximately about 4 per cent.

The passage of this act, together with the one creating the Fisheries Board, places the state fishery authorities in a position to rehabilitate the salmon runs of this state, and provides them with revenues, which I feel are more than sufficient therefor.

When I assumed charge of the Department, there was not a hatchery in the state that had a permanent foundation, or a hatchery residence that contained a bath tub. Every hatchery we have constructed has a concrete foundation, and every new residence a bath room and toilet, while many of the old residences have been equipped with bath and toilet. The result of better living conditions has attracted a higher type of men to the Fisheries Department than ever before in its history.

The laws have been enforced impartially. The brazen violations by trap and purse seine owners, which occurred before 1913 and which had forced the fishery question into the forefront of political issues of the state, have been ended.

For the first time, scientific research has been carried on by the Department to ascertain the life liabits of the salmon, with the result that the lawmaking body has had before it the evidence of scientists to guide it in the enacting of statutes to preserve our great fishery resources.

The diligence of the Department in enforcing the revenue laws has resulted in a large increase in the amount of moneys received. The previous lax enforcement of the revenue laws had lost to the State of Washington many thousands of dollars annually.

## ECONOMIC CONDUCT REDUCES HATCHING COST.

The Department has been conducted so economically that the hatching cost of salmon, which in 1912 was $\$ 1 . c 4$ per thousand, was in 1916 reduced to 34 c per thousand. Even during the war areas of high prices, the cost of hatching salmon ranged from only 35 c to 54 c per thousand.

For the first time since statehood, the Department has issued complete statistical reports, which have enabled those interested to ascertain the number of fish taken annually, and the methods by which they were taken; the cost of hatching fish, and the output of the hatcheries; cost of operation of the Department, segregated into its various branches; and number of men and amount of capital employed in the fisheries of the state. No other state even attempts such complete statistical records.

Cash receipts of the Fisheries Department during the 1919-1921 biennium were $\$ 208,395.85$.

## INSUFFICIENT FUNDS FOR NEEDED WORK.

During the 1919 session of the legislature, the code which I prepared provided for a substantial increase in the departmental revenues. At that time $I$ pointed out, in view of the diminished salmon runs, the revenues would not be sufficient to maintain the Department.

It has always been my policy to curtail every other activity of the Department in order to operate the salmon hatcheries to the limit of their spawn taking capacity. This has seemed an especially desirable policy, in view of the
continued increase in the fishing operations and in the number of fishermen, and in view of the fact that it has been very plainly demonstrated that the fishermen's operations have resulted in the depletion of certain runs.

The reason there has been no evidence of the depletion of the runs of the Chinook and Chums on Puget Sound is, in my judgment, directly traceable in large part to the increased number of these varieties of salmon which have been liberated from the Puget Sound hatcheries. Many Chinook and Chum eggs have been brought annually for the last seven years from the Columbia River and Grays Harbor districts for hatching in Puget Sound hatcheries, and the fry liberated in Puget Sound waters.

## CHINOOK AND CHUM SALMON RUNS INCREASED IN PUGET SOUND BY TRANSFERRING EGGS FROM OTHER DISTRICTS.

It is practically universally conceded, by those who have watched the catch of the Chinook or spring salmon on Puget Sound during the last four years, that a very large percentage of those taken during these years from Puget Sound waters are the Columbia River variety.

A number of Puget Sound streams, up which the spring (Chinook) salmon never ascended or ascended only in small numbers, have now come to have well established runs, as a result of the liberation of Columbia River Chinook fry into them. In the Nooksack, Skagit, Snohomish, Green, Tahuya and other rivers the results have been especially noticeable.

At the meeting of the Paciffc Fisheries Society in Seattle in June, 1920, the ichthyologists, or fish scientists, announced that their experiments and investigations had demonstrated the truth of the salmon parent stream theory. In other words, they stated that they had conclusively demonstrated that a salmon egg hatched in a certain stream and the fry liberated in that stream would result in the return later on of the mature salmon, resulting from that fry, to that particular stream. This would happen even though the egg in the first instance might have heen taken at another stream. The place of the return of the fish would be governed by where it was hatched and the waters into which the fry was liberated, rather than by the place of the original taking of the egg. Thus the scientists confirmed the announcement heretofore made by this Department of this same resalt.

Ever since I have been the head of the Department, the work has been carried on in the belief that such results would follow. It is, of course, highly pleasing to have the leading ichthyologists of the Pacific Coast announce that scientific research has shown that we have proceeded along the right lines. However, our own results had overwhelmingly demonstrated to us that we had.

Another important scientific announcement at this same meeting was made by Dr. W. H. Rich, of the United States Bureau of Fisheries, who has been making a study of the life, habits and maturing periods of the salmon of this state. He stated that eight marked salmon liberated in 1916 returned in 1920 and averaged a weight of twenty-five pound each. It is an unoisputed fact that the average weight of the Chinook salmon of the Columbia River has been increased in the last four years. Several theories are advanced to account for this. As from two-thirds to three-fourths of the propagation work of Chinook salmon on the Columbia River is done by the State of Washington, I feel that the answer lies, in great part at least, in the hatchery methods
which we have followed. Commencing when I assumed charge of the Department, on the Columbia River we made use only of the largest males for fertilizing the Chinook salmon eggs, and it is to this that I attribute the increased size in the last four years of the Chinook salmon in the Columbia River.

## ILL EFFECTS OF IMMATURE SALMON DESTRUCTION SHOWS IN THE COLUMBIA RIVER.

In my last Biennial Report to you of date April 1st, 1919, I said in discussing the catching of immature salmon in our coastal waters: "The ill effects of the taking of the young salmon will likely become more apparent during the next three years." Unfortunately, this prediction has been more than verified. 1920 showed a slight diminution in the pack, whereas, for four or five years preceding there had been a steady increase. And it is apparent, at the time this is written, that the year 1921 will show a tremendous decrease in the number of Chinook salmon taken from the Columbia River. Information which I have leads me to belleve that the pack will be decreased from 25 to 30 per cent, and I am of the opinion that 1922 will at least show a proportionate decrease.

In my opinion, the result is wholly attributable to the taking of immature salmon in the Pacific Ocean off the mouth of that stream, and extending northward along the Washington coast. Aud while many of the men longest engaged in the fishery business on the Columbia River two years ago were inclined to doubt this, at the present time, I think everyone connected with the fishing business on that stream is ready to concede that the Department was correct wher it announced that the immature salmon, which have been caught for several years by the purse seiners and trollers off the mouth of the Columbia River, were the young salmon native to that stream, which would have returned two or three years later as mature fish; and that in taking these fish a tremendous economic loss was being incurred, as they were being caught at a time when they weighed only from two to six or seven pounds, whereas, had they been permitted to have lived for from one to three years, they would have returned mature fish at an average weight of twenty-five pounds. As this report is being written, the men, who have for vears engaged in the fishing business on the Columbia River and who have in past years encouraged the taking of these immature fish, are imploring the State Fisheries Board to stop completely all fishing for them by any appliance whatsoever.

## A THANKLESS TASK.

At the end of eight years, I realize what a thankless task it is to try to preserve a great natural resource for a country. To him who tries to stand between the greed of those to whose private interest it is to destroy a great natural resource and the state which owns that resource, there is reserved a most unpleasant portron. In the Senate Chamker in 1919, at a public hearing on the fisheries code, which I prepared and which would have curtailed the fishing for both mature and immature salmon, one of the spokesmen for one of the fishermen's organizations declared that any person who would put forward a proposal for curtailing fishing should be beheaded.

Today there is but a small remnant of the organization which he represented. Through the unwise direction of their energies, its members have con-
tributed to the destruction of the very industry which should have for all time to come assured them of a livelihood. The persons interested in the taking of these immature salmon put forth every kind of a pretense to prevent any interference with their operations. One of the subterfuges resorted to was the calling of the immature salmon a "grayling." There were those who argued that the fish when caught was not a salmon at all, but immediately after it was put in the can, it became a salmon and was sold as such.

The efforts to prevent the destruction of these immature salmon resulted from a most careful study of the situation conducted by the Department, assisted by such eminent scientists as Prof. 15. Victor Smith and Prof. Trevor Kincaid, of the University of Washington. In my last Biennial Report I published the preliminary reports of Prof. Smith. These were disputed by persons to whose interest it was to dispute them. During the past two years, Prof. Smith has continued his investigations, which have only served to demonstrate the correctness of his first statements. The result of Prof. Smith's scientific research work is to be found in this report.

Scientists employed by the United States Bureail of Fisheries, who have been investigating the same subject, have confirmed Prof. Smith's findings and conclusions.

The State of Oregon, which is iointly interested with the State of Washington in the Columbia River fishery; unhesitatingly accepted Prof. Smith's conclusions, and the 1921 session of the Oregon legislature passed laws to prevent future fishing for imniature salmon.

There are none left to dispute that this Department was right in 1919, when it pointed out that the taking of immature salmon off the mouth of the Columbia River was bound to result in a depletion of the mature salmon supply of that stream, and if permitted to continue at the ratio then existing, that the Chinook run of salmon in the Columbia River would in a few years be terribly depleted. Forseeing the danger, i pointed it out at the earliest opportunity. Unfortunately, we were unable to secure legislative action to put a stop to this destructive work in time. The result is that the fishing industry on the Columbia River is today suftering financial loss, which should have been avoided, and unless the practice is stopped, it is my beliet that in a few years the Chinook salmon flshery of the Columbia River will cease to exist as a great commercial industry.

The fishing carried on for immature salmon off Cape Flattery is as harmful, so far as it goes, as that carried on off the mouth of the Columbia River. However, the conditions at Cape Flattery are not so favorable to the fishermen as off the mouth of the Columbia. As a matter of fact, during the last two years this immature salmon fishing extended its way all up and down the Washington Coast.

## CREATION OF FISHERIES BOARD IN LINE WITH FORMER RECOMMENDATIONS.

During the war, the demand for salmon was so great and such intensive fishing resulted that a sufficient number were not pernitted to escape to the hatchery streams and the natural spawning grounds to anywhere nearly maintain the normal supply.

With a full knowledge of this condition, I prepared a fisheries code, which would have largely curtailed fishing and have regulated fishing operations, to the end that a larger escape of spawning fish would have occurred.

The passage of this code was bitterly opposed in the legislature by a majority of those interested in the taking of the fish. They succeeded in accomplishing its defeat.

In my last Biennial Report made to you, which was made within a few weeks following the defeat of my proposed code in the legislature, I pointed out to you that my experience led me to the conclusion that it would be inpossible to preserve the flsheries of this state through legislative enactment. This for the reason that selfishly interested parties had always theretofore succeeded and would likely thereafter succeed in so confusing the legislature as to prevent the passage of any real conservation measures.

I, therefore, recommended to you the creation by the legislature of a State Fish Commission, which would be clothed with full authority to say how, when and where fishing operation might be carried on. I pointed out the necessity of the Commission being given these broad powers. It was recommended that the Commissioners serve for long terms, and be removed only by impeachment, as elective state officers are removed.

I also recommended that the Fisheries Department employes be placed under civil service and gave my reasons therefor.

The 1921 legislature passed the Civil Administrative Code, which created the State Fisheries Board, clothed with the powers which I suggested. The power for good of a Board so constituted, in the hands of honest, capable and impartial men, is almost unlimited. I recognize its equal possibilities for harm in improper hands. Unfortunately, the law does not provide the suggested safeguards as to tenure of office of the members of the Board, nor does it place the employes of the Department under civil service.

In June, 1920, the Canadian Fishery Society held its annual meeting in Vancouver, B. C., and I was invited to prepare a paper dealing with the international question arising out of the Fraser River sockeye fishery situation. Taking as my subject "International Treaty-or State Agreements," I pointed out the failure of sixteen years of efforts to bring about a consummation of an international treaty between Canada and the United States, which would contain provisions permitting the rehabilitation of the sockeye fishery, in which both countries are interested. I expressed the opinion that the question could quickest and hest be solved by the creation by the State of Washington of a Fish Commission or Fisheries Board, which would have full authority to say how, when and where fishing operations could he carried on in this state. While such a Commission would have no authority to negotiate an international treaty, the paper pointed out that in Canada fishing operations can be regulated by Orders in Council. Therefore, it would be possible for the promulgation of identical joint regulations by an Order in Council by the Dominion of Canada and an order effective in Washington, passed by a State Fish Commission or State Fisheries Board. The almost universally expressed opinion in the discussion which followed the paper was to the effect that the method proposed offered the best solution which had been advanced.

Now that the State of Washington has created a State Fisheries Board, clothed with the powers suggested, I have small donbt that as soon as the pending treaty is ont of the way, an amicable arrangenent can be arrived at
with the officials of the Dominion of Canada, which will result in regulations which will effect a rehabilitation of the Fraser River sockeye salmon fishery, if such is the real desire of both parties in interest.

Dr. C. H. Gilbert, of Stanford University, who has given twenty years to the study of our Pacific Coast salmon, says that the State Fisheries Board of Washington offers the last and only hope for the rehabilitation of our sockeye salmon run.

## GREAT FISHERY RESOURCES - OTHER THAN SAIMON.

Washington's fishery resources, aside from its salmon, are very considerable. This despite the fact that many of our fish, which are valuable as food, have not been made use of to anything like the extent that they will be in the years to come. In 1920, the valye of the clams, mussels and crabs taken from our waters, and of the other fish like smelt, shad, herring, sturgeon, etc., was $\$ 286,686.21$. Up to the present time our herring is principally made use of as bait. In the years to come, the value of these species of our flish will very largely increase.

Every year the world's fish supply grows scarcer. The diminution of the Atlantic Coast supnly is more than marked with each passing year. This will undoubtedly result in the more extensive use and the more general taking of the species of our fish enumerated above.

VALUE OF CANNED SALMON, 1919-1920.
The value of the canned product of salmon in 1920 was $\$ 4,531,119.85$, and in $1919, \$ 12,956,477.67$.

The difference in the value of our salmon, as they are taken from the waters and when finally canned, is almost 80 per cent.

## INCREASE IN FISHING LICENSES.

The number of fishing licenses issued in 1919 was 6,638. The total number of licenses, including fishing licenses, dealers, etc., was 8,199. In 1920, 5,262 fishing licenses were issued, and the total of fishing licenses, dealers, etc., was 6,521.

During the biennium, the total number of salmon taken from the waters of the state was $13,140,576$, and the amount of money paid to the fishermen for these salmon was $\$ 9,131,760.63$.

## THE PURSE SEINES AND TRAPS TAKE GREATEST NUMBER OF FISH.

Since the inception of the fishing industry in this state, there has always been contention between users of the different kinds of gear or fishing appliances. This report contains very valuable statistical tabulations showing the salmon, segregated as to species, caught by the different classes of gear during the last eight years.

A reference to this will show that the appliances taking by far the greatest percentage are the purse seines and fish traps or pound nets.

During the eight year period from 1913 to 1920 the total number of salmon taken from the waters of the state was $109,696,626$. Cormmencing with 1915 , the statistics show that of the $12,608,503$ salmon taken that year, there were taken with purse seines $6,612,354$, and by fish traps or pound nets, $5,028,444$.

During this year it will be seen that more than half of all of the fish caught in the state were taken by the purse seiners.

In 1916, out of a total of $5,273,548$ salmon taken, there were taken by purse seines, $2,272,507$, and by fish traps or pound nets, $2,128,468$.

In 1917, out of $22,300,092$ salmon taken, there were taken by purse seines, $11,866,442$, and by fish traps or pound nets, $8,618,687$.

In 1918, of a total of $5,446,203$ salmon taken, there were taken by purse seines, $1,460,320$, and by fish traps or pound nets, $2,189,404$.

In 1919, out of a total of $10,082,627$ salmon taken, $4,445,892$ were caught by yurse seines, and $4,165,172$ by fish traps or pound nets.

In 1920 , out of a total of $3,057,949$ salmon taken, 941,096 were caught by purse seines, and $1,144,601$ by fish traps or pound nets.

In this connection, it should be borne in mind that the purse seine did not come into general use in this state until 1913. In the years of 1915 to 1917 they caught more than half the salmon caught by all the combined appliances of the state.

Prior to the advent of the purse seine, the fish trap or pound net was the appliance which had caught by far the greater number of salmon. So rapidly has the use of the purse seine developed, that most people cannot bring themselves to believe that it has surpassed the fish trap in the number of fish taken annually.

It should also be borne in mind that the use of the purse seine is barred from the Columbia River proper, and the number of fish which are taken by purse seines is greater than shown by the statistical reports to this office. This for the reason that these purse seines operate in the Pacific Ocean outside the three-mile limit, and under the law do not report their catch or pay a tax on the fish taken, although practically all of the fish which they catch are the product of Washington streams.

Purse seines nave never been used in Grays Harbor District nor in the Willapa Harbor District, except within the last two years. Therefore, when all these facts be considered, the tremendous effectiveness of this appliance as a catcher or taker of salmon cannot fail to impress a student of the fisheries question of the State of Washington.

## THE SALMON PACK DECREASES IN 1920.

In 1920 , the number of 48 -pound cases of salmon packed in the state of Washington was $328,833 \%$, with a value of $\$ 4,118,200.15$.

In 1919, the number of cases packed was $1,586,715$ of a value of $\$ 12,602$,\$61.67.

One of the reasons for the great decrease of the number of cases packed in 1920 from the number packed in 1919 was the fact that by reason of the large accumulation of canned salmon during the preceding years, practically no attempt was made to can any except of the finer red grades.

## FRESH FISH INDUSTRY GROWS.

The growth of the fresh fish industry during the last few years has continued. In 1920 there were $16,840,104$ pounds of salmon and other food and shell fish taken from the waters of the state, which were handled iresh or preserved other than by canning, with a value of $\$ 2,153,735.49$.

In $1919,16,260,364$ pounds of salmon and other food and shell fish were taken from the waters of the state, which were handled fresh or preserved other than by canning, with a value of $\$ 1,670,756.11$.

The value of the fish by-products, consisting of oil, fertilizer and fish meal, in 1920 was $\$ 37,742.25$. The approximate price of oil was 35 c per gallon, fertilizer $\$ 83$ per ton, and fish meal $\$ 85.90$ per ton.

## OUR OFFSHORE FISHERY.

In my opinion, one of the great reserve sources of wealth in this state is its oyster industry.

The state has forever reserved from sale or lease 12,688 acres of oyster reserves. When I assumed charge of the Department in 1913, I found approximately one acre improved by concrete dykes. On April 1, 1.921, there are more than twenty-eight acres under concrete dykes.

Contrary to the general rule, these lands have been dyked by the state at a seemingly considerable less cost per acre than private lands have been similarly improved. A large number of acres have been improved on the Clifton Oyster Reserve at the head of Hoods Canal. With proper handling, two vears hence the state should be able to sell from this reserve several thousand sacks of merchantable oysters.

Improvements which we now have under way will during 1921 add between five and six more acres of dyked lands.

The largest new improved acreage will be on the North Bay Oyster Reserve. Here, again, will be an opportunity for the state to dispose of large quantities of merchantable oysters, if it so desires.

And, again, if the state desires, dyked areas on the Hammersly Inlet (Oak. land Bay Reserve) can be made to supply thousands of sacks of merchantable oysters.

Up to this time, the reserves have principally been made use of to supply seed oysters to private owners of oyster lands. It must be admitted that private oyster growers are more fortunate than any other class of citizens of our state. To them the state annually furnishes, at a comparatively cheap price, all the seed for which there has been any demand.

Despite this paternalistic attitude on the part of the state, the price of oysters has advanced by leaps and bounds. If it be agreed that the reason for this is the limited area in private hands capable of producing oysters, then it would seem to be a proper policy on the part of the state to develop the large holdings, which yet remain in its hands, in the way of oyster reserves,
to the end that the oyster supply may be increased, and the price of this great article of food lowered so that a greater number of people may partake of it.

In 1919, a survey of our oyster reserve on Willapa Harbor led us to the conclusion that there were at least 30,000 sacks of seed oysters available for sale from that reserve. On my recommendation, the State Fish Commission decided to open the reserve for the sale of seed oysters therefrom, provided we could secure purchasers for 2,000 sacks, as it would not pay to go to the expense for a less number.

Notice was accordingly given, but despite our efforts and later offers to open the reserve if purchasers for 1,000 sacks could be found, we were unable to secure purchasers for even 1,000 sacks.

I then suggested to the Commission that we sell the merchantable oysters from the Willapa Harbor Reserve. We secured an offer from Mr. A. J. Nelson to take up the oysters, sort the merchantable ones therefrom, pay the state 75 c a sack therefor, and return the non-merchantable or oysters of less than three years of age to the beds. In addition, he was to break up the clusters of oysters so as to permit them an opportunity to greater growth.

Mr. Nelson commenced operations and did take up a few sacks, but soon desisted, saying that he found himself without a market. The reason for his inability to market his oysters, he reported to us, was the threat made by the private oyster growers that if the dealers purchased from him, they would not furnish them after he was no longer able to supply them by reason of having completed his contract with the state.

Whether or not this be the true reason, the fact remains that with thousands of sacks of oysters to sell from the state reserve on Willapa Harbor in 1919, the. state was able to dispose of only a very few.

It was particularly unfortunate in view of the fact that some kind of a disease seems to have broken out among the Willapa Harbor oysters in 1920, which has destroyed by far the larger portion of them. A survey of the beds in 1920 disclosed thousands of empty shells, with only a comparatively small number of live oysters.

I requested Prof. Kincaid, of the Uuiversity of Washington, to make an investigation of the situation, and ascertain, if possible, the cause of the death of so many of these Willapa Harbor oysters. Other work, however, has so far prevented him from doing this, but he has promised to go over the situation at his earliest opportunity.

Of the 2,600 acres of oyster reserves on Puget Sound, I should say that one-half or 1,300 acres are susceptible of improvement without great cost.

From Mr. Henry Bucey, a well versed chemist, for many years in the employ of one of the largest cement companies of the state, came the suggestion that a quicker growth of oysters could be secured by placing on the state oyster reserves precipitate of lime. This gentleman advanced the idea that the reason for our small oysters was the fact that our Puget Sound waters contain such a small proportion of lime that they are unable to take it fast enough to produce a big shell like the Atlantic and Gulf coasts oysters.

Following his suggestion, we procured a quantity of this precipitate of lime from the quarries near McMillan, Washington, which he took to the oyster beds and placed on them, as I recall, without any charge for lis services other than his expenses.

Later on, we requested him to go over this reserve to ascertain if any beneficial effects had accrued from the lime being placed thereon. He reported that in his judgment distinct benefits were to be observed in a larger growth in size.

Within a comparatively few years, the oyster reserves of Puget Sound alone could be improved and made to yield a revenue that would furnish no inconsiderable portion of the operating cost of our state government. At the same time, the food supply would be increased and the cost of this article of diet would be decreased to the consumer. With the number of acres already improved, a far greater seed supply has been offered during the last two years than has been purchased by the owners of private lands.

The question which now presents itself is whether these reserves are going to be permitted to continue lying idle and the state deprived of the revenue which can be derived from them, while the price of oysters remains beyond the reach of the ordinary individual, or whether they shall be improved, the state pay a portion of its operating expenses from the revenue which can be obtained from them, the supply of oysters increased, and the price reduced so that the ordinary individual may occasionally see them on his table.

## USUAL RULES NOT FOLLOWED.

I have been advised by many so-called "practical politicians" that the easiest rule of politics is "to do nothing;" then there is nothing to criticize.

It has always seemed to me that the responsibility for being the head of the Fisheries Department of this state is a very great one. Millions of dollars are invested in our fisheries; thousands are dependent upon it for employment; the demand has yearly increased, and the efforts to take our fish have multiplied to the extent that some of the salmon runs have shown a great decrease.

The answer to this would seem to me to be increasing the number of salmon hatcheries; increasing the efforts at salmon propagation; giving nature a better chance by the establishment of longer closed seasons to assist in maintaining the supply by permitting a larger number of fish to escape to the spawning grounds; to annually continue to improve the oyster reserves of the state by dyking, and to ascertain the spawning seasons of those classes of fish which the state cannot propagate, and afford them that protection during the season which will permit nature to do the work in which man cannot assist.

It seems to me incredible that any man could be given the responsibility for this work and fail to give to it his very best efforts. It has been a matter of great surprise to me to find how many there are, who have large investments in the industry, who seem to give such little thought to its prepetuation.

Coufronted with the plain facts that certain of the salmon runs were being annually diminished by too Intensive fishing, efforts to better the situation have been fought by some of the very persons who stood to benefit by these attempts.

Unfortunately, the idea has been all too prevalent to let those engaged in the industry have the entire say concerning it.

The people of this state have an interest in perpetuating and maintaining our food and shell fishery, compared with which the right of any individual, no matter how great his investinents therein, sinks into insignificance.

## WASHINGTON LEADS ALL STATES IN FISHERY RESOURCES.

One effect of attending the meetings of the International Association of Fish, Game and Conservation Commissioners at Loulsville, Ky., and Ottawa, Can., in 1919 and 1920, was to disclose to me how incomparably greater are the fishery resources of this state than those of any other state of the Union. In practically all other states, with the exception of Oregon, fishing is regarded only as a sport. None of the problems which confront this state in a commercial fishery way are shared by any other state. To be sure, they have some problems which have not yet bothered us to any great extent, the chief one being water pollution. Neither the Atlantic states nor the Gulf states have any great anadromous fishery such as the salmon fishery of this state; therefore, the greater reason for our preserving the great asset of our salmon fishery. Nowhere else in the United States does it exist; nowhere else in the United States will it ever exist, despite the efforts which have been made to transplant our salmon to the states of the North Atlantic Coast. It is, therefore, an asset which, if maintained, will each year grow more valuable as the demand is sure to increase. If the people of this state could only understand the situation as it really exists, they would never permit of its destruction by any selfish interest.

Many of those interested only in catching and canning fish lose slght of the fact that the state's interest in our fisheries is paramount to the interest of any individual who engages in their taking merely for profit.

Experience has taught us by this time about what percentage of the fish can be taken without diminishing the runs. And experience has also taught us the efficacy of properly conducted hatchery work as regards our salmon.

## A CRIME TO DESTROY OUR FISHERY.

It seems to me to be a crime against mankind-against those who ar. here and the generations yet to follow-to let the great salmon runs of the State of Washington be destroyed at the selfish behest of a few individuals, who, in order to enrich themselves, would impoverish the state and destroy a food supply of the people.

Unfortunately, every pressure is exerted in behalf of those selfishly interested. These selfish interests have gone to an almost unbelievable extent in certain instances in order to silence any opposition to their course, and have slandered and villified those who opposed their plans and methods. These persons do not want the people of the state to know the truth of the matter, belleving that if they do they will act to protect and conserve.

It is my belief that had the people understood the situation, they would have acted long ere this, and wquld have prevented the practical destruction of some of our greatest salmon runs.

## SPAWNED FISH GIVEN AWAY AT HATCHERIES.

With the close of the war and the falling off of the demand for salmon, we found ourselves unable to dispose of the fish from which we had taken the spawn at the hatcheries, after 1919, except about $\$ 1,000$ worth sold in 1920 .

During the war years, we received from spawned salmon and turned over to the state in round numbers some $\$ 50,000$. Had it not been for the moneys thus derived, it would have been impossible for us to have operated the Fish-
eries Department. Not only was the Department benefited financially, but the fish were sold under an agreement that insured their reaching the consumer at a nuch lower price than was being demanded at the time this plan was inaugurated. Scientific and chemical analysis demonstrated that they were entirely fit for food.

Finding ourselves without a sales market for this salmon in 1920, we announced that the people could come to the hatcheries and get the spawned fish without any charge. Thousands of persons availed themselves of this opportunity. Included, were organizations in certain cities, which were formed in some instances for the express purpose of securing these fish and distributing them to members at merely cost of transportation. Several thousand pounds were furnished to the United States army for the troops stationed at Camp Lewis.

For many years, the people stationed around the hatcheries have used these spawned fish for food, and the number annually is growing larger.

## FISH GIVEN TO STATE INSTITUTIONS.

We continued the practice inaugurated several years previous of giving to the state penal, charitable and insane institutions all of the fish which they would make use of.

In Dr. Keller, the head of the Western Washington Hospital for the Insane at Fort Steilacoom, we always found an ardent co-worker in the attempts to lessen the cost of the state institutions by making use of our spawned salmon. Dr. Keller conducted his own research work and satisfied himself that the fish were entirely wholesome and stated that he made use of them on his own table. Both in 1919 and 1920 the greatest number of fish were made use of by this institution.

In return for this food, Dr. Keller, during several years when we were unable to secure help elsewhere, furnished us inmates from his institution, who assisted us in our hatchery operations. So great was the labor scarcity that had it not been for this assistance, we would have had to curtail our hatchery operations.

During some of the years, Dr. Keller not only preserved fish for his own institution, but also offered to preserve a supply for some of the other institutions, if they so desired.

## INCREASED SALMON RUNS FROM TRANSPLANTED EGGS.

The most convincing results are apparent from the practice of transplanting surplus eggs from one hatchery to another. The statistics show a very decided increase in the take of spring or Chinook salmon on Puget Sound during the last two or three years. This seems to be the direct result of the transferring of the surplus Chinook salmon egg take of the Columbia River to the Puget Sound and other districts.

Puget Sound fishermen, who are acquainted with the Columbia River Chinook, almost without exception state that many of this specie which they catch now are of the Columbia River variety. The river fishermen state that the number of spring or Chinook salmon ascending the tributaries of Puget Sound has steadily increased during the last two or three years.

The fishermen in the Grays Harbor and Willapa Harbor districts also declare that the Chinook runs in their respective waters are increasing. And from all four fishing districts of the state come reports of the steadily increasing size of the Chinook salmon. In my opinion, the only reasonable explanation for this increase in size is the fact that during the last eight years we have adhered to the rule of using only the larger nales in our spawning operations.

The 1920 run of spring Chinook salmon on Puget Sound was the largest in the history during the period for which records are available. In my judgment, the 1921 run in the Puget Sound district will prove to be still larger, for in 1917 we transferred the largest number of eggs ever taken in any one year from the Columbia River to that district.

The same is also true as regards the other districts, for in 1917 we took the largest number of eggs in the Columbia River district ever secured in the history of the state's operations on that stream.

## NEW EYEING STATIONS.

During the biennium, the work of extending our hatchery operations in the way of establishing new eyeing stations for the taking of spawn went steadily forward. Lack of funds prevented the construction of any new hatcheries, with the exception of the new Chinook Hatchery, which was constructed from funds received from the Northwestern Electric Company in lieu of their maintaining a fishway over a dam which they have in the Big White Salmon River.

A number of trout eyeing stations were established, which are specifically mentioned in the report which I made for this same biennium as State Game Warden.

New eyeing stations established in connection with the salmon hatcheries were at the Elwha, where we inaugurated operations on the Lyre River and on Morse Creek; at the Skokomish, where spawn taking operations were inaugurated on two new tributaries; at the Nooksack and Middle Fork Nooksack hatcheries; at the Green River and Green River No. 2, and at the Nasel and Willapa hatcheries.

As pointed out in previous reports, the effectiveness of the hatcheries has been very greatly increased by the use of light automobile express trucks. These have enabled us to take spawn from streams, in some instances as high as twelve to fifteen miles distant from our established hatcheries. The fry resulting from these eggs were planted back into the streams from which the eggs were secured.

By following this plan, the salmon runs in these streams can be maintained and increased. It obviates the construction of new hatcheries, and of course the operating expenses are much less than if new hatcheries had to be constructed and maintained.

## NEW HATCHERIES SHOULD BE CONSTRUCTED.

In my opinion, if the salmon runs of this state are to be maintained and increased, it is going to be necessary to constantly construct new hatcheries. The much greater effectiveness of hatchery operations, as compared with natural propagation, has in my judgment been so effectively proven as to no
longer permit of discussion among those who are acquainted with the situation.

On the Columbia River, with many of the tributaries formerly producing quite a portion of the salmon supply almost entirely eliminated from present day uses, because of the high dams, irrigation and electric projects, it was possible through means of intensive hatchery work on the lower tributaries to bring back the salmon supply of that stream to what it was before commercial fishing operations had so terribly reduced it.

The same is true of certain other salmon runs, notably the Chinook and chum or dogs, in the three other fishing districts of this state, while the silverside salmon run has not shown the diminution that has been revealed in the sockeye and humpback runs because of our increased hatchery operations.

Prof. E. Victor Smith, of the University of Washington, who made a study of hatchery operations of the Fisheries Department of this state several years since, describes the greater advantage of hatchery or artificial propagation as compared with natural propagation, in a pamphlet issued by the Fisheries Department in 1919, entitled "Fish Culture Methods in the Hatcheries of the State of Washington," as follows:

## Wastefulness of Natural Propagation.


#### Abstract

The question naturally arises as to the advantage of the artificial method of propagation over the natural method. As the country becomes settled the natural spawning beds of the salmon and trout are rendered less and less productive, because of the increasingly unfavorable conditions incident to the commercial enterprises along the rivers and streams. It is imperative, therefore, that some means be adopted to counteract the depletions arising from this source; but the most important reason for the artiffial propagation is the fact that the natural method is extremely wasteful, which is not true of the artificial method. The average number of eggs deposited by the females of the five species of salmon is about 4,000. Were it not for very great losses, the increase in the number of these fishes would be so enormous that in a few years there would not be food enough to keep them from starving by myriads. The greatest loss comes, without doubt, in the earliest stages of development. While there is much work to be done in determining the efficiency of natural propagation, yet enough has been done to show that the losses are very great during the first three or four months of development. In natural spawning Rutter estimates that at least 15 per cent of the eggs are not fertilized. This loss, he says, is small compared to the number destroyed before the hatching period. A considerable number of eggs is destroyed by the movement of the fish and gravel incident to spawning, a larger number is devoured by predatory fishes which abound in the spawning streams, and a still larger number is buried so deeply by the shifting gravel and sand, due to the winter's freshets, that they are smothered; or, if hatched, the young are not able to make their way to the surface. Again, many eggs are buried not more than three to four inches in the gravel, so when these hatch the young struggle to the surface long before the yolk sac is absorbed, and being of a bright attractive color and exceedingly helpless, they soon become the prey of voracious enemies. So it is probable that not 15 per cent of the eggs produce fry that reach the stage of complete yolk-sac absorption.

By the artificial method of propagation practically all the agencies so destructive to the salmon in their early stages of development under natural conditions are eliminated, and by the use of the most improved modern methods more than 90 per cent of the eggs may be hatched out and the young fish brought to the stage of complete yolk-sac absorption.


The proper policy seems to me to be to permit of the taking of all the fish that can be spared consistently with the maintenance of the supply. As heretofore pointed out, a very great number of men in this state secure their
livelihood by commercial flshing and many millions of dollars are invested in the commercial fisheries of this state.

The food resulting therefrom is made use of over almost all the civilized world. Therefore, the advisability of permitting operations on as large a scale as possible consistent with the maintenance of the supply. If this supply can be maintained and augmented by hatchery operations, and thus permit of the taking of a greater number of fish than can be taken if natural propagation is relied upon, it seems to me to be a question that does not permit of discussion.

Such is the view that has been taken by the legislature of this state in passing a revenue bill increasing the fish taxes to where the income of the Department, despite the diminished runs, will be doubled, if not trebled.

During the 1921 session of the legislature, as the head of the Fisheries Department, I was asked by many senators and representatives if the increased revenues were for the purpose of increasing hatchery operations. My reply was invariably to the effect that such was my understanding. In turn, these legislators replied that if such were the case, they were willing to vote for the increase.

Those engaged in the flishing business made no objection to the increase on the understanding that the increased revenues thus raised were to be used for increased and enlarged hatchery operations.

A reference to the 1921 revenue law will show that it will yield an increase of from 600 to 2,200 per cent on salmon catch taxes.

If there be any who doubt the efficacy of hatchery operations, I am sure that they would have these doubts removed by an understanding of the situation existing in Eastern states today. In these great centers of population, such as are to be found in the states from Pennsylvania north along the Atlantic seaboard, natural trout propagation is but a small factor. Whatever fishing there is results to a very great extent from hatchery propagation. Within the year, I have heard Mr. N. R. Buller, head of the Fisheries Department of the State of Pennsylvania, make the statement that the only reason for their rearing their trout to a six-inch fish was because practically all these fish were caught within a few months succeeding their liberation, and that the trout supply of the Pennsylvania streams were liberated into them each year just before the fishing season opened.

These conditions which exist in the East are, in my judgment, very largely responsible for the agitation which exists in Western states for the rearing of fish. However, the conditions which exist in the East do not exist in the State of Washington, particularly as regards our salmon.

The heads of the State Fisheries Departments, whom I have met and who have had the longest experience, are firmly of the opinion that better results, and certainly a much more economical system is the planting of the fry at the time of egg sac absorption, if conditions are such that they have an opportunity for natural growth.

Many of the streams of the East have not contained trout for many years. There, one of the great problems is water pollution. It practically does not exist in the State of Washington.

Again, while the propriety of trout rearing may not be questioned even for this state, the facts are that funds have never been made available to permit of it on a large scale.

## ADDITIONAL REARING PONDS CONSTRUCTED.

To the extent of the funds available, we have reared both our trout and our salmon, but the policy which my experience has led me to adhere to is to permit of the salmon taking their departure whenever nature dictates the time. There are two things we do know about the salmon: First-that it is hatched in fresh water and soon thereafter, the time varying with the several species, descends to salt water, there to remain until sexually mature; secondthen to return to the fresh water streams where hatched, where they deposit their eggs and die.

Prof. Rich, of the United States Bureau of Fisheries, who has carried on scientific research to ascertain at what age the young salmon go to salt water, reports that his observations are that they go down at varying ages. His work is not nearly complete enough to permit of the passing of final judgment.

It seems to me to be unwise to attempt to interfere with the processes of nature. Therefore, we have followed the plan of using the natural streams, wherever possible, as rearing ponds, feeding the young fry therein as long as they care to remain, but leaving the way open at all times to allow them to depart for salt water whenever nature tells them the moment has arrived.

This plan permits us to keep out the natural enemies of these young fish, and also permits nature to have its way. Every result which we have been able to observe seems to point to the correctness of this course.

It must not be presumed that I am against the use of rearing ponds. What I am against is the wasting of large amounts of money on the construction of great concrete rearing ponds, which are not nearly so efficacious as the less expensive ones, which as far as possible approximate natural conditions.

As funds permitted, we have constantly constructed these. Quite an extensive lot of ponds were constructed during 1919 at our Chinook hatchery. A reference to the statistical portion of this report will show that nearly all of our hatcheries have rearing ponds to a greater or less extent.

For years, we have planned an extensive system of ponds at our Chehalis hatchery. Eight acres of ground have been purchased for them, and only lack of funds has prevented their construction.

An extensive system has been planned for the Green River hatchery, near Auburn, which will be constructed during the ensuing year. Additional ponds were also constructed at the Samish hatchery during the last blennium, while improvements in natural pond conditions were made at Chambers Creek and at the Nooksack and Willapa hatcheries.

The early years of our incumbency of office showed us the wastefulness and undesirability of concrete ponds. The hot sun shining on these ponds heated the waters, making it less beneficial for the fish.

My conversations, during the last two years, with heads of the Fisheries Departments in the East, have revealed that these gentlemen have come to the same conclusion and are now constructing ponds which approximate as nearly as possible natural conditions. Everyone who has made a success of rearing fish and game birds is keenly alive to the fact that the best results are obtained by approximating as nearly as possible natural conditions. Hence the discard of the expensive concrete rearing ponds, and the substitution of those with the gravel bottoms.

On the Columbia River, it is only necessary to point to the results attained at our Kalama and other hatcheries. At Kalama, fifteen years ago, the egg take which resulted from securing all the fish that ascended that stream was $2,300,000$. By 1917, as a result of our hatchery operations, the run had been steadily increased until we secured $44,082,500$.

At the same Kalama hatchery we have introduced a run of chum or dog salmon of very considerable proportions. Mr. L. E. Mayhall, superintendent of hatcheries, who was with the Department twenty-three years ago, advises that at that time and in later years there was no run of dog or chum salmon in the Kalama River.

The fisheries authorities of the State of Oregon stress feeding of their young salmon. They admit that their ideas have considerably changed and they are now getting away from the use of artificial ponds, which were constructed at enormous expense, and are following our example of making use of natural streams, selecting those where the situation can be controlled. At our Kalama hatchery, we annually take from two to three times the number of eggs that are taken by all the hatcheries of the State of Oregon combined.

A few years ago the fisheries authorities of Oregon were proclaiming the merits of a central hatchery system, and announce that their efforts on the Columbia River were largely centered at the Bonneville hatchery, to which they transferred eggs from the other tributary streams.

The central hatchery of Oregon-the Bonneville hatchery- is located on Tanner Creek, which I am advised was not a natural salmon stream in the first instance.

After many years of operation, the Bonneville hatchery is unable to secure its egg supply from the stream on which it is located, but annually depends upon an egg supply being received from Oregon hatcheries situated on other streams, or from the United States Government hatcheries located either in Oregon, Idaho or Alaska.

The first requisite of a salmon hatchery is an egg supply. The Washington hatcheries on the Columbia River secure their own egg supply in increasing numbers every year, when fishing operations will permit of the escape of fish up the streams on which they are located, and where we annually liberated the resulting fry.

If the Bonneville hatchery in Oregon cannot secure its own egg supply, it seems to me that the situation is one which even the layman can understand, when he considers it.

## WHAT EXPERIENCED FISH CULTURISTS SAY.

The dean of all fish culturists in the United States, Mr. James Nevin, who has been engaged in it for more than fifty years, some thirty-eight of which he has served at the head of the Fisheries Department of the State of Wisconsin, emphatically believes in the planting of the fry just at the age of the completion of the egg sac absorption.

The following letter received from Mr. Nevin discusses the situation, particularly as regards trout. No other state in the United States, aside from Washington, attempts fish propagation on the scale that is maintained by the State of Wisconsin. Mr. Nevin's letter follows:

Fourth and Seneca Streets,
Seattle, Washington.
My Dear Sir: In thinking and talking over fish matters with you in the few times that $I$ have had the pleasure to meet you, in regard to propagation of fish in your state, I have in the past few years admired the great work that your state has been doing in the propagation of salmon, which industry is of great commercial value to your state, and the pep that you have put into the execution under your administration. You have become noted throughout the country for action and deeds you have done in the accomplishment of fish affairs in your great state.

As I have been engaged in the propagation of fish for the past fifty years, and the reports from the various states from year to year come to our office, it is a part of my business to go through these reports carefully to see if I can get any useful information that will be beneficial for us to adopt in the way of betterment of the service in this state, and in this manner $I$ have become familiar with your great work.

As my first fish cultural work was with the salmon on the Atlantic Coast, it was but natural that $I$ would become much interested in watching the work of other states and especially interested in the salmon of the Pacific Coast. I have also become much interested in the views of many people as to when is the proper time to liberate the salmon fry in the rivers and streams. We have had this same matter up in the various states in the planting of fry and fingerlings in regard to brook and brown trout in the Eastern states. Personally, I believe in the planting of the fry just before the yoik-sac is absorbed and before the fry commence to feed. Fish are like animals; when kept in close confinement and fed regularly they become so tame that they will come up and feed from your hands. These fish at this time are losing their natural inclination to be on the alert for enemies that will destroy them, as it is a well known fact that the big fish eat the little ones. With us, in holding brook trout in ponds we have to sort our fish twice a year to keep the flsh as near an equal size as possible, to keep them from devouring one another. As an fllustration, some twenty years ago we planted some 500 lake trout, weighing a pound aplece, in Lake Mendota here at Madison, one afternoon. That same night a couple of men were out spearing pickerel and two of these same fish that we had planted the day before were taken from the mouths of pickerel that had been speared during the night. These flsh had been fed in ponds for some two years and did not know what it was to have an enemy and were easy prey for other fish.

In the central part of $W$ isconsin brook trout were unknown in its many streams until planted as fry during the month of February. These same fry did not hatch until after the first of January, and we usually commenced to distribute about the 7 th of February, before the food sac was absorbed and before they required any food. This was followed up for several years in planting during the winter months, and $I$ can assure you that no state in the Union ever had any greater success in the stocking of the streams with fry when they were about a month old. The result has been that this state has had less agitation than any other as to when is the best time to plant fry or fingerlings.

Some springs, when we have a lot of snow and it goes off with high water in the spring of the year, if the country around about is hilly, there will be great fioods in the valley, with much roily water, lasting several weeks at a time, and we have not as good results as with other streams that do not overfiow their banks. These streams, we take every precaution to plant the fry in the head water springs and in small rivulet feeders to the main stream. In planting fish during the winter months, and planting them in small spring-fed streams, we have had our wardens, that are scattered over the state, watch certain streams for a few weeks after the fish were planted, and report from week to week on how the fish were doing, and in fact when it has been so that I could visit the streams on a Sunday in the vicinity of Madison, $I$ have done so for my own satisfaction, to know how the little fellows were getting along. So far it has been a great pleasure to me to watch their progress and growth, with the small losses from planting. If great care and attention is taken at the time the fish
are liberated in clear water, with animal life in the water for sustenance, there is no question of what the harvest will be in the future.

Salmon fry are no different from other varieties of fish in planting. This building of ponds and placing millions of fish in ponds to feed for a few months, and then liberate them, $I$ do not believe in, if the waters are in a condition to plant them at a time before the food sac is absorbed, as I know you must have great losses of the fry from the time they are placed in the ponds until they are liberated. I know that when we keep more fish in conflnement than we ought to according to the size of the pond, we have great losses, and with the care and attention with the feeding I do not think that we receive enough benefit from them to warrant the expense.

This last spring we placed 1,000 fish in a pond with an abundance of vegetation and small fresh water shrimp, and they were not fed and after four months we took out 882. In another pond we placed 200 fish and after four months we took out 182 fish, so that you can see that the loss was very small, as no attention was given to the fish. In some streams and rivers fish of the same variety will do much better than in others, as there is as much difference in food and the quality of the water as there is in various soils for producing various kinds of crops. Then again, the season has much to do with the kind of crop you are going to harvest, as weather conditions have much to do with the hatching of the animal life for sustenance in supplying the infant fish with food.

I have often thought of how I would like to look over your vast water resources and salmon rivers. At the same time $I$ think $I$ have them well in mind from the pictures I have seen of them, and from reading of your great fish industry.

I would be much pleased to hear from you in regard to how you feel, personally, about keeping the salmon fry in confinement for a few months before liberating them.

With kind regards and wishing you the compliments of the season, I remain, Very truly yours,
STATE CONSERVATION COMMISSION, James Nevin, Commissioner.

## SCIENTIFIC PUBLICATIONS ISSUED DURING BIENNIUM.

During the biennium, the department has issued three pamphlets dealing with fishery subjects of this state, which have attracted wide attention and enlisted inquiries from almost every state in the Union. These pamphlets are: "Fish Culture Methods in the Hatcheries of the State of Washington", by Prof. E. Victor Smith of the University of Washington; "The Taking of Immature Salmon in the Waters of the State of Washington", by Prof. E. Victor Smith; and "An Annotated List of Puget Sound Fishes", by Prof. Trevor Kincaid, of the University of Washington, all of which are reproduced elsewhere in this report.

In bidding adieu to the Fisheries Department as it has existed in this state for thirty-one years, I wish to take this occasion to extend my most sincere thanks to Prof. E. Victor Smith and Prof. Trevor Kincaid, of the University of Washington. Prof. Trevor Kincaid's ability in fish and shell fish work has been recognized by three of the leading governments of the world. During University vacation periods, he has worked with this Department, in seeking to find a solution to the questions which have perplexed us, particularly regarding our shell fishes.

I have never known a more thoroughly sincere and conscientious worker than Prof. E. Victor Smith. During the last eight years he and Prof. Trevor Kincaid, working at the request of this Department, have done more scientifically, in my estimation, to ascertain the facts as regards our Washington
salmon than has been done in all the years preceding, since statehood. Feeding grounds and feeding habits of our salmon, and the periods of their greatest development, for the first time, are pretty definitely known to us, and this definite knowledge is the result of their research work during the last etght years.

Prof. Kincaid's pamphlet contains illustrations of 114 of the possibly 200 forms of fish life known to exist in our waters. I feel that this report will be more valuable, by the use of these illustrations, than any others that occur to me.

## CONSTRUCTION OF NEW CHINOOK HATCHERY.

One of the first hatcheries constructed by the State of Washington was at Chinook. The site was unattractive and the original construction poor. The result was that the hatchery was in a very bad state of repair and in addition was of a very limited capacity.

The Northwestern Electric Company a number of years ago built a fishway over a dam, which they maintained in the Big White Salmon River, of a lieight of about 160 feet. While it is generally supposed that no fish will ascend a fishway over a dam of even fifty feet in height, it is a surprising fact that we found at least one specie of salmon-the steelhead-in limited numbers, making its way over this fishway. The other varieties of salmon would not attempt it. After negotiations with this company, they decided to avail themselves of the privilege of the law which permits of the construction of a hatchery in lieu of a fishway where the dam is of a greater height than in the judgment of the Fish Commissioner will permit of a fishway being efficacious.

With your approval, I received $\$ 5,000$ from this company with which to construct a new hatchery at Chinook, Washington. This for the reason that it was unnecessary to construct a hatchery on the Big White Salmon River because the United States Bureau of Fisheries has for years maintained one near the mouth of that stream.

At the Chinook Hatchery we now have a fry capacity of $9,440,000$ at a given time, as against $3,340,000$ before the construction of the new hatchery.

It is built along the same modern lines that the other hatcheries have been constructed, with the improvement of a floor sloping to conform with the drop in the hatchery troughs.

The new hatchery is adjoining the site of the old one, but on higher and better drained ground. In addition to the construction of the new hatchery, we drained the grounds of the old one, constructed new rearing ponds, and placed the old hatchery in such condition that both of them will hereafter be made use of because of arrangements which we have made to increase the egg take here.

## FORCED TO MOVE OFFICE ON ACCOUNT NEW CONSTRUCTION.

During the biennium, the State Fisheries Building, constructed at the corner of Fourth Avenue and Seneca Street by the Metropolitan Building Company in 1914, which housed the State Fish Commissioner and State Game Warden's offices, together with the exhibit which had been installed, was razed so that a more permanent structure for commercial uses might be erected on the site.

New quarters were arranged for the State Fisheries Department on the back of the grounds. This necessitated a double removal of the offices-one to vacate when the old building was to be torn down, and another back to the new building.

The new location is nowhere nearly so advantageous from a show point of view as the old one. It is questionable if one person visits the exhibit now, where ten formerly visited it. The new building is much more comfortable and the business offices are larger and much better arranged than the old building, but the obscurlty of the location prevents the exhibit attracting the crowds which formerly thronged it.

Also, the exhibit room is smaller than the old one, and it is impossible to show as large an exhibit in the new building as was shown in the old one. The rent for the new building is $\$ 300$ per month as against $\$ 150$ for the former one.

As the new code takes the bulk of the clerical work out of the Fish Commissioner's office and transfers it to the State Treasurer and to the Director of Licenses at the state capitol, it may be found advisable to make some disposition of the exhibit and remove the Fish Commissioner's ofnce to Olympia, thus saving over $\$ 5,000$ annually.

When the license department was maintained in the office here, and the Game Department as well, the expense being divided between them, there was every reason for its retention in the City of Seattle, where it could be personally visited by a large per cent of those having business with the Department. But these visits very largely arise from matters connected with the securing of licenses, the payment of taxes, and inquiries concerning the commercial and game and game fish laws. Now that these are transferred to Olympia, under the terms of the Civil Administrative Code, there would seem to be no reason for the present large expense of maintaining the office in Seattle.

These two removals of the office and exhibit entailed an immense amount of extra work on the part of the employes and extra expense on the Department. The matter of taking down and setting up the aquarium is most expensive.

## FLOOD DAMAGE CURTAILED CHINOOK EGG TAKE.

促
The unprecedented and unseasonable September, 1920, fioods caused us to lose the racks at those salmon hatcheries which take in the neighborhood of 90 per cent of our Chinook eggs. In the Columbia River district, we lost the racks at our Kalama and Wind River hatcheries. At Wind River we were able to secure 632,400 eggs before they went out; but at the Kalama Hatchery, the largest Chinook egg taking hatchery in the state and where in previous years we have been able to secure as high as $44,082,500 \mathrm{eggs}$, we were unable to take a single one. In the Willapa Harbor District, we lost our racks at the Nasel River Hatchery and the Willapa Hatchery, both of them splendid Chinook hatcheries. On Puget Sound, we lost part of our racks at the Green River Hatchery, where more Chinook eggs are taken than at any other hatchery in this district. This catastrophe was absolutely unavoidable. In none of these streams is it possible to construct permanent racks. Very fortunately, these disasters in the Columbia River district are an infrequent occurrence. It is the first time in the nine years of my operation of the

Department that we lost our racks by reason of floods at any of our Columbia River hatcheries. At the Nasel, Willapa and Green River hatcheries it is not so unusual to lose the racks, but generally not until after a considerable number of eggs are secured.

## LARGEST SALMON EGG TAKE IN STATE'S HISTORY DESPITE DISASTERS.

From these unfortunate occurrences we can turn to the more fortunate aspects of our 1920 hatchery operations, for it should be borne in mind that despite these misfortunes it was in this year that we took the largest number of salmon eggs of any year in the history of the operation of the Fisheries Department.

The greatest increase came in the chum or dog salmon and silverside salmon egg take at our Chehalis and Humptulips hatcheries. From the records which I have been able to observe, the Chehalls Hatchery in 1920 took the greatest number of salmon eggs ever taken by a single hatchery anywhere in the history of hatchery operations. That year it took $71,736,720$, of which $17,118,340$ were silverside and $51,076,000$ chum or dog. In both of these species it far exceeded any previous take at this same hatchery.

The increase in the take of silverside eggs at the Chehalis Hatchery is particularly gratifying. It is fortunate that,' for purposes of comparison and getting a line on the possibilitles of hatchery operations, the Chehalis Hatchery has been in charge of one man for seventeen years. By reason of this long continued experience, Superintendent L. M. Rice, is able to speak very definitely concerning the success in increasing the salmon runs which has attended the operations of this hatchery. The increase has been very great. The exact ratio, of course, is impossible to determine. Many millions of salmon eggs were deposited naturally in the Satsop River, from which the Chehalis Hatchery secures its spawn supply. This was because of the low water conditions which prevented the fish from reaching up to our racks, where they are trapped and their eggs taken.
The egg take at the Humptulips Hatchery was also large beyond all expectations. In 1920 we succeeded in constructing a rack at the Humptulips Hatchery which withstood the floods. This was our third attempt there at permanent rack construction, as the raging torrents which sweep down Stevens Creek had heretofore been able to frustrate our efforts. That year we took at the Humptulips Hatchery $21,913,280$ eggs, against $10,060,000$ in 1917, the highest we had ever been able to secure before.

The Chehalis and Humptulips hatcheries produced the greatest increases in egg takes of any in the state during this year. Notwithstanding the losses in our Chinook egg take, our hatcheries everywhere, generally speaking, increased their takes in 1920 over the preceding two years.

The Nooksack Hatchery passed all former records in taking silverside eggs. An unfortunate temporary break in our racks deprived us of several millions of eggs, which could have been secured here.

The Middle Fork Nooksack Hatchery surpassed any of its previous records, and a number of the other Puget Sound hatcheries, in 1920, made the best record of years.

One of the potent reasons for the increase in our egg take in the Puget Sound, Grays Harbor and Willapa Harbor hatcheries was the fact that there was less commercial fishing carried on in 1920 than during any of the previous six or seven years. This permitted of the escape of a larger number of fish to the spawning streams than had been the case during previous years.

The reason for the small fishing operations lies in the fact that there was a large carry-over salmon pack from previous years, which the cannerymen were unable to dispose of. This resulted in a tremendous drop in the price. Canning costs had not decreased in proportion to the fall in the price, and the canneries found themselves unable to can fish at as low a cost as the then prevalling prices. Hence their refusal to operate.

## LEGISLATURE GIVES INDIANS SPECIAL FISHING PRIVILEGES AT PROASER.

The 1921 session of the legislature passed a bill, over your veto, giving to the Indians the right to flsh in the Yakima River, in the vicinity of Prosser, at the dam which was constructed there a number of years ago, and which is maintained for the development of power for local flouring mill interests and hydro-electric companies.

In view of the state wide publicity which has been given this question, arising out of the attempts of the Fisheries Department to enforce the fishing laws obtaining on the Yakima River, I think we owe it to candor to relate the facts and instances which gave rise to this situation.

It is unquestionably true that the aboriginal Indian flshed with his snags and snares along all those Eastern Washington streams up which salmon ascend for spawning purposes. With their crude appliances, they were unable to secure any great number of fish in the Yakima River, and their operations must have extended for some seventy miles up that stream from its mouth.

Some fifteen years ago, E. W. Benson, who since then has occupied the position of Commissioner of Agriculture in this state, organized an irrigation company, and it is my information constructed this dam in the Yakima River at Prosser. Its height is some twelve to sixteen feet, and at the low water stages was of sufficient height to stop the up-stream ascent of salmon, had not a fishway been provided to permit them to get over.

Within a year or two after I took charge of this office, we caused an efficient fishway to be constructed by the owners of the dam. The question of the right to fish there did not become acute until after the hatcheries on the Columbia River had succeeded in restoring the run on that stream in 1913 and 1914. Commencing with those years, the Chinook salmon commenced to reappear in the Yakima river in much greater numbers than in the preceding years.

Particularly the older Indians want to fish. As the Chinook salmon ascend the Yakima River generally at the low stage of water in May, the time of their arrival was known to the Indians of the Yakima Reservation, who left the confines of their reservation to catch them in defiance of the laws which the state had made to protect them on their way to their spawning grounds.

When, as Fish Commissioner, I was advised that the Indians were violating the state law off their reservation, we proceeded to arrest them. At that time the Indians were taking the fish, using some thenselves and selling many to commercial dealers and local white residents.

It was not until the second year of our enforcement of the law that the Indians put forth the claim that this was one of their anclent fishing grounds and that the treaty, which Governor I. I. Stevens made with the Yakima Indians, reserved to the Indians the right to fish at this particular place at any time and in any manner.

I carefully examined the treaty and could find no such provision. The reading of it developed the fact that practically the identical language was used as regards the fishing rights of these Indians that had been used for the last eighty years, commencing with the time the treaty was executed with the Omahas. In actions instituted against them in court, they set up the treaty as their defense. The supreme court of the state decided that the Indians had no special rights under their treaty, and that off their reservation they are amenable to exactly the same law as the white citizens.

As I recall, on one pretext or another, the supreme court in the last five years has had to decide this question four times, and each time they have decided it the same way. Even after the court had several times decided the question, unfortunately, certain officers of the state, who associated with the Indians, still advised them to violations. In one case in the lower courts, the Indians summoned to testify in their behalf General Hazzard Stevens, son of Governor I. I. Stevens,' who was one of the signatory witnesses of the various treaties which his father made with the Indians of this state.

Much to the surprise of the Indians, General Hazzard Stevens' testimony was to the effect that his father particularly explained to the Indians that off their reservation they would be subject to the same laws which would be made to govern the whites as regards fishing.

In the meantime, other Indian treaties, in which the same language as regards the rights of fishery was used as was used by Governor Stevens in the Yakima treaty, made their way to the supreme court of the United States. This court placed the same construction upon these treaties as was placed upon them by the supreme court of the State of Washington.

The public did not understand the situation. It could not realize that the only reason the Indians wanted to fish at this particular place was because the fish were stopped here by the dam, and the Indians were enabled to wade into the water and make a wholesale slaughter of them. The feeling was that they should be given the right to fish-and without a realization of the harmful effects which might result therefrom.

At the 1921 session of the legislature, a bill was introduced giving them these rights. A band of the Yakima Indians appeared before the legislature in tribal costume to plead for its passage.

In this connection, it should be remarked that only a very small percentage of the Yakima Indians were really asking this privilege. These were of the older and more improvident class. The Yakima Indian Agent made no attempt to aid them. He appreciated that a few miles further up stream within the confines of their reservation there were other places and even other dams which afforded the Indians all the opportunity they needed for fishing.

In my judgment, the whole proceeding will really amount to nothing. So far as the fishery equation of the Columbia River is concerned, I feel sure that the developments of the next ten years will demonstrate conclusively
that the Yakima River will largely have to be eliminated from consideration as a spawning tributary. It is said that even at this time 90 per cent of the water of that stream is made use of for irrigation purposes. Plans now on foot contemplate newer and higher dams and the use of even more of the waters of that stream for irrigation.

As the result of the construction of certain dams now planned, it is probable that this stream will be entirely dried up for several miles below Prosser. This being the case, it will, of course, be impossible for any salmon to ascend it during those times when the water is being used for irrigation.

Believing this condition is certain to ensue, I have sought to concentrate the propagation efforts of the state on other tributaries. In my judgment, the best opportunity lies further down the Columbia. I cannot conceive of a condition arising where the waters of the Yakima River are not going to be immensely more valuable for irrigation purposes than for spawning purposes. And while of course it would be desirable if both could proceed, in my opinion the developments of the next ten years are going to make this impossible.

The decision which this state is going to have to make is as between the value of the water of this stream for irrigation and fishery purposes. It is so tremendously more valuable for irrigation that I have no doubt as to what the final decision will be.

## CRAB FISHING GROWS EACH YEAR.

Our native crab is the best to be found in any waters. For that reason, fishing for them has increased in volume with the passing years. In Puget Sound, some of the locations where this fishery has been carried on the longest have become depleted, but others have been discovered, so that more crabs are being taken now than in previous years. There is no evidence at hand to indicate a great depletion of our Puget Sound crab fishery.

The crab fishery of Willapa Harbor is unfortunately in much worse condition. The operations of the purse seiners in the Pacific Ocean off that district in their quest for salmon have seemingly proven very destructive to the crab industry.

The crab fishing operations carried on inside Willapa Harbor have undoubtedly resulted in a depletion of the supply there.during the last few years, and have forced the flshermen to transfer their operations in large part to the Pacific Ocean waters adjoining.

The purse seiners in their operations drag their seines along the hard and sandy bottom of the ocean and the crabs become enmeshed in their web, with the result that great numbers of them, according to testimony of interested parties, have been destroyed. If the purse seiners are restricted from operating in these waters, it will be a great boon to the crab industry, to say nothing of the salmon industry.

On Puget Sound, the largest number of crabs today are being taken from Samish Bay-a fishery which has only been developed within the past few years.

The total value of our crab industry during the biemnium of $1919-1920$ was $\$ 205,046.28$.

## CLAMS CONTINUE TO INCREASE ON PACIFIC OCEAN BEACH.

Each succeeding year only demonstrates the wisdom of the action taken in the matter of our Pacific Ocean beach razor clams. The 1917 session of the legislature passed a law providing for a closed season which we recommended. Each succeeding year since then has seen the supply increase until today it is as great as ever, if not greater, and these clams are now to be found on portions of our Pacific Ocean beaches which they had not heretofore inhabited.

Reversing the former plan of a nine months' open season and a three months' closed season, so that now there is only a three months' open season and a nine months' closed season, has not only increased the Pacific Ocean beach razor clam supply, but has brought prosperity to those engaged in the industry, as against poverty and failure under the old law.

In three months now the canners put up much larger packs than they used to put up in nine months. The wages of the diggers have been increased several hundred per cent. It does not take a financier to understand the great saving that can be made in doing more in three months than was formerly done in nine months. The operating expenses are tremendously reduced.

As usual, as the supply has increased, there are those seeking merely to profl, who would attempt to lengthen the season so that they may take a greater supply. It is to be earnestly hoped that the legislature will never accede to the wishes of those who would for their selfish interests destroy a great natural resource of the state. We have had a bitter experience and we certainly should profit by this.

Our greatest clam resources are to be found on our Pacific Ocean beaches. Not only are the clams found here in a much larger quantity than elsewhere, but they are also our most valuable variety.

Highly beneficial have been the results of the laws which have been enacted to protect the Puget Sound clams. A few years ago the statement was everywhere being made that the Puget Sound clam supply was being rapidly exhausted. I have not heard such a statement made by any person within the last four years. This despite the fact that our clam canning has gone forward as usual.

The Eastern states are trying to find a method for the artificial propagation of clams. In the State of Washington we rely entirely upon natural propagation. The sole effect of our laws has been to protect our clams during their spawning season. If the present laws are not disturbed, there is no reason to feel any danger of immediate depletion in our clam supply.

The total value of our clam industry during the past biennium was $\$ 397,104.03$.

## SOCKEYE SALMON RETURN TO THE SAMISH RIVER.

Live boxes were constructed, into which the fish were taken from the trap and towed through the water to the mouth of the river. A rack was constructed across the mouth and the fish, without ever being touched, with hand or net, were liberated into the mouth of the river. They ascended up to our hatchery racks, where they matured, and their eggs were taken and hatched and the fry liberated in Caines Lake and Lake Samish.

Nineteen hundred and nineteen was the first year when mature fish should have returned from this experiment. As the Samish River is not a natural sockeye stream, we had small hopes of any sockeyes returning to that stream, but trusted to augment the general supply by our hatchery work. Therefore, we were not prepared to stop the fish in 1919, and cannot say positively that any returned that year. However, we continued placing sockeyes in the stream in 1916, 1917 and 1918. In 1920 we had our racks in the river, although they were open, and that year quite a large number of sockeyes returned to that stream, escaped up stream beyond our racks, spawned naturally and died, and their dead bodies floated back down stream. One hundred and sixtyfive dead, spawned-out sockeyes were counted on the Samish racks in 1920, and several sockeyes were taken and their eggs hatched and fry liberated.

It is the general belief that sockeyes spawn only in those streams which are the outlets of lakes. The Friday Creek tributary of the Samish River is the outlet of Lake Samish. A general belief also is that these lakes must contain glacial waters in order for the sockeyes to inhabit them. Samish Lake does not comply with this condition.

It is my opinion the Samish Hatchery sockeye experiment is of tremendous importance to the fishing industry. In many quarters there has been a belfef that the artificial or domestic propagation of sockeye salmon is not attended with that success which is known to attend the hatchery propagation of other species. The result of our Samish experiment seems to be proof positive that the sockeyes can be propagated successfully by the same hatchery methods which are employed in the propagation of other varieties of salmon.

It is probably true that the fry must be liberated into a lake, in which they can spend the first year of their existence, and make their way to salt water at the proper time.

If the Fisheries Department of the State of Washington can get definite results on the propagation of sockeye salmon, which have been obtained at the Samish Hatchery under the altogether abnormal conditions under which the experiment was undertaken, it would seem to be proof positive that with the employment of proper hatchery methods in the Fraser River water shed, and by the employment of them on sufficiently large scale, the sockeye salmon runs of the Fraser River can be rehabilitated, just as the Chinook salmon run of the Columbia River was rehabilitated

It goes without saying, that the proper place to employ intensive hatchery operations of the sockeye species is in the Fraser River tributaries which they naturally ascend. It was for this reason that I suggested to you the advisability of having the legislature appropriate $\$ 100,000$ for the newly created State Fisheries Board of Washington, so that they might have this amount of money to spend in cooperation with the Canadian fishery authorities in increasing the sockeye hatchery operations in the Fraser River water shed.

The legislature appropriated this $\$ 100,000$, and I have no doubt that the State Fisheries Board of Washington and the Canadian authorities will within
the near future arrive at an agreement whereby all or a portion of this money will be available for hatchery operations in the Fraser River water shed.

## DUWAMISH RIVER CLOSED TO FISHING.

At the beginning of February, 1920, all the tributaries of Puget Sound were closed to commercial salmon fishing, with the exception of the Duwamish, Skagit and Snohomish rivers.

In March, 1920, the State Fish Commission closed the Duwamish River to fishing until June, 1921. This action was taken in response to the request of the Port authorities of the City of Seattle, and a number of persons and organizations interested in shipping, who complained that the flshermen's nets were a serious obstruction to navigation in the waters of the harbor.

## SAMISH HATCHERY RACKS UNLAWFULLY DESTROYED.

One of the problems with which the Fisheries Department has to contend, on many of the streams on which its operations are carried on, is the feeling held by the people, residing above the point where the fish are stopped for spawning purposes, that the fish should be allowed to proceed up stream so that they might have an opportunity to take them.

This feeling is very bitter in several communities, although the law prohibits these fish being taken, and the persons who desire them would have to violate the law if they did secure them. Nowhere has there been more animosity exhibited than at the Samish Hatchery. In 1919, our first permanent rack in that stream was constructed, only to be destroyed by a charge of dynamite at the very commencement of the fishing season.

In 1920, the racks were reconstructed during the low water season, only to have the attempt at their destruction by dynamite repeated at the very first high water stage. This second attempt was not so successful as the first and we were able to effect repairs, which permitted of our taking a very large quantity of eggs in 1920. Follqwing this, we stationed a watchman at the racks day and night, and thus prevented any further attempts at their destruction.

Finding themselves foiled in their attempts to unlawfully destroy the racks, interested parties influenced the Commissioners of Skagit County to institute a suit against myself as Fish Commissioner in the City of Olympia to prevent our maintaining the racks there.

In the course of the trial of the suit, it was conclusively proven by engineers on the part of the state, and admitted by the engineer of Skagit County that the reason for the flooding of the lands was the constructing of the approaches of the new bridge erected just up stream from the racks and traps, and the racks were in no wise responsible, as was claimed by Skagit County.

The superior court promptly found in behalf of myself as defendant, and no appeal was taken from this decision.

## PERMANENT RACK CONSTRUCTION.

Nothing has so contributed to the success of our hatchery operations as the construction of the so-called permanent racks. This permanent or new style of work is so far superior to the old style as to make comparison useless.

## BIOLOGICAL SURVEY OF FRESH WATERS.

In 1920 the Department arranged with the ichthyologists of the University of Washington for a tiological survey of the fresh waters of this state-the expense to be borne by the Game Department. The matter is more fully covered in my report as State Game Warden for this same biennium.

## ASSISTANCE FOR HATCHERY ENLARGEMENT EXTENDED BY GRAYS HARBOR CIVIC BODIES.

The unprecedented large take of eggs at the Chehalis and Humptulips hatcheries in 1920 taxed our hatching capacity in this district far beyond its limit. I felt a much greater number of eggs should be hatched at the Chehalis and Humptulips hatcheries than was possible with the then existing capacity. The financial condition of the Department was such that we were without funds to construct additional hatching troughs. Under these conditions, I appealed to the Aberdeen Chamber of Commerce and Hoquiam Commercial Club and the Rotary Clubs of those two cities to furnish us sufficient money to build enough hatching troughs to permit of the hatching of twelve million additional fry at the Chehalis hatchery and four million at the Humptulips Hatchery. The appeal met with a warm response and the money asked for was donated.

## GREAT SAVINGS TO RESULT FROM LSE OF NEW STYLE OF TROUGHS.

In commencing the use of the style of hatching trough made use of by the State of Wisconsin, the foundation has been laid for the greatest single economy ever introduced into the Fisheries Department of the State of Washington. This trough represents the result of fifty years of experience as a
fish culturist of Hon. James Nevin, of the Conservation Commission of the State of Wisconsin, elsewhere referred to in this report.

In 1920 I visited several of the hatcheries of the State of Wisconsin and witnessed the use of these troughs in the hatching of silver trout eggs furnished to Wisconsin by the State of Washington. In two slngle troughs we found that the same number of fish are hatched and brought to the period of egg sac absorption as were being hatched in the smaller hatcheries of this state.

Returning to this state, we immediately constructed one of these troughs and demonstrated the practicabillty of its use in our own operations. As soon as this was ascertained, we commenced the construction of forty additional troughs of this kind.

The adoption of this style of trough means an end to the construction of tremendously large hatchery buildings, like we have at such hatcheries as the Chehalis, Samish, Skykomish, Snohomish and others

In the Wisconsin hatcheries, we saw ladies garbed as though for office work performing the same class of work as men clothed in rubber from shoulders to feet perform in the hatcheries of this state.

Warm, dry, comfortable rooms are the result of the use of these troughs in the Wisconsin hatcheries, while in our state the hatcheries are wet and cold and require the use of very heavy clothing if the workers are comfortable. The use of the Wisconsin style of troughs will hereafter permit of the construction of small, compact buildings, cheaply heated, and kept clean and comfortable at all times.

It means a tremendous initial saving in the cost of hatchery building, and the hatchery operations clear through will be much cheaper and much more comfortable for those engaged in them.

## CARP SHIPPED TO EASTERN MARKETS.

In Washington, the carp is a most unwelcome fish in a number of the lakes situated in the Eastern portion of the state. They are a transplanted fish, having been brought here some thirty years ago, and in some of the lakes in which they have been planted have taken practically complete possession of them. This class of fish, however, is made use of by certain southeastern European peoples, and quite a market has developed in New York City.

Permission has been given fishermen to seine them from Moses and Colville lakes in Eastern Washington, in the hopes that they could be cleared out of these waters and better grades of fish planted therein. Although many carloads have been taken from these lakes, the supply has not been appreciably diminished. However, no harm is being done by these operations, as these are practically the only varieties of fish found in them, and as some people like them for food and as their taking gives employment to some people in this state, the result from every viewpoint seems beneficial.

## LOBSTER TRANSPLANTING SEEMINGLY A FAILURE.

During the past biennium, the United States Bureau of Fisheries has desisted from its efforts to transplant the Atlantic Coast lobster to our Puget Sound waters.

For several consecutive years, carloads of these were brought here and this Department's assistance was extended in their planting. So far as
we are able to ascertain, none of these lobsters have ever been seen since they were planted, and the experiment seems to be definitely regarded as a failure.

One of the theories advanced for their disappearance is that they cannot survive the attacks of the Puget Sound crab, which, while smaller, seems much more pugnacious.

## HAIR SEAIS DFSTROYED.

With each passing year, the fishermen seem more keenly alive to the toll taken from our salmon runs by the so-called hair seals. The result is that they have lent their efforts in increasing numbers to the hair seal's destruction. The appropriation made by the legislature has never been sufficient to pay these claims for bounty when presented. The result has been that these claims have been referred to the legislature and have by them been paid. The disadvantage of this, of course, is making the man wait in some instances almost two years for his money.

A bad feature of the law was offering a bounty of $\$ 3$ for the destruction of these seals in the Columbia River District and only $\$ 1$ in the Puget Sound, Grays and Willapa harbors. The last legislature corrected this inequality by providing that the bounty shall be $\$ 3$ in all the waters of the state.

The efforts of the employes of this Department have at all times been devoted to their destruction as opportunity offered.

## THE DIVISION OF' THE DEPARTMENT'S WORK A BIG MISTAKE.

The completion of this report has been delayed sufficiently to permit of observance of the work of the Department after it was divided and reconstructed under the Civil Administrative Code. When the code was being prepared by Director of Efficiency McArdle I pointed out to him that the proposed plan simply meant a repetition of the work to a greater or less extent in three departments, without the Fisheries Department, the real one in interest, having the control of the situation, which was necessary for the proper administration of its affairs, the enforcement of the fishery laws and for the economic operation of the Department.

I also presented my views to you in the matter and after the law was passed and in operation the division of the Department provided for was delayed in part for five months because of the apparent repetition of the work, and also of the very apparent fact that this Department could do it much more quickly and economically than under the new law.

In discussing the matter with me, you have frankly stated that you have arrived at the conclusion that a mistake has been made.

Under the present plan, the work which $I$ alone performed for eight years at a salary never exceeding $\$ 3,000$ per year, is now being performed by three men at an aggregate salary of $\$ 11,400$ per year, with two different departments with separate office forces and with all the attendant expense to separately maintained offices.

Also, there has been set up two fishery organizations in the state. In each Biennial Report which under the law I have submitted to the Governor of this state, I have pointed out the desirability of a single department, under a single head, from the viewpoint of both economy and efficiency.

Prior to April 1, 1921, there was no department in the state where the work was concentrated like it was in the Fisheries Department. A man engaged in any branch of the fishing business transacted all his business with the Fisheries Department. He secured his license from the Department and paid his fees to the Department. This enabled the Department to know at any moment just who was qualified under the law to carry on fishing operations in the state.

Observe the difference under the new law. A man desires a fishing license. Under the law, he first applies to the Director of Fisheries and Game for a blank upon which to make application. This application, when filled out, is forwarded, together with the proper remittance, to the State Treasurer. The State Treasurer receives the remittance and issues a receipt in triplicate therefor, retains one copy, forwards one to the Director of Licnses along with the application, and the third to the Director of Fisheries and Game. The Director of Licenses issues the license and then returns the application to the Director of Fisheries and Game, from whence it was originally secured by the persons requesting the license. Thus, in order to issue a fishing license, three departments of the state are called upon to function, instead of one, as under the old law.

The same long, drawn out process applies to the payments to be made to the state by the licensee after he has caught fish from our waters. In order to make his report and payment to the state he first applies to the Director of Fisheries and Game for the blank. This being executed, he sends it, together with his remittance, to the State Treasurer. The State Treasurer keeps the money and forwards the report to the Director of Fisheries and Game.

From the reports which have been made to you by those charged with the responsibility of the various branches of the Fisheries Department, you are well aware of the duplication of expenses and annoyances which have resulted from the new law.

In order to get along with the work at all, the State Treasurer has been forced, since taking over the part of the work assigned to him by the new law, to assign one of his deputies to the office of the Supervisor of Fisheries. There can be no reasonable excuse for the waste of money which arises from the cost of the operation of the fishery business of the state under the new code.

If it is desirable to treble the tax burden of the fishing interests of the state, it is in my judgment far better to use the increased funds so received in assisting to pay the ordinary running expenses of the state, and thus lighten the burden of the general taxpayer, than it is to throw this money away in needless and unnecessary duplication of work, which results in lessened efficiency all around.

## THE PROBLEMS WHICH LIE AHEAD.

In conclusion, permit me to again draw attention to the fact that in so far as Puget Sound be concerned, where by far the greater part of the fishing industry exists, the depleted runs are those over which the State of Washington has no control in a propagation way.

The sockeye run is the one which shows by far the greater depletion. Ninety-eight to ninety-nine per cent of this run only passes through our waters
to enter the Fraser River, in the Dominion of Canada. The only Puget Sound tributary up which any sockeye ascend is the Skagit River, and the United States Bureau of Fisheries operates the hatchery which takes every flsh that ascends that stream.

In the case of the humpback salmon, which shows the next greatest depletion, about two-thirds of them also enter the Fraser River.

From these flgures, it is to be seen how powerless is the State of Washington to act in the matter of rehabilitation and restoration of these runs, unless they act in conjunction with the Dominion of Canada authorities.

And it was to permit of the securing of such joint action that the creation of the State Fisheries Board was recommended to you two years ago by myself.

As to our Chinook run, as heretofore pointed out, we have increased this in Puget Sound, as shown by the catches of the last four years. This has been done in large part through the bringing of Chinook eggs from the Columbia River and hatching them in Puget Sound hatcheries and Hberating the fry in Puget Sound tributaries.

The same is true of our chum or dog salmon run on Puget Sound. The only difference is that the surplus eggs of this variety have been distributed from the Grays Harbor to the Puget Sound and other districts. Had this policy not been pursued, in my judgment the spring and chum or dog salmon runs in Puget Sound would have shown depletion, not as great perhaps though as has been shown by the sockeye and humpback salmon runs.

The catch of Chinook and chum salmon on Puget Sound has been largely increased in the last four years and there has been nothing to indicate that this has been done at any expense to these runs.

My years of experience in this Department only confirm me in the belief that the maintenance of our salmon runs lies in increased artificial propagation. This, of course, must be supplemented by regulations which will permit of the escape of a sufficient quantity of salmon to furnish the eggs for hatchery operations.

If the salmon runs are maintained, in my judgment, the time will come when every natural salmon stream in this state will have a hatchery thereon. Any other activity of the Department can well afford to be sacrificed in order to carry on the hatchery work.

Because it has fallen to my lot to serve the State of Washington for a longer time as Fish Commissioner than it has ever been served before by a single individual, I have made a fuller and more complete report this time than I have heretofore submitted.

The purpose of this is to provide those who may come after me with all the data gathered, and with a record of those things which I have experienced, that they may have this information before them, to use it or not, just as they see fit.

I am particularly moved to do this because of the paucity of information concerning the Fisheries Department of this state which was transmitted to me by my predecessors in office.

# THE TAKING OF IMMATURE SALMON IN THE WATERS OF THE STATE OF WASHINGTON 

By E. VICTOR SMITH, University of Washington.<br>Prepared at the Request of and Issued by<br>L. H. DARWIN,<br>State Fish Commissioner.

## INTRODUCTION.

The conditions prevailing in the fisheries of the Paciflc Northwest are causing grave concern to those who are most interested in seeing this important and lucrative industry conserved. So attractive is the industry that an ever-increasing number of men are seeking employment in it, until it is feared by many that it will be ruined as a commercial enterprise. Remedial measures are being very generally discussed by those vitally interested in the fisheries, but before wise and efficient measures can be adopted for the conservation of this industry, it is essential that a thorough and scientific investigation be made of the various phases of the problem, so that sufficient, well-established information may be supplied to those who will draft the conservation measures.

The State of Washington, through its Fish Commissioner, Leslie H. Darwin, is doing its share toward solving the problem. To gain satisfactory information on one phase of the problem, i. e., the taking of immature salmon in the waters of the state for commercial purposes, Mr. Darwin requested Professor Trevor Kincaid and the author to spend as much time as they had at their disposal during the fishing season of 1918 investigating this phase. Owing to other work it was impossible to devote very much time to this work, but enough was learned to make it seem worth while spending further time in making a more thorough study of it. Consequently, at the request of Mr . Darwin, the author spent the entire fishing season of 1919 following up the work begun in the previous year. "The Twenty-eighth and Twenty-ninth Annual Reports of the State Fish Commissioner to the Governor of the State of Washington' contain a short report of the work done during the fishing season of 1918.

## THE SPECLES OF SALMON.

The salmon are by far the most important of the food fishes of the state and consequently of the highest commercial value. There are five species, all of which belong to the genus Oncorhynchus. The five species are: (1) Oncorhynchus tschawytscha, king, spring, quinnat, tyee or chinook salmon; (2) Oncorhynchus nerka, blue back, sockeye or red salmon; (3) Oncorhynchus kisutch, silversides, silver, or coho salmon; (4) Oncorhynchus gorbuscha, pink or humpback salmon; and (5) Oncorhynchus keta, chum or dog salmon. The steelhead, belonging to the genus Salmo, is for legal purposes included with the salmon by the laws of the State of Washington.

Since the only members of the genus Oncorhynchus taken in considerable numbers before maturity are the chinook and silver salmon, the observations recorded in this paper are concerning them. The chinook salmon is the largest and most valuable of the five species. Its average weight is about 22 pounds, but many are taken that weigh 40 to 60 pounds or even more. It reaches maturity in 4 to 7 years. The variation in the age at maturity has much to do with the great difference in the size of the adult fish. It descends to salt water in its first or second year and spends the ocean period of its existence in the inland arms of the ocean, or on the shallow banks along the coast. It is probable that the chinook salmon never goes far from the banks that lie closest to the mouth of the stream in which it began its existence. Observations made during the fishing seasons of 1918 and 1919 point to a confirmation of this belief. This fish takes the hook readily at any time during its sojourn in salt water until it is ready to start for the spawning beds, when it ceases to feed and consequently rarely takes the hook.

The silver salmon, while considered inferior to the chinook, has in recent years taken an important place in the canning industry and is valued highly as a food fish. It is quite similar to the chinook in its habitat and feeding habits. This fish is found in large numbers in the Puget Sound during the spring months and is very abundant upon the banks lying along the Washington coast during the summer and fall months. It matures in its third year. The average weight is given by the Pacific Fisherman, Year Book, 1920, as about 6 pounds. We found that the average weight of 82,621 silver salmon caught in the ocean at the mouth of the Columbia River and at Cape Flattery during the months of September, October and November was 10.45 pounds and that the largest weighed 20 pounds or more. This fish, like the chinook salmon, takes the hook readily up to the time it starts for the spawning bed.

The habitat of the three other species is not so well known. A few immature humpback and dog salmon are taken by gill nets in the Puget Sound during the spring months. Very few of the three species are taken on the coastal banks before they are practically mature and are soon to run for the spawning beds. As they rarely take the hook very few are caught by the trollers. The purse seiners catch a considerable number in the latter part of the season.

## FISHING GEAR AND METHODS.

It is not the purpose of this paper to give at length a description of the apparatus used in taking salmon. We will, therefore, confine ourselves to a brief description of the equipment that is of interest to the problem in hand. For a more complete account of the apparatus and methods of the fisheries the reader is referred to "Pacific Salmon Fisheries" by John N. Cobb, published by the United States Bureau of Fisheries and recorded as Document No. 839.

## PURSE SEINES.

The purse seine is probably the most highly efficient piece of apparatus used in the taking of salmon. The seines have an average length of 275 fathoms, a depth of 400 meshes of 3.75 inches 9 or 12 thread netting and 50 meshes of 5 inches 15 or 18 thread netting on the bottom. Along the
top is a cork line with enough cork floats to retain the upper edge of the net at the surface of the water; on the bottom is a heavily leaded line which serves to keep the net floating in an upright position; and along the bottom are galvanized rings 5 inches in diameter through which passes the pursing rope.

The purse seine boats are 45 to 70 feet in length, and are propelled by 40 to 75 horse power gas engines. These boats, with their equipment, will average at the present time not less than $\$ 8,000$ to $\$ 12,000$ in value. Each


Plate 1- A typical purse seine boat


Plate 2 -Columbia River trolling boats. common type
boat carries on an average 8 men who live on board during the fishing season. These boats are so staunchly constructed that they may be safely used to fish in the open ocean or go long distances from one fishing ground to another. The broad rounded stern carries a revolving platform on an elevated table, upon which the net is stowed with the cork line at one side and the lead line at the other side of the platform. At the rear of the platform is a long roller over which the net is paid out. The illustration (Plate 1) gives a good idea of the general appearance of these boats.

In operating on the ocean the usual custom of the purse seiners is to start from their base so early in the morning that they may arrive on the fishing banks by the time there is daylight enough to enable them to see clearly the field in which they hope to make a catch. It is usual for these boats to go out in fleets as they depend on one another for locating the schools of fish. The members of the fleet spread out over a considerable area, covering from 50 to 100 square miles, depending on the number of boats in the fleet. Each boat then cruises backward and forward over the fishing grounds until they see signs of a school of salmon. Frequently the fishermen are guided by the action of the birds. If large numbers of birds are collected in one place it indicates to the fishermen the probability that the desired salmon are feeding below the surface at that place, but they rarely lower their nets unless they see positive signs of the fish being present in considerable numbers. The indications they look for are to see the salmon finning, that is, swimming so close to the surface that their dorsal fins are exposed, or to see them jumping out of the water in considerable numbers. When the indications are sufficient, the large skiff with one man in it is lowered from the boat, and one end of the seine is made fast to the skiff. The purse seine boat then makes a circle, sweeping around to the skiff, and paying out the net as it goes. As quickly as possible the two ends of the net are brought together, and by means of a winch the pursing line is drawn in until the bottom of the net is closed. The net is then hauled aboard by hand and stowed on the revolving platform. Finally the fish are collected in a small pocket of the net and are then brailed into the hold of the boat. The brail is a strongly constructed dip net, and is handled by the aid of the winch. The remainder of the net is now hauled on board, placed in proper position on the platform and all is again ready for another sweep of the net. Fishing thus in fleets, when one boat lowers its net to make a catch, all the others, who have not only been watching for fish but also watching to see what their neighbors are doing, hasten to the vicinity of the boat that has lowered its net, and if a school of considerable size has been found, all the nets are soon out and as many as possible of the fish are taken. Since each net encloses an area of 4 to 5 acres, it may be readily seen how efficient a Heet of 25 to 30 boats can be in catching a school of fish.

It is very difficult to obtain accurate information on the results of the purse seiners operations, largely because of their roving propensities. It may be said of them that wherever the fish are congregated together there are the purse seiners in their midst. They may spend part of the season at Neah Bay, or if they hear reports that fishing is good at the mouth of the Columbia River, they will be found there in a very short time. During the run in the Puget Sound they will be found in considerable numbers on the
salmon banks near the San Juan Islands. Still later in the season they may be found in the upper waters of the Puget Sound near the entrance to the rivers up which the salmon go to spawn.

## TROLLING EQUIPMENT.

Commercial fishing in the open ocean by trolling was carried on in 1912 by a comparatively small number of boats. Since then the numbers have


Plate 3. Typical tiolling boat. Neah Bay Fieet


Plate t - Trolling boat- better than average

increased until at the present time there are said to be upwards of 2,000 fishing off the mouth of the Columbia River, 600 or more in the ocean near Cape Flattery, and smaller fleets of 30 to 40 boats operating out from Willapa and Grays Harbors.

The Columbia River boats conform largely to the types shown in the illustration (Plate 2), while at Neah Bay boats of a great variety of types are engaged in this kind of fishing. Owing to the dangers incurred in fishing in the open ocean there is the necessity for having staunch, sea-going boats, consequently the smaller and less seaworthy boats are being discarded and larger and safer ones are being constructed to take their places, so that each year sees a number of the better types of boats added to the fleets.

The boats vary from 25 to 45 feet in length and are propelled by gas engines ranging from 4 to 25 horse power. As not only the success of their enterprise, but their very lives, is dependent on the reliability of their engines, the flshermen are discarding the inferior types of engines and using the most trustworthy ones they can get. The forward part of the boat is housed over to protect the engine and furnish rather cramped living and sleeping quarters for the men. Many of the boats have small pilot houses constructed over the engine which furnish protection and warmth to the steersmen while going to and from the fishing banks. While fishing, the course of the boat is directed by a helm attached to the rudder post. The after part of the boat is an open cockpit in which are constructed boxes for holding the fish.

The fishing equipment consists of two poles 15 to 20 feet in length hinged to or near the base of a short mast. When not fishing these poles stand upright by the side of the mast. When fishing, they are lowered by small ropes passing through pulleys at the top of the mast until they are at an angle of 25 to 30 degrees to the deck, in which position they are made fast. The poles are braced forward by guys to the bow of the boat. To each pole two or three fishing lines are fastened at regular distances. Another line is sometimes attached to a very short pole standing upright in the stern of the boat. These lines have metal, usually lead, sinkers varying in weight from 5 to 30 pounds, the longer lines having the heavier weights. The lines vary in length from about 50 to 200 feet. On the longer lines two lighter weights with 50 to 60 feet between them are sometimes used instead of one heavy weight. This arrangement reduces to a considerable degree the work of hauling in the lines. Baited hooks are rarely if ever used by the trollers fishing in the ocean, the spoon being used almost universally. The boats and their equipment range in value from $\$ 1,000$ to $\$ 4,000$. Boats under $\$ 1,000$ in value would not be considered of much account for outside fishing. The value of the average boat is about $\$ 2,000$. In trolling for chinook salmon the longer lines with the heavier weights are used as the chinook do not, as a rule, swim near the surface. The shorter lines and lighter weights are used for the silver salmon, as they swim much nearer the surface. On the longer lines No. 10 or 12 hooks are used, while on the shorter lines No. 6 or 8 hooks are used. The fishermen say that small salmon will not take the larger hook, the spoon or jigger representing prey too large for them to swallow.


Plate 5- Columbia River trolling boat. latest type


Plate 6. Columbia River gillnet Boats

Plate 2 shows the common type of trolling boat used at the mouth of the Columbia River. Plate 5 shows the newest and best of the Columbia fleet built for the season 1919. Plate 3 is a picture of the type in highest favor amongst the trollers of the Neah Bay fleet. It is 32 feet long by 8 feet beam, and is driven by a 6 horse power Atlas Imperial gas engine. The value of this boat is placed at $\$ 2,000$. Plate 4 is a picture of a more elaborate troller which will fish in Alaska this season, 1920. This boat is 40 feet long, 10 feet beam and is valued at $\$ 3,000$.

## GILL NETS.

Hundreds of gill netters operate within the mouth of the Columbia River. They use open power boats (Plate 6) propelled by 4 to 6 horse power gas engines. The engine is protected from the rain and spray by a canvas covering stretched over the forward end of the boat. These boats usually carry two men. The nets vary in length and depth, depending on the channels in which they are used. In the Columbia River the average length is about 250 fathoms with meshes of 9 to $91 / 2$ inches stretched measurement for catching chinook salmon. When the water is clear the fishing is done at nighttime only, as during the daytime the fish see the net and avoid it. When the water is muddy fishing may be done during the daytime. In the Puget Sound the nets have an average length of about 300 fathoms with meshes adapted to the size of the fish to be caught. In the Columbia River and the Puget Sound these nets are fastened at one end to a floating buoy and paid out from the boat until they are stretched out in a straight line between the buoy and the boat. After a period of time varying in length according to conditions of tide and weather the nets are hauled into the boats, the fish killed by a blow on the head, removed from the net and thrown into the bottom of the boat.

## SHORE OR HAUL SEINES.

These nets are in common use on the Columbia River, being used on the sandy shallows in the river and along the shore where the bottom is free from snags. In several places along the river fish houses are built on piles driven into the sandy shallows in the river. In these houses are kept the fishing gear and several teams of horses used in hauling in the nets. Quarters are also provided in these houses for the men employed in handing the nets. The nets vary in length from 100 to 400 fathoms. They are much wider in the center than at the wings and the meshes vary with the size of the fish to be caught. The net is paid out from the stern of a large skiff, after one end has been made fast to the shore. The net is laid in a crescent shape, and the other end is brought to shore by ropes. The net is then hauled on shore by horses, two span being used at each end of the net.

## TRAPS.

The traps are permanent fixtures consisting of a lead not more than 2,500 feet in length, a jigger, 2 hearts, a pot and a spiller. The webbing and netting of the trap are supported by piling driven firmly in the ground. The lead is made of wire netting firmly fixed to a straight row of piles. The netting extends from the bottom of the water to a little above high tide. It

Figure 1


35
plate $q$

forms a complete obstruction to the progress of the fish so that their course is turned along the netting in the direction of the main part of the trap which is at the end of the lead more remote from the shore. The jigger, found on many of the traps, is a hook-shaped structure which turns the fish that miss the entrance to the large heart back to the lead and headed toward the entrance to the heart. The hearts are structures so arranged that the movements of the fish are directed toward narrow openings at their apices. From the opening of the smaller heart a narrow tunnel leads into the pot. An apron is so arranged at the bottom of the heart that the fish are directed upward towards the tunnel, thus permitting the pot to be much shallower than it otherwise of necessity would be. The pot is a square compartment whose walls and bottom are made of heavy tarred netting. From the pot another tunnel leads to the spiller, a similar structure to the pot, from which the fish are taken. The method of removing the fish is to lower one side of the webbing and introduce a scow into the spiller. The webbing is then worked upward at one side of the scow until there is left but a small pocket out of which the fish are brailed into the scow.

Fig. 1 is a diagram showing the relation of the various parts of the Puget Sound trap. The Columbia River trap is a modified form of the Puget Sound trap, being as a rule smaller and having a much shorter lead.

## LICENSES ISSUED.

That the fishing industry has proved very attractive and profitable is shown by the steady increase in the number of licenses issued to men wishing to engage in fishing. This steady increase in the number of men engaged in taking fish, together with the increasing efficiency of their equipment, can only hasten the depletion of the fisheries until before long they will cease to be of economic importance.

The following table of licenses issued for the taking of salmon by the State Fisheries Department indicates but too clearly how grave the situation has become, and how necessary it is that some effective measure be enacted which will speedily put a stop to the over-fishing.

TABLE 1-COMPARATIVE TABLE OF FISHING LICENSES ISSUED FOR THE TAKING OF SALMON.

| .YEAR | $\begin{gathered} \text { Pound } \\ \text { Net } \end{gathered}$ | Fish <br> Wheel | Set Net | $\begin{aligned} & \text { Gill } \\ & \text { Net } \end{aligned}$ | Drag Seine | Purse <br> Seine | Reef Net | Set Line | Hook and Line | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1898.. | 576 | 30 | 785 | 404 | 78 | 40 |  |  |  | 1,913 |
| 1899. | 848 | 33 | 650 | 775 | 172 | 72 |  |  |  | 2,350 |
| 1900. | 989 | 33 | 641 | 875 | 176 | 6 |  |  |  | 2,781 |
| 1901. | (No re | cord) |  |  |  |  |  |  |  |  |
| 1902. | 720 | 29 | 533 | 814 | 144 | 84 |  |  |  | 2,324 |
| 1903. | 650 | 29 | 695 | 782 | 229 | 94 |  |  |  | 2,445 |
| 1904. | 644 | 21 | 717 | 1,043 | 185 | 79 |  |  |  | 2,682 |
| 1905. | 699 | 13 | 764 | 83 | 129 | 91 |  |  |  | 2,561 |
| 1906. | 761 | 17 | 904 | 1,041 | 179 | 80 |  |  |  | 2,982 |
| 1907. | 630 | 22 | 1,010 | 1,020 | 224 | 72 | . . . |  |  | 2,978 |
| 1908. | $6 \% 6$ | 19 | 1,123 | 1,26) | 33.9 | 78 |  |  |  | 3,445 |
| 1909. | $5 \times 7$ | 20 | 982 | 1,1:9 | 20 | 97 |  |  |  | 3,105 |
| 1910. | 609 | 18 | 1,142 | 1,450) | 280 | 130 |  |  |  | 3,235 |
| 1911. | 647 | 17 | 1,572 | 1,327 | 347 | 138 |  |  |  | 4,04* |
| 1912. | 712 | 22 | 1,683 | 1,272 | 205 | 163 |  |  |  | 4,137 |
| 1913. | 629 | 96 | 1,349 | 1,107 | 276 | 252 |  |  |  | 3,68 |
| 1914. | 102 | 28 | 1,150 | 1,114 | 411 | 288 |  |  |  | 3,593 |
| 1915. | 610 | 27 | 994 | 1,314 | $\because 29$ | 368 | 13 | 87 |  | 3,643 |
| 1916. | 620 | 27 | 977 | 1,249 | $\cdots$ | 294 | 13 | 81 |  | 3,490 |
| 1917. | 664 | 23 | 1,350 | 1,327 | 267 | 444 | 13 | ...... | 965 | 5,064 |
| 1918. | 636 | 25 | 1,345 | 1,00w | 283 | 234 | 13 |  | 1,248 | 4, \&3) |
| 1919. | 647 | 27 | 1,440 | 1,200 | 23 | 301 | 14 |  | 1,450 | 5,364 |

The figures in this table for the last eight years do not represent the entire number engaged in fishing for salmon. Since 1912 an ever-increasing number of trollers have been employed in taking salmon in the ocean outside the jurisdiction of the state. The fish thus taken have been marketed within the state. Since these fishermen were fishing in waters outside of the state it was impossible to compel them to take out state fishing licenses; but, as they disposed of their fish within the state, they were required to take out retailers' licenses. Many of these fishermen took out retailers' licenses, but a considerable number avoided taking out any license. Were the number of trollers who took out retailers' licenses and those who did not take out licenses added to the table, the figures for the last seven or eight years would be very materially augmented.

## REGIONS WHERE IMMATURE SALMON AKE TAǨEN.

For the purpose of this report the waters of the State of Washington, from which large numbers of immature salmon are taken, are divided into three regions, each of which will be considered separately.

1. The banks lying along the coast just outside the mouth of the Columbia River, and extending six to eight miles out from the shore.
2. The banks lying off the Juan de Fuca Strait extending a considerable distance north and south of Cape Flattery.
3. The waters of the Puget Sound lying around the southern end of Whidby Island.

## FISHING CONDITIONS AT THE MOUTH OF THE COLUMBIA RIVER.

The fishing area at the mouth of the Columbia River is divided into two parts; one, the lake-like expansion of the river's mouth, and the other the banks along the coast just outside the mouth of the river. The lake expansion at the mouth of the river is upwards of 20 miles long, and varies in width from three to nine miles. The mouth is not more than two miles wide where the river passes between the jetties which extend beyond the mouth into the ocean. The lake expansion consists of extensive shallow sand-fiats, covered at high tide, but partially exposed at low tide. Among these flats channels of varying depths follow meandering courses, while quite deep holes exist at certain places. Some of these holes are from 70 to 80 feet deep. On the Washington side of the river the shifting sands have formed an island about four miles long, known as Sand Island. Along the southern shore of this island extensive fishing with drag seines is carried on. Between this island and Astoria lie the Desdemona Sands on either side of which is a deep channel. The one on the south side is the regular ship channel and, therefore, is not used so much for fishing as the one on the north side of the Sands. On the Desdemona Sands is constructed a fish house, which holds the fishing equipment used on the sands and which also furnishes quarters for the men and several teams of horses employed in working the haul seines. Along the Washington shore between Ilwaco and McGowan scores of fish traps are located. The deep channel between Sand Island and Desdemona Sands, which widens out west of the sands to nearly the full width of the river, furnishes the finest fishing area of the river for
gill net flshermen, who may be seen fishing there by the hundreds when the weather and the tides are favorable.

Just outside the mouth of the river are shallow banks extending north and south along the coast. In this region the shallow water extends out 5 or 6 miles from the shore line. Beyond this distance the waters deepen rapidly. Because these banks are exposed to the storms of the ocean no fixed appliances are used in taking salmon. Practically the only methods used are trolling and purse seining.

It is impossible to determine accurately the number of trolling boats engaged in fishing on these banks. As the waters are outside the jurisdiction of the states of Washington and Oregon neither of these states is able to keep anything like an accurate record of these boats, so that the investigator must depend largely upon the estimates made by the fishermen themselves. The flshermen affirm that the fleet has upwards of 2,000 boats, but for the purpose of this report the conservative estimate of 1,500 will be used. In addition to these, more than a score of purse seine boats are also employed in taking fish outside the mouth of the Columbia.

## CHINOOK SALMON.

During the early part of the fishing season a large number of small salmon, called by the fishermen, graylings, is taken by the trollers and purse seiners. These graylings are young chinook salmon, averaging less than 4 pounds in weight. An examination of their scales showed that they were in their second year. Of those over 5 pounds, that are taken on the banks, many are in their third year and weigh not more than one-half of what they would if allowed to remain until fully matured. A considerable number of those taken in their fourth year are immature as is shown by the undeveloped condition of their sex organs, therefore would not return to the spawning beds for another year or more, and consequently would then be considerably larger in size.

In order to arrive at results of real and practical significance it was necessary to find records of a season's catch which would enable us to make a just comparison of those caught outside with those caught inside the mouth of the river. These records, of course, must be thoroughly reliable and kept in such a way as to furnish the material upon which fair comparative judgments could be based. Very few dealers in the whole region kept records that were of any value for this purpose. One firm was found which kept records that were practically perfect and admirably adapted for the purpose. The records of this firm showed the daily catches of 26 trollers who fished outside the mouth of the river, 18 gillnetters who fished just inside the river's mouth, and 22 traps located along the channel between Ilwaco and McGowan. These records showed the number of each species of salmon taken daily, with their weights and by whom taken. They also kept a separate record of the chinook saimon under 5 pounds that were taken by the trollers, giving their number and weight. This firm received no fish taken by the purse seiners.

The following tables are compiled from those records. For convenience the weekly totals are given rather than the daily. Tables 4,5 and 6 are compiled from Tables 2 and 3 and give the totals for a period of four weeks each.

TABLE 2-SUMMARY OF CHENOOK SALMON TAKEN AT THE MOUTH OF THE COLUMBIA RIVER.
(Fish in the Round.)
TAKEN BY TROLLERS IN THE OGEAN OUTSIDE THE MOUTH OF THE RIVER

| Week Ending | Number <br> Ohinooks Under 5 Lbs. | Total Weight | Average Weight | Number Over 5 Lbs. | Total Weight | Average Weight | Total Number Chinooks | Total Weight | Average Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May 11... | 683 | 1,885 | 2.80 | 1,069 | 9,326 | 8.72 | 1,750 | 11,811 | 6.45 |
| 18... | 211 | 643 | 3.09 | 419 | 3,365 | 8.03 | 630 | 4,018 | 6.38 |
| 25. | 138 | 452 | 3.28 | 68 | 567 | 8.34 | 206 | 1,019 | 4.85 |
| June 1... | 12 | 41 | 3.42 | 25 | 198 | 7. 82 | 37 | 238 | 6.46 |
| Totals.. | 1,047 | 3,131 | 2.99 | 1,581 | 13,456 | 8.51 | 2,628 | 16,587 | 6.31 |
| June 8.... | 456 | 1,610 | 3.53 | 484 | 4,243 | 8.77 | 940 | 5,858 | 6.23 |
| 15.... | 701 | 2,885 | 3.40 | 758 | 8,400 | 11.11 | 1,457 | 10,785 | 7.40 |
| 22. | 200 | 715 | 3.57 | 389 | 5,257 | 14.25 | 569 | 5,972 | 10.49 |
| $20 .$. | 190 | 631 | 3.32 | 418 | 5,890 | 14.11 | 608 | 6,530 | 10.74 |
| Totals | 1,547 | 5,341 | 3.45 | 2,027 | 23,799 | 11.74 | 3,574 | 29,140 | 8.13 |
| July 6.... | 278 | 955 | 3.43 | 739 | 10,420 | 14.10 | 1,017 | 11,375 | 11.18 |
| 13... | 51 | 202 | 8.96 | 110 | 1,623 | 14.76 | 161 | 1,825 | 11.33 |
| $20 .$. |  |  |  | 78 | 1,403 | 17.99 | 78 | 1,403 | 17.99 |
| 27.... | 8 | 37 | 4.62 | 160 | 3,523 | 22.02 | 168 | 3,560 | 21.19 |
| Totals.. | 337 | 1,194 | 3.54 | 1,087 | 16,269 | 14.97 | 1,424 | 18,168 | 12.75 |
| Aug. 3... |  |  | .......... | 564 | 11,014 | 19.53 |  |  |  |
| 10. |  |  | ......... | 515 | 11,606 | 22.63 | -..... |  |  |
| 17. |  |  |  | 448 | 10,627 | 23.72 | ...... |  |  |
| 24. |  | ........... | ........... | 673 | 15,301 | 22.74 | . ...... |  |  |
| Totals.. | . | ........... |  | 2,200 | 48,588 | 22.09 | ........... | ........... |  |
| Aug. 31.. |  |  |  | 570 | 12,283 | 21.55 |  |  |  |
| Sopt. 7. |  |  |  | 179 | 3,155 | 17.69 |  |  |  |
| 14. |  |  |  | 108 | 1,455 | 14.13 |  |  |  |
| 21. |  |  |  | 65 | 1,042 | 16.03 |  |  |  |
| Totals. |  | ........... |  | 917 | 17,985 | 19.56 | ........... | .......... | ....... |
| Sept. 38... |  |  |  | 29 | 543 | 18.73 |  |  |  |
| Oct. 5... |  |  |  | 52 | 1,061 | 20.40 |  |  |  |
| 12. |  |  |  | 21 | 506 | 24.10 |  |  |  |
| 19... |  |  |  | 4 | 113 | 28.25 |  |  |  |
| Totals.. |  | ........... | ........... | 108 | 2,223 | 20.97 | ........... | ........... | ........... |
| Oet. 26... |  |  |  | 51 | 802 | 15.73 |  |  |  |
| 15.. |  |  |  | 13 | 247 | 19.00 |  |  |  |
| $22 .$. |  |  |  |  |  |  |  |  |  |
| Totals.. | ........... | ........... | . .......... | 64 | 1,049 | 16.39 | ........... | . . . . . . . ${ }^{\text {a }}$ | ........... |
| Grand Totals. . | 2,981 | 9,888 | 3.3 | 7,982 | 123,329 | 15.45 | 10,913 | 132,995 | 12.19 |

TABLE 2-SUMMARY OF CHINOOK SALMON TAKEN AT THE MOUTH OF THE COLUMBIA RIVER.
(Fish taken in the Round.)


TABLE 4-SHOWING LOSSES ON TROLLED CHINOOK GALMON UNDER 5 POUNDS EACH,

| Four Weeks Ending | Aversge Weight of Chinooks Caught Inside Mouth of Oolumbia | Number of Graylings Trolled Outside Mouth of Columbia | Average Weight | Loss Per Fish | Total <br> Irose in <br> Pounds | Estimated <br> Loss for Fleet of $1,50 \mathrm{C}$ Boats |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pounds |  |  |  |  |  |
| June 1. | 14.94 | 1,047 | 2.99 | 11.85 | 12,512 | 721,942 |
| June 29. | 20.53 | 1,547 | 3.45 | 17.08 | 28,423 | 1,624,607 |
| June 27. | 21.49 | 337 | 3.54 | 17.95 | 6,048 | 349,027 |
| Totals. |  | 2,931 |  |  | 44,984 | 2,505,576 |

TABLE 5-SHOWING LOSSES ON TROLLED CHINOOK SALMON OVER 5 POUNDS EACH.

| Four Weeks Ending | Average Weight of Chinooks Caught In. side Mouth of Columbia | Number of Chinooks Over 5 Lbs. Trolled Outside Mouth of Columbia | Average Weight | Loss Per Fish | Total <br> Loss in <br> Pounds | Estimated Loss for Fleet of 1,500 Boats |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pounds |  |  |  |  |  |
| June 1.. | 14.94 | 1,581 | 8.51 | 6.43 | 10,166 | 586,578 |
| June 29.. | 20.53 | 2,027 | 11.74 | 8.79 | 17,817 | 1,028,041 |
| July 27. | 21.49 | 1,087 | 14.96 | 6.53 | 7,098 | 400,555 |
| Aug. 24. | 23.12 | 2,200 | 29.09 | 1.03 | 2,266 | 130,748 |
| Sept. 21. | 24.53 | 917 | 19.56 | 4.97 | 4,557 | 282,839 |
| Oct. 10. | 21.63 | 106 | 20.97 | . 66 | 70 | 4,039 |
| Nov. 22. | 23.18 |  | 16.39 | 6.79 | 435 | 25,100 |
| Totals. |  | 7,982 |  |  | 42,409 | 2,447,000 |

TABLE 6-SUMMARY OF TABLES 4 AND 5.


## CONCLUSIONS DRAWN FROM THESE TABLES.

In estimating the loss due to trolling on the feeding banks of the immature salmon, the comparison of weights is made with the fish taken inside the mouth of the river for the same period and not with the estimated weight of the chinook salmon at maturity. It will be noticed that the salmon taken within the mouth of the river during May averaged, at least, 7 pounds less
than the estimated weight of the mature fish. In fairness to the troller the estimates of losses due to his operations should be made on this basis provided the law permits fishing in the Columbia during the month of May.

During May 39.84 per cent of the entire number of chinook salmon taken by the 26 trollers consisted of fish under 5 pounds in weight and averaging 2.99 pounds. The average weight of those caught just inside the mouth of the river by the giil nets and traps for the same period was 14.94 pounds. These figures show a loss of 11.95 pounds per fish, which makes a loss of 12,512 pounds for the 1,047 small fish caught. Those taken by the trollers that were over 5 pounds in welght averaged 6.43 pounds less than those taken on the inside which indicates that many of those trolled fish must have been immature. The catch of 1,581 fish netted a loss of 10,166 pounds for the month. The estimated loss for the month of May for the entire fieet of 1,500 boats at the above rate, would be $1,308,520$ pounds.

During the four weeks ending June 29, the number of chinook salmon under 5 pounds in weight taken by the trollers amounted to 43.34 per cent of the entire catch. The average loss for each of the 1,547 fish was 17.08 pounds, which makes a total loss of 26,423 pounds. The 2,027 fish weighing over 5 pounds taken by the trollers averaged 8.79 pounds less than those taken inside the mouth of the river for the same time. This gives an additional loss of 17,817 pounds to be charged against the trollers. On this basis the estimated loss for the four weeks chargeable to the entire fleet would be $2,552,648$ pounds.

The results for July were slightly modifled by the action of the packers who agreed to buy no more chinook salmon after July 19 that measured less than 20 inches from the tip of the snout to the end of the middle ray of the tail. But the effects of the enforcement of this agreement must have been slight, as the taking of these small salmon had nearly ceased by July 19. The entire catch for the two weeks preceding this date, by the 26 trollers, was only 65 chinooks under 5 pounds each in weight. Moreover, the majority of those small fish had grown until they were about 20 inches in length. To determine the size of these fish at this time ten were measured and weighed. The average length was 21.6 inches and the average weight 4.2 pounds. Fish 20 inches in length would weigh considerably less than those 21.6 in length, so it may be readily seen that this agreement on the part of the buyers amounted to practically nothing as a remedy for the evil. For the four weeks ending July 27 the catch of chinook salmon under 5 pounds in weight, taken by the 26 trollers, amounted to 23.66 per cent of the number caught. Of this 23.66 per cent 19.52 were taken before July 7. The average loss for each of these fish was 17.95 pounds, which gives a loss of 6,049 pounds for the 337 fish taken. During this same period the trollers took 1,087 fish, each of which weighed more than 5 pounds, but which fell 6.53 pounds below the average of those taken inside the mouth of the river for the same time. The loss on the 1,087 fish amounted to 7,098 pounds. The estimated loss for the fieet for this period would be 758,582 pounds.

During the remaining period of 17 weeks there was practically no chinook salmon under 5 pounds brought in by the trollers, wo that any loss must be attributed to the taking of immature salmon over 5 pounds in weight. Table 6 shows that for this period the 26 trollers brought about a loss of 7,328 pounds. The estimated loss for the entire fleet for this period
was 422,826 pounds. The total loss chargeable to the 26 trollers for the season was 87,393 pounds, and the estimated loss caused by the fleet of 1,500 boats was $5,042,576$ pounds. A further study of these tables shows that by far the greater part of the loss was due to the fishing done before June 29. The summary, Table 6, shows that the total loss brought about by the 26 trollers was 87,393 pounds, and that 66,918 pounds of this loss


Plate T_Taking fish fiom trup for Chirook Katchery


Plate B Chinook salmon tiolled at mouth of Columbia River; smallest weighing 2 pounds, in its second year: largest weighing. 23pounds in its fourth year $\overline{ }$, all immature
were due to the trollers' operations prior to June 29. When reduced to a per cent basis these figures show that 76.57 per cent of the season's loss took place before June 29.

No records were available which would show the losses due to the taking of immature salmon by the purse seiners, but there is every reason to belfeve that they are responsible for the destruction of a larger per cent of small salmon than the trollers. Isolated observations of their catches of immature salmon have been reported. John Larson, the Oregon deputy, reported having seen one purse seine boat deliver to a cannery July 24, 250 chinook whose total weight was 720 pounds, the average being 2.88 pounds, and the next day another delivered 53 of these young salmon weighing 158 pounds and averaging 2.98 pounds. The average weight for 955 chinook salmon caught inside the river during the week ending July 27, as estimated from Table 3, was 23.78 pounds. Estimations from these flgures show a total loss of 6,327 pounds on a day's catch for two purse seine boats. It is to be noted that these deliveries were made at a time after the trollers had practically ceased to take these small, immature salmon. With a score of these boats operating during the season the possibilities of this gear to destroy young salmon may readily be seen.

A few chinook salmon under 5 pounds were taken by the 16 gillnetters and the 22 traps within the mouth of the river. The following table gives the totals for the three months of the fishing season in which practically all of these fish were taken:

TABLE T-SMALL CHINOOK SALMON TAKEN BY THE GLLLNETTERS AND TRAPS.


These very small salmon form but 2.9 per cent of the entire catch of gill nets and traps. It must be remembered that a number of male chinook salmon mature in their second year and run to the spawning beds with the larger fish. Without doubt some of the small fish taken within the mouth of the river belong to this group. It is clear that the gill nets and traps operating within the mouth of the river cannot be considered a menace to the industry by taking immature fish.

Reports have been verified that the haul seines on Sand Island catch, at times, considerable numbers of small chinook salmon. The numbers taken by this means were so large as to indicate an invasion of this fishing area by immature fish swept in by the tide from the feeding banks outside the mouth of the river.

## ANALYSES OF IMMATURE CHINOOK SALMON.

The salmon packers of the Columbia River divide their products into four grades according to quality. The first grade consists of prime chinook salmon which is in very great demand and brings the highest price in the market. The chinook salmon that are under 5 pounds in weight are put on the market as fourth grade salmon and given a trade name that does not indicate the species. This grade, in spite of the demand for fish, has been a drug on the market, and could not be disposed of advantageously. It is of a very pale color and quite insipid in taste. The intermediate grades are, of course, of intermediate quality, and are much more readily marketed than the fourth grade.

Careful analyses were made of the various grades and also of chums or tulas and spawned salmon by Miss Bella Kracower of the Pharmacy Department, University of Washington. Tula is the name given by Columbia River fishermen to the late run of chinook salmon. They are large fish with lightcolored flesh and are considered inferior to the chinook salmon caught earlier in the season. They are put on the market under the trade name, Chum. The spawned-out salmon were taken in the Kalama River and canned at Rainier, Oregon. For these analyses three cans of each grade were picked at random, thoroughly ground together in a mortar and representative samples taken.

The following tabulations show the comparative food values of three of the grades, the tulas and the spawned-out salmon. The first is the analysis of first quality chinook salmon caught in the river. The second and third are of the third and fourth grades and are of fish taken by the trollers from outside waters, the fifth is of the tula, and the sixth is of the spawned-out salmon.

| Analysis of first grade chinook salmon: |  |
| :---: | :---: |
| Protein | 19.635 per cent. |
| Fat | 17.56 per cent. |
| Ash | 2.19 percent. |
| Analysis of third grade chinook salmon: |  |
| Water | 67.26 percent. |
| Protein | 20.386 per cent. |
| Fat | 10.205 per cent. |
| Ash | 2.149 per cent. |
| Analysis of fourth grade chinook salmon: |  |
| Water | 70.43 percent. |
| Protein | 18.295 percent. |
| Fat | 9.19 percent. |
| Ash | 2.085 percent. |
| Analysis of Columbia River Tulas: |  |
| Water | 68.02 percent. |
| Protein | 18.37 percent. |
| Fat | 12.11 percent. |
| Ash | 1.50 percent. |
| Analysis of spawned chinook salmon: |  |
| Water | 70.765 per cent. |
| Protein | 19.76 percent. |
| Fat | 7.03 percent. |
| Ash | 2.445 per cent. |

Since the quality of salmon is largely dependent upon the amount of fat present the above tabulations show that the third and fourth grades packed from the immature fish taken by the trollers are decidedly inferior in fat content to the first grade of fish, somewhat inferior to the tula, and but little better than the spawned-out salmon.

The packers on the Columbia River have agreed recently that for the season 1920 , they will purchase no chinook salmon under 8 pounds in weight. This measure will certainly protect the cannerymen from having on their hands a stock of inferior goods. Not only this, but it will have a decidedly corrective influence upon the wasteful practice of catching immature salmon, as it will make it impossible for the trollers to fish during the earlier weeks of the season and reap any profits on their catch. Table 2 shows that during the first six weeks of the fishing season the trollers' weekly catch averaged at best less than seven and one-half pounds, or if the estimate be made only on all they caught over 5 pounds in weight, the average weight for the catch was but 9.25 pounds. From these figures it is clear that it is better for the trollers to tie up their boats than to fish and face the loss that must consequently follow. The enforcement of this agreement of the canners means that there will be practically no trolling in the ocean at the mouth of the Columbia River before the middle of June. By that time the most serious menace to the salmon in their second year is past, as after the middle of June, a comparatively small number of chinook salmen under 5 pounds is caught. If this season of non-fishing could be extended three weeks longer, the loss by catching salmon under 5 pounds would be practically nothing. Still, the fact remains that all through the season those who catch fish on the feeding danks will surely take immature salmon and cause thereby a considerable waste.

## THE SILVER SALMON AT THE MOUTH OF THE COLUMBIA RIVER.

All scientific observations up to the present are agreed that the silver salmon complete their life cycle in three years. The adults ascend the rivers to the spawning beds during the months of late fall and carly winter. The eggs are deposited in the gravel and the young are hatched out in 10 to 12 weeks. The yolk sacs are absorbed in 6 to 8 weeks more and then the young fish seek food. About this time, according to Dr. Charles H. Gilbert, some of the fry find their way down to salt water, but his investigations indicate that very few of these survive to return to the spawning beds. Dr. C. McLean Fraser, Nanaimo, B. C., as the result of his observations, is of the opinion that very few silver salmon enter the salt water as fry, but remain in fresh water until the spring of their second year. So far then as the silver salmon of commerce are concerned, they may be considered as having spent their first year in fresh water. In the spring of their second year, when they go to salt water, they average between three and four inches in length. They grow quite rapidly during their first summer in salt water, so that by October they attain a length of 6 to 14 inches. Their growth through their second winter is not very great, as in April of their third year they are 10 to 18 inches in length and weigh from 8 ounces to one and onehalf or two pounds. The average weight at the beginning of the fishing season, April 15, 1920, was not more than one and one-half pounds. Later
reference will be made to the size of these fish when considering the fishing around the southern end of Whidby Island. During their third summer the silver salmon make remarkable growth.

The following tables will show that those caught both at the mouth of the Columbia River and at Neah Bay during September, October and November averaged more than 10 pounds. Many were caught which weighed 20 pounds or more. Examination of the scales of a number of those larger ones confirms the belief that they complete their life cycle in three years.

A complete report for the season of 1919 was obtained of the daily catches of 26 trollers fishing outside the mouth of the Columbia River, and 18 gillnetters and 22 traps taking fish within the mouth of the river. This report shows some interesting facts in the growth rate of the silver salmon during its third summer. At the same time it shows the deplorable fact that large numbers of them are caught before they are much more than half grown, thus incurring great loss to the industry.

While the daily records of the catches of each of the groups are on fle, for the sake of brevity, weekly and four-weekly totals will be given.

TABLE S-SILVER GALMON TAKEN AT THE MOUTE OF THE COLUMBLA RIVER.

| TAKEN BY TROLLERS |  |  |  | TAKEN BY GILL NETS |  |  | TAKEN BY TRAPS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Week Ending | Number | Weight | Average Weight | Number | Weight | Average Weight | Number | Weight | Average Weight |
| May 11.... | 4 | 15 | 3.75 |  |  |  |  |  |  |
| 18.... | 2 | 8 | 4. |  |  |  | 12 | 65 | 5.42 |
| 25... | 4 | 15 | 3.75 |  |  |  | 1 | 7 | 7. |
|  |  |  |  |  |  |  |  |  |  |
| Totals.. | 10 | 38 | 3.80 |  |  |  | 13 | 72 | 5.54 |
| June S.... | 2 | 11 | 5.50 |  |  |  |  |  |  |
| 15.... | 34 | 184 | 5.41 | 2 | 13 | 6.50 |  |  |  |
| 22. | 66 | 362 | 5.49 | 2 | 11 | 5.50 |  |  |  |
| 29. | 1,363 | 8,433 | 6.19 | 33 | 159 | 5.51 | 4 | 15 | 3.75 |
| Totals.. | 1,465 | 8,990 | 6.14 | 37 | 206 | 5.57 | 4 | 15 | 3.75 |
| July 6.... | 453 | 2,776 | 6.13 | 16 | S5 | 5.31 | 2 | 7 | 3.50 |
| 13... | 134 52 | 796 399 | 5.94 6.33 | -1' |  |  | 1 | ${ }_{5}$ | 5. ${ }^{\text {. }}$ |
| 27.... | 89 | 486 | 7.04 | 1 | 7 | 7. | 1 | 5 | 5. |
| Totals.. | 708 | 4.387 | 6.19 | 18 | 98 | 5.44 | 3 | 12 | 4. |
| Aug. 3.... | 170 | 1,292 | 7.60 | 6 | 37 | 6.17 | 15 | 91 | 0.07 |
| 10... | 497 | 4,125 | 8.29 | 14 | 121 | 8.64 | 6 | 31 | 5.17 |
| 17... | 314 | 2,764 | 8.50 | 30 | 296 | 7.53 | 300 | 3.080 | 7.89 |
| 24. | 33\% | 3,091 | 9.19 | 15 | 129 | 8.00 | 451 | 3,831 | 8.49 |
| Totals. | 1.317 | 11,272 | 8.56 | 65 | 513 | 7.50 | 862 | 7,033 | 8.16 |
| Aug. 31.... | 184 | 1,787 | 9.71 | 1 | 13 | 13. | 375 | 3,417 | 9.11 |
| Sept. 7.... | 242 | 2,327 | 9.62 |  |  |  |  |  |  |
| 14.... | 2,150 | 22,547 | 10.48 | 7 | S8 | 12.57 | 314 | 2,742 | 8.73 |
| 21.... | 3,600 | 41,895 | 11.64 | 20 | 250 | 12.80 | 71 | 603 | 8.49 |
| Totals... | 6,176 | 68,556 | 11.10 | 28 | $35 \%$ | 12.73 | 760 | 6,763 | 8.8) |
| Snpt. 28... | 501 | 6,530 | 11.05 | 1 | 11 | 11. | Eif | 7,754 | D.0s |
| Oct. 5... | 611 | 6,730 | 11.01 | .......... |  |  | 4*; | 4,510 | 9.11) |
| 12... | 1,199 | 13,667 | 11.38 | ......... |  |  | 7 73 | 7,061 | 9.68 |
| 19.... | 709 | 8,190 | 11.55 |  |  |  | 625 | 6,214 | 9.63 |
| Totals.. | 3,110 | 35,117 | 11.29 | 1 | 11 | 11. | 2,702 | 25,6\%9 | 9.17 |
| Oct. 26.... | 215 | 2,505 | 11.65 |  |  |  | 674 | 7,966 | 10.17 |
| Nov. 2. | 4:30 | 5,325 | 12.13 |  |  |  | 38 | 3,751 | 9.54 |
| 9... | 476 | 6,929 | 13.09 |  |  |  | 3107 | 4,462 | 11.21 |
|  |  |  |  |  |  |  |  |  |  |
| Totals.. | 1,130 | 14,055 | 12.44 | ......... | ... |  | 1,572 | 16,541 | 10.52 |
| Nov. 23.... | .......... | .......... | ........... | ........... | ....... |  | 1,144 | 13,114 | 11.46 |
| Grand Totals. | 13,918 | 142,415 | 10.23 | 149 | 1,185 | 7.95 | 7,060 | 69,208 | 9.80 |

## CONCLUSIONS DRAWN FROM TABLE 8.

The numbers of the silver salmon taken by the gillnetters were so small that the figures are of little use for comparative purposes, the total catch for the entire season being 149 fish for 18 gillnetters. The smallness of the catch is probably due to the large-sized meshes used by these fishermen.

The table shows interesting comparisons between the silver salmon caught by the trollers outside the mouth of the river and those caught by the traps inside the mouth. The trollers began to take silver salmon as soon as the fishing season opened and continued to take them until the close of the season in November, but they did not take them in large numbers until about the middle of June. The traps took a few silver salmon throughout the earlier months of the fishing season but did not begin taking thern in significant numbers before the middle of August. They continued their larger catches until the season closed in November. Estimates from this table show that the traps took 76.74 per cent of their silver salmon after September 22, and the trollers took 69.91 per cent of theirs prior to this date. Weather conditions during the fall months, without doubt, interfered with the operations of the trollers.

Table 9 is a brief summary of the losses chargeable to the trollers during the earlier part of the season.

TABLE O-A SUMMARY SHOWING LOSSES IN SHLVER SALMON TO THE TROLLERS.


The average weight of all silver salmon taken by the trollers after August was 11.3 pounds. Using this as a basis to estimate the losses prior to this date the table shows that the total loss on the 3,500 silver salmon taken by the trollers was 14,861 pounds and by estimation, the loss for the entire fleet of 1,500 boats was 857,479 pounds. It is interesting to note that the fish taken by the trollers average right through the season heavier than those taken by the traps. Since these flsh are all in their third year the increase in weight from month to month can be attributed only to growth. Table 8 shows the rapid rate at which the silver salmon grow. Silvers taken in May averaged 3.80 pounds, while those taken in the four weeks ending November 16 averaged 12.44 pounds, giving an increase of 227 per cent in weight for six months' growth. Figure 2 shows in graphic form this remarkable rate of growth. The average weight of the entire catch for each fourth week is used to show this growth. The figures along the ordinat represent pounds, while the absissa shows the time in four-week periods, three of the larger squares representing a period of four weeks. The upper, No. 1 graph, shows the growth rate for the fish taken by the trollers in the ocean. The

lower one, No. 2, indicates the growth rate for those taken in the traps. A comparison of the two graphs shows that at no time did the fish taken in the traps equal in weight those taken by the trollers. The double line, No. 3, shows the rate of growth for the silver salmon caught at Neah Bay.

## CONDITIONS WITHIS THE MOUTH OF THE COLUMBIA RIVER DUE TO TIDES.

Fishermen at Ilwaco reported that hundreds of immature chinook salmon were sometimes taken in the drag seines on the south shore of Sand Island. Further inquiry among the men operating the nets on the island confirmed the report that such catches had been made, but that they were not of frequent occurrence. Knowing that immature salmon do not, as a
rule, run into fresh water, it was deemed advisable to determine the extent to which the cold, salt water of the ocean invaded the mouth of the river. If such an invasion were extensive enough and the temperature of the water but little changed it would explain the presence of the schools of young salmon and other fish within the mouth of the river.

It is known that the tides affect the river for more than 100 miles above its mouth but the distance the sea water entered was not determined, so far as the author knew. To determine the extent of this invasion stations were chosen in the deeper channels at different distances from the mouth of the river, until a point was reached beyond which the sea water did not pass.

The equipment used consisted of a reversing water bottle of most recent type, mounted with a reversing thermometer graduated to tenths of a degree Centigrade, and delicate hydrometers that read to one part of salt in 10,000 parts of water. More accurate results could have been obtained by the silver titration method, but for the purpose of the problem in hand the hydrometers gave sufficiently accurate results.

The accompanying sketch of the mouth of the river, Plate 9 , will give a fair idea of the situation. On the map are marked in Arabic numerals the stations at which samples of water were taken. At each station except 9 and 10 a series of samples was taken at regular distances between the bottom and the surface of the water. At stations 9 and 10 the water at the bottom was found to be fresh and practically of surface temperature, so that nothing would be gained by taking samples nearer the surface. The following table gives the results of the observations made at each station:

TABLE 10-SHOWING THE RELATION OF TIDES TO SALINITY OF THE WATER IN THE MOUTH OF THE COLUMBIA RIVER.

| Position | Date | Hour <br> Standard Time | TIDE | Depth | Temp. | Specific Gravity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | July 25 | 6:45 A. M. | Low Tide | 50 ft . | $14.8{ }^{\circ} \mathrm{O}$. | 1008 |
|  |  | 6:52 A. | 5:50 A. M., -1.2 ft. | 40 | 14.7 | 1006.7 |
|  |  | 6:59 |  | 30 | 16.3 | 1006.7 |
|  |  | 7:07 | High Tide | 20 | 16.2 | 1003.7 |
|  |  | 7:13 | 11:56 A. M., 6.8 ft . | 10 | 16.9 | 1002.2 |
|  |  | 7:18 |  | Surface | 17.1 | 1000.9 |
| 2 | July 25 | 8:00 A. M. | Low Tide | 40 ft . | $16.9{ }^{\circ} \mathrm{C}$. | 1002 |
|  |  | 8:10 | 5:50 A. M., 1.2 ft . | 30 | 17.2 | 1002 |
|  |  | 8:17 |  | 30 | 17.3 | 1001.4 |
|  |  | 8:24 | High Tide | 10 | 17.9 | 1000.3 |
|  |  | 8:30 | 11:56 A. M., 6.8 ft . | Surfaca | 17.5 | 1000 |
| 2 | July 24 | 10:20 A. M. | Low Tide | 50 ft . | $7.3^{\circ} \mathrm{C}$. | 1025.4 |
|  |  | 10:27 | 4:56 A. M., -0.7 ft. | 40 | 7.2 | 1025.1 |
|  |  | 10:33 |  | 38 | 7.9 | 1025 |
|  |  | 10:40 | High Tide | 20 | 8.2 | 102\% |
|  |  | 10:46 | $11: 04$ A. M., 6.3 ft . | 10 | 9.4 | 1023.5 |
|  |  | 10:52 |  | 5 | 12.0 | 1015.5 |
|  |  | 10:59 |  | Surface | 14.0 | 1012.2 |
| 3 | July 28 | 1:10 P. M. | Low Tide | 12.5 ft . | $18^{7} \mathrm{C}$. | 1002.9 |
|  |  | 1:17 | 3:31 P. M., 3.1 ft . | 7 | 17 | 1002.8 |
|  |  | 1:25 | High Tido | Surface | 16.8 | 1001.7 |

I'able 10-Showing the Relation of THdes to Salinity of the Water in the Mouth of the Columbia River-Concluded.

| Posi. tion | Date | Hour <br> Standard Time | TIDE | Depth | Temp. | Specifle Gravity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | July 24 | 2:10 P. M. $2: 17$ $2: 23$ $2: 29$ | Low Tide <br> 4:42 P. M., 3.0 ft . <br> High Tide $11: 04 \text { A. M., } 6.3 \mathrm{ft} .$ | $\begin{gathered} 13 \mathrm{ft} . \\ 10 \\ 5 \\ \text { Surface } \end{gathered}$ | $10.7^{\circ} \mathrm{C}$. 14.3 16.9 16.1 | $\begin{aligned} & 1020.2 \\ & 1010.8 \\ & 1002.5 \\ & 1002.5 \end{aligned}$ |
| 4 | July 26 | $\begin{aligned} & \text { 6:10 P. M. } \\ & 6: 18 \\ & 6: 9 \end{aligned}$ | Low Tide $\begin{gathered} \text { 6:37 P. M., } 2.2 \mathrm{ft} . \\ \text { High Tide } \\ \text { 12:41 P. M., } 7.3 \mathrm{ft} . \end{gathered}$ | $\begin{gathered} 7 \mathrm{ft.} \\ \text { Surface } \end{gathered}$ | $16.2^{\circ} \mathrm{C}$. 17.5 16.8 | $\begin{aligned} & 1008.2 \\ & 1002.6 \\ & 1002.6 \end{aligned}$ |
| $\overline{5}$ | July 24 | 1:35 P. M. $1: 49$ $1: 49$ $1: 55$ | Low Tide <br> 4:42 P. M., 3.0 ft . <br> High Tide $11: 04 \text { A. M., } 6.3 \mathrm{ft} .$ | $\begin{gathered} 16 \mathrm{ft} . \\ 10 \\ 5 \\ \text { Surface } \end{gathered}$ | $11.7^{\circ} \mathrm{C}$. 16.3 16.9 17.2 | $\begin{aligned} & 1017.6 \\ & 1004.2 \\ & 1003 \\ & 1002.9 \end{aligned}$ |
| 5 | July 28 | 7:00 P. M. $7: 07$ $7: 13$ $7: 20$ | Low Tide <br> 6:37 P. M., 2.2 ft. <br> High Tide $12: 41 \mathrm{P} . \mathrm{M}, 7.3 \mathrm{ft}$ | $\begin{gathered} 12 \mathrm{ft} . \\ 10 \\ 5 \\ \text { Surface } \end{gathered}$ | $12.7^{\circ} \mathrm{O}$. 15.8 17.3 16.3 | $\begin{aligned} & 1017.6 \\ & 1007.3 \\ & 1003.3 \\ & 1003 \end{aligned}$ |
| 6 | July 24 | $\begin{aligned} & 9: 33 \text { A. M. } \\ & 9: 40 \\ & 9: 47 \\ & 9: 55 \\ & 10: 00 \end{aligned}$ | Low THde 4:56 A. M., - 0.7 ft . <br> High Tide $\text { 11:04 A. M., } 6.3 \mathrm{ft} \text {. }$ | $\begin{gathered} 20 \mathrm{ft} . \\ 15 \\ 10 \\ \text { Surface } \end{gathered}$ | $12.8{ }^{\circ} \mathrm{C}$. 14.2 15 16.5 16.5 | $\begin{aligned} & 1014.4 \\ & 1011.2 \\ & 1007.6 \\ & 1004.4 \\ & 1001.8 \end{aligned}$ |
| 6 | July 25 | $\begin{aligned} & 8: 45 \text { A. M. } \\ & 8: 59 \\ & 8: 58 \end{aligned}$ | Low Tide <br> 5:50 A. M., -1.2 ft. <br> High Tide $\text { 11:56 A. M., } 6.8 \mathrm{ft} .$ | 20 ft . <br> 10 <br> Surface | $\begin{aligned} & 17.2^{\circ} \mathrm{C} \\ & 17.4 \\ & 17.5 \end{aligned}$ | $\begin{array}{r} 1000.9 \\ 1000.2 \\ 999.8 \end{array}$ |
| 7 | July 27 | $\begin{aligned} & 2: 40 \text { P. M. } \\ & 2: 50 \\ & 2: 59 \\ & 3: 07 \\ & 3: 14 \\ & 3: 20 \\ & 3: 25 \end{aligned}$ | Low Tide $\begin{gathered} \text { 7:20 A. M., -1. } 4 \mathrm{ft} . \\ \text { High TJde } \\ \text { 1:22 P. M., } 7.5 \mathrm{ft} . \end{gathered}$ | $\begin{gathered} 63 \mathrm{ft} . \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ \text { Surface } \end{gathered}$ | $9.3^{\circ} \mathrm{C}$. 10.7 10.5 11.1 14 18.5 19.7 | $\begin{aligned} & 1020 \\ & 1019.8 \\ & 1019.8 \\ & 1017.1 \\ & 1011.7 \\ & 1000.3 \\ & 999.5 \end{aligned}$ |
| 8 | July 27 | $\begin{aligned} & 1: 50 \text { P. M. } \\ & 2: 00 \\ & 2: 10 \\ & 2: 15 \end{aligned}$ | Low Tide <br> 7:20 A. M., -1.4 ft. <br> High Tide <br> 1:22 P. M., 7.5 ft . | $\begin{gathered} 35 \mathrm{ft} . \\ 20 \\ 10 \\ \text { Surface } \end{gathered}$ | $18.8^{\circ} \mathrm{C}$. 18.6 17.6 18.4 | $\begin{aligned} & 999.6 \\ & 999.5 \\ & 999.5 \\ & 999.5 \end{aligned}$ |
| 9 | July 28 | $\begin{aligned} & 11: 30 \text { P. M. } \\ & 11: 45 \\ & 11: 51 \end{aligned}$ | Low Tide <br> 8:01 A. M., -1.2 ft. <br> High Tide <br> 2:00 P. M. 7.8 ft . | $\begin{aligned} & 60 \mathrm{ft} . \\ & 30 \end{aligned}$ <br> Surface | $\begin{aligned} & 19.1^{\circ} \mathrm{C} . \\ & 19.1^{2} \\ & 18.6 \end{aligned}$ | $\begin{aligned} & 999.4 \\ & 999.4 \\ & 999.4 \end{aligned}$ |
| 10 | July 28 | 12:15 P. M. | Tides as above | 80 ft . | $19.0{ }^{\circ} \mathrm{C}$. | 999.4 |

## CONCLUSIONS DRAWN FROM TABLE 10.

Following a comparatively straight line from station 1 to station 7 the table shows that a large amount of salt water flows into the river where the most important flshing area is located, and that the flooding of this area with salt water is at periods of high tide only. At station 2, at
high tide, the bottom of the river was covered to a depth of 30 feet with water having a specific gravity of 1025 or more and a temperature ranging from $7.3^{\circ} \mathrm{C}$. at the bottom to $8.2^{\circ} \mathrm{C}$. at 30 feet from the bottom. At station 7, with the same tide conditions the bottom of the river was covered to a depth of 25 feet with water having a specific gravity of 1020 at the bottom to 1019.8 at 25 feet from the bottom and a temperature that varied from $9.2^{\circ} \mathrm{C}$. at the bottom to $10.5^{\circ} \mathrm{C}$. at 25 feet from the bottom. Thus at station 2, just opposite the seining grounds on Sand Island, the inflowing water for a depth of 30 feet from the bottom was practically of the density and temperature of the ocean water, and that at station 7 , which is 11 miles above the mouth of the river, the water for a depth of 25 feet from the bottom had a density and a temperature not differing very greatly from that of the ocean outside The table further shows that Sand Island is surrounded at high tide by water of about the same density and temperature as the water at a corresponding depth at station 2. It is not surprising then that schools of immature salmon are sometimes swept in by the tide and that they may be caught in considerable numbers by the shore seines, or find their way in to the traps that lie between McGowan and Chinook.

The table further shows that at low tide the salt water is practically swept out of the river's mouth. At station 2, at low tide, the specific gravity of the water at a depth of 40 feet was only 1002 , and the temperature but six-tenths of one degre lower than that of the surface. Since the difference between high and low tide was but 8 feet, it seems remarkable that the outfiowing current of the river should remove the salt water to a depth of 40 feet. Since the salmon are very sensitive to changes in density and temperature of the water, it is highly probable that the salmon swept in by the flooding tide would be carried out by the ebbing tide.

At stations 9 and 10, although the water was very deep, the temperature at the bottom was nearly the same as at the top and the hydrometer showed that the water had practically the specific gravity of fresh water. This shows conclusively that salt water never reached those stations, the lower of which is about 16 miles from the mouth of the river, for, if salt water entered either of these deep places, even occasionally, it would probably remain there constantly, because these holes are much deeper than any channel leading from them to the sea, so that once filled with salt water the fresh water would not dislodge the heavier salt water from them.

## FISHING AT CAPE FLATTERY.

The Neah Bay fishing fleet operates on the banks lying along the coasts of Washington and Vancouver Island. The area over which the fishing is done extends from Destruction Island fifty miles south of Cape Flattery, to Barclay Sound fifty miles north of the Cape, and seaward about thirty miles from the coast line. These are the extreme distances over which the fleet fishes but the major part of the fishing is done within 25 miles of the Cape. These banks extend about 12 miles from shore before the water covering them is 50 fathoms in depth, and 30 miles from shore the water is not more than 100 fathoms deep. The most favored region for fishing is the Swiftsure Bank, which has 20 to 50 fathoms of water covering it. The lightship located on this bank is about 15 miles northwest of Cape Flattery.

On the Washington side much fishing is done within the three-mile limit, while on the Canadian side, American boats are not supposed to fish within the three-mile zone. Some fishing is done within the Juan de Fuca Strait but this area is not nearly so inviting to the fishermen as the banks outside. At Neah Bay the Strait is. 13 to 14 miles wide and varies from 100 to 155 fathoms in depth except for narrow strips along the northern and southern shores.

Since the banks are subject to the weather conditicns of the open ocean, the fishing operations can be carried on only when the water is comparatively smooth, consequently considerable time is lost because of unfavorable conditions. Again, the work is so strenuous that very few of the fishermen can keep the work up day after day without periods of rest. As a result of these two factors there was rarely a day during the fishing season when there were less than 100 boats remaining at anchor in the bay. The daily movements of 110 trolling boats were kept for the entire season. The following table shows the daily average number of these 110 fishing boats that delivered fish at the Union Scow.

TABLE 11.

| Four Wecks Ending | Daily tierage <br> Number of Boats |
| :---: | :---: |
| July 15 | 44.9 |
| August 12 | 37.5 |
| September 9 | 31.3 |
| Uctober 7 | - 28.5 |
| October 31 | 8.7 |
| Average | . 30.18 |

These flgures indicate that throughout the season less than one-third of the boats were engaged in fishing at one time; or, in other words, the entire fieet was fishing but one-third of the time.

Practically all the fishing in this region is done by trollers and purse seiners. There are said to be about 600 fishing boats in the trolling fleet with headquarters at Neah Bay. Probably of these not more than 500 were doing anything like systematic flshing. The numbers of purse seine boats varied from time to time, as they were constantly on the move from one fishing region to another. There were probably not more than 30 to 35 of then fishing on the banks at any one time.

During the fishing season of 1919 three canneries were in operation at Neah Bay, one large one on shore owned by the Anacortes Packing Co., and two fioating ones. The Fishermen's Union Co. had their butchering scow: at the Bay, but the canning was done at Port Angeles. Besides these a number of buyers for Puget Sound firms had receiving scows.

The fishing season opens about the midde of May but the canneries do not begin operations until three or four weeks later. Fish caught prior to the opening of the canneries are shipped to the fresh fish markets of the Puget Sound cities.

The fishermen's day begins between 2 and 3 o'clock in the morning. At this hour they start for the fishing banks in order to be at their destination by the break of day. They fish until about the middle of the afternoon and then return to Neah Bay, where they dispose of their fish. Some

(1) Puget Sound fish trap off Lopez Island. (2) Small portion of purse seine fleet in Kanaka Bay. (3) Purse seine boats headed for the fishing grounds (4) Purse seine boat with seine "laid" out. .
of the better constructed trolling bcats, usually in the latter part of the season, go 40 or 50 miles from the Cape to fish in the less frequented waters. These trips cover two or more days. The fishermen usually run to the nearest shelter on the coast to anchor for the night, although sometimes in very favorable weather they anchor on the banks in the open ccean.

Here, as at the mouth of the Columbia River, the chinook caught ranged in age from fish in their second year to those maturing in their fourth to seventh year. Those in their second year, called black mouths by the fishermen, were mostly under 5 pounds each in weight, and averaged but little more than half that weight. As a separate account was not kept of these fish it was impossible to estimate the number taken, but judging by the average weight of the fish taken at Neah Bay compared with the average weight of those taken at the mouth of the Columbia River, the number must have been decidedly less in proportion to the total number of chinook cauglit. The average weight of all the chinook caught at the mouth of the Columbia River by 26 trollers for the four weeks ending July 13 was 4.9 pounds less than the average weight of those taken for the four weeks ending July 15 by the 110 trollers at Neah Bay. Still a very conslderable number of black mouths were taken at Neah Bay. Besides these there were a large number of immature chinook salmon in their third and fourth years taken by the trollers. A comparison of the weights of those taken at Neah Bay with those taken in the traps in the Puget Sound or within the mouth of the Columbia River by traps and gill nets confirms this statement. The average weight for 14,082 red chinook salmon caught in the traps of the Pugct Sound was 20.85 , and for 18,689 caught within the mouth of the Columbia River was 22.05 pounds, while for 46,455 caught by the trollers at Cape Flattery the average weight was 15.83 pounds. It must be remembered that if the white chinook salmon had been included with the red in the Puget Sound, the average weight would not have been less than that of the Columbia River fish. Observations on a considerable number of chinook salmon at Neah Bay indicate the proportion of immature fish found among those taken by the trollers. The fish thus caught were divided into two groups. The first consisted of prime salmon for mild cure. These must be large, over 18 pounds each in weight, and without injury to the body such as bruises or wounds caused by gaff or pew. All the rest belonged to the second group and were canned. July 6, 50 of the mild cure, each over 18 pounds, were examined as to the developed condition of their sex organs with the following results: Twelve were mature, 2 males and 10 females; 23 were immature and would not seek the spawning beds that year, 6 of these were males and 17 females; the remaining 15 showed ovaries and testes in a half mature condition, that is, the organs were in size about onehalf those of the mature fish. One hundred of the other group were picked at random from the cannery floor. They were measured, weighed and the development of their sex organs was noted. The measurements were made from the tip of the snout to the end of the middle ray of the tail. They varied in lengtl from $211 / 2$ to $391 / 2$ inches and in weight from 4 to 31 pounds. Each of 44 of them weighed 10 pounds or less, each of 33 weighed between 11 and 16 pounds inclusive, each of 16 between 16 and 20 pounds inclusive and the remainder weighed over 20 pounds each. The average weight for the 100 was 11.89 pounds. There were 60 females in the group. only 6 of
which had eggs more than 2 mm . in diameter, and none of these had eggs more than 4 mm . in diameter, while the eggs at maturity are about 8 mm . in diameter. The remaining 54 had the eggs in every case less than 2 mm . in diameter and in most cases not more than 1 mm . Of the 40 males one had practically fully matured testes, 5 had them about half developed and the remainder had them practically undeveloped. These observations indicate that the majority of all chinook salmon taken by the trollers are immature and would have remained at least another season in the ocea: if they had not been caught.

During 1918 a union was organized among the trollers. The owners of over 100 trolling boats became members and interested themselves in the building of an independent cannery. As a result of the efforts of commercial interests in Port Angeles the cannery was located at that place. The building was erected during the winter of 1918 and 1919 and was ready to begin canning about the middle of June, 1919. Practically all the fish delivered to this cannery were caught by 110 trollers. consequently almost the entire catch consisted of chinook and silver salmon. This cannery kept a complete record of the fish caught during the entire fishing season of 1919 , showing the number of each species taken daily, their weights and the number of trollers who delivered fish each day. This record tells in the plainest terms the facts of importance about the trolling fleet fishing at Cape Flattery.

The following table compiled from the records of the daily catches made by these 110 trollers, shows the average number of boats fishing daily for each week, the total number of both chinook and silver salmon taken weekly with the total and average weights of each species for each week's catch.

TABLE 12-SLMMARY OF CATCH OF CHINOOK AND SILVER SAIMON TAKEN AT NEAM BAY BY 110 TROLLERS.

| Week Ending | Average Number of Trollers Daily | Total Number of Chinooks | Total Weight | Avarage <br> Weight | Total <br> Number of <br> Silvers | Total Weight | Average Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 24... | 44.4 | 6,320 | 87,969 | 13.92 | 4,250 | 25,106 | 5.91 |
| July 1... | 38.1 | 4,386 | (6i),442 | 14.92 | 3,169 | 18,374 | 5.79 |
| 8... | 44.3 | 6,860 | 100,686 | 14.68 | 4,305 | 28,642 | 6.51 |
| 15. | 52.7 | 6,556 | 105,370 | 16.07 | 7,090 | 46,853 | 6.61 |
| Totals.. | 44.9 | 24,122 | 359.467 | 14.4 | 18,904 | 118,975 | 6.29 |
| July 29... | 20.1 | 1,660 | 21,0132 | 13.21 | 1,261 | 8,279 | 6.57 |
| 29... | 46.1 | 3,06? | 48,929 | 15.98 | 2.791 | 19,987 | 6.91 |
| Aug. 5... | 44 | 5,305 | 101,711 | 18.95 | 5.740 | 43,102 | 7.51 |
|  | 30.9 | 2,725 | 54,780 | 20.10 | 7,757 | 67,133 | 8.65 |
| Totals.. | 37.5 | 12,812 | 227,352 | 17.74 | 17,549 | 137,801 | 7.85 |
| Aug. 19... | 19.9 | 1,344 | 30,594 | 29.76 | 3,414 | 28,625 | 8.38 |
| 26. | 29.9 | -, r13 | 45,151 | 16.0 .5 | 12,038 | 126,869 | 10.53 |
| Scpt. 2. | 24.4 | 1,063 | 14,784 | 13.88 | 6,937 | 72,338 | 10.41 |
| 9. | 51 | 2,045 | 33,021 | 16.15 | 9,150 | 95,237 | 10.41 |
| Totals. | 31.3 | 7,267 | 123,050 | 17.00 | 31,539 | 323,069 | 10.24 |
| Sept. 16... | 40.6 | 563 | 7,869 | 13.98 | 7,822 | 79,637 | 10.18 |
| 93. | 22.1 | 571 | 5,86. | 10.17 | 4,739 | 49,251 | 10.39 |
| 30. | 17.4 | 70 | 97.) | 13.93 | 1.932 | 19,093 | 9.88 |
| Oct. 7. | 34.1 | 914 | 8,170 | 8.94 | 12,983 | 140,578 | 10.83 |
| Totals. | 28.5 | 2,118 | 22,819 | 10.77 | 27,476 | 288,559 | 10.50 |
| Oct. 14. | 15.3 | 95 | 1,350 | 14.21 | 5,117 | 56,381 | 11.02 |
| 21 | 13.9 | 39 | 740 | 18.97 | 4,940 | 54, 9 94 4 | 11.13 |
|  | 5.1 | 2 | 33 | 17.5 | 1,754 | 19,471 | 10.91 |
| 31. | 4 |  |  |  | 349 | 3,733 | 10.69 |
| Totals. | 8.7 | 136 | 2.195 | 15.63 | 12,190 | 134,579 | 11.04 |
| Grand Totals. | ......... | 40,405 | 737,313 | 15.83 | 107,658 | ,002,083 | 9.32 |

In order to have data with which to compare the Neah Bay catch, records were obtained of the daily catches of 6 traps in the Puget Sound. One trap was located at Tulalip near the mouth of the Snohomish River, another just inside Deception Pass, a third near Henry Island north of San Juan Island, and the remaining three on the west shore of Whidby Island north of Admiralty Head. The owner kept a record of the number of red chinook salmon, with their weights, taken at each lift of the traps. The number of silver, sockeye, dog and hump salmon were tabulated but none of them were weighed. Table 13 is a summary of the data collectec from the records of those six traps. It gives the number of red chinook taken each week with their total weights and their average weight. Totals are also struck for each four weeks' period.

TABLE 1：－RINH HROM SIX TRAPS ON PUGET SOUND．

| Week Fnding | Number of Red Chinooks | Weight | Average <br> Weight | Number of Silvers | Number of Sockeye | $\begin{aligned} & \text { Number of } \\ & \text { Dogs } \end{aligned}$ | Number of Humps |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Apr．© ¢．．． | 12 | foct | 38 |  |  |  |  |
| May 6．．． | 19 | ${ }^{6} 1$ | 36.37 |  |  |  |  |
| 13. | 4 | 721 | 30.04 |  |  |  |  |
| 20. | 186 | 3，727 | 20.04 |  |  |  |  |
| ＇Totals． | 941 | 5，595 | 23.22 |  |  |  |  |
| May 2t． | 241 | 5，100 | 21.23 |  |  |  |  |
| June 3．． | 290 | 6，447 | 22.23 |  | ．．．． |  |  |
| 10. | 449 | 10，7\％ | 24，03 | 1 | 4 |  |  |
| 17. | 595 | 13，825 | 23.24 | 13 | 101 |  |  |
| Totals． | 1.375 | ：3，231 | 23.02 | 14 | 10．3 | ．，．．．．．．．．．．． |  |
| Junn 24．．． | 387 | 24，445 | 94.77 | 3 | 330 |  |  |
| July 1．．． | 2，1K | 56.083 | 9．9．63 | 3 | 1，711 |  |  |
| ${ }_{15}^{8 .}$ | $1,68)$ 1,441 | 37,918 31,730 | －2．47 | 6 | $* 7$ +46 | 2 | 3 |
| Totals． | （i，39， | 150，176 | 23.8 | 21 | 3，174 | 2 | 5 |
| July 22. | 1，02． | 22，040 | 27.50 | 22 | 332 | 5 | 9 |
| 年． | 638 | 12， 638 | 19.21 | N1 | 384） | 13 | 111 |
| Aug．：\％． | 849 | 14，33． | 16.88 | 144 | 1，960 | 9 | 1，935 |
| 12. | 337 | 15，877 | 23.21 | 326 | 1，157 | 159 | 1，414 |
| Totals． | 3，469 | （ $4, \mathrm{E} \times 8$ | 18.71 | 372 | 3，844 | 272 | 3，469 |
| Aug．19．．． | 684 | 10，743 | 15.71 | 78.5 | （4．） | 123 | 5，906 |
| 26． | 700 | 11，5\％ | 16.53 | 1332 | 839 | 138 | 15，063 |
| Sept．2． | 601 | 7，888 | 13.11 | 1，566 | 134 | 157 | 7，681 |
|  | 254 | 3，501 | 14.02 |  |  | 57 | 3，615 |
| Totals | 2，239 | 33，7．24 | 15.08 | 5,2011 | 1，618 | 475 | 32，271 |
| Sept．16．． | 158 | 1，752 | 11.09 | ＋，195） |  | 4.5 | 1，112 |
| 23. | 79 | 94.3 | 11.94 | 4，6m9 |  | 83 | 318 |
| 3. | 16 | 181 | 11.81 | $\bigcirc$ ， 683 |  | 109 | 82 |
| Oct． 7 |  |  |  | 3， $26 \%$ |  | 1，058 | 7 |
| Totals． | 2 N | 2,84 | 11．39 | 1．5，463 |  | 1．295 | 1，519 |
| Oct． 14. |  |  |  | 3，27s |  | 1，602 | 2 |
| －1． |  |  |  | 3，．336 |  | ＋，014 |  |
| 2 |  |  |  | 101 |  | 1，861 |  |
| Totala． |  |  |  | 6，015 |  | 7，177 | $\underline{2}$ |
| Grand ＇Totals． | 14，0＊2 | 293,545 | 20.85 | ご， | A，i41 | 9，221 | 37，206 |

## CONCLUSIONS DRAWN．FROM TABLES 12 AND 13.

By comparing Tables 12 and 13 we are able to estimate the loss due to catching chinook salmon on the feeding banks outside the Juan de Fuca Strait．The six Puget Sound traps caught 14,082 red chinook salmon whiciz had an average weight of 20.85 pounds．Had the white chinook salmon been weighed and included in the above，the average weight would not have heen less than 22 pounds．The following table which is compiled from Tables 12 and 13 shows the number of chinook salmon，including both red and
white meated fish, caught by 110 trollers fishing on the banks ofi Cape Flattery, their average weight, the average loss per fish, the total loss to the 110 trollers and the estimated loss to the fleet of 500 boats. The losses are estimated on the average weight as given above, namely, 20.85 pounds. The totals are for the periods of four weeks.

TABLE IA-SHOWING LOSS ON CHINOOK SALDON TAKFN ON BANKS OFF CAPE FLATTEERY BY 110 TROLLERS.

| Week Enting | Number Chinooks Chen Caught | Average | $\begin{aligned} & \text { Average } \\ & \text { Loss } \end{aligned}$ | Total Loss to 110 Trollers | $\begin{gathered} \text { Estimated } \\ \text { Ioss to Fert } \\ \text { of :000 Boats } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July 15 | 2+, 129 | 14.9 | 5.95 |  | 56il 180 |
| Siliget. | $\frac{12,512}{7,267}$ | 17.74 17.00 | 3.311 | (x, |  |
| ort. 7 | 2,112 | 10.77 | 10.108 | 21,349 | 97, 04.1 |
| oet. 31. | 136 | 15.63 | 3.22 | 710 | 3, $0^{2}$ 25 |
| Totnis. | 46, +ix |  |  | 213,45 | 970, 3\%: |

These figures indicate that 57.9 per cent of the total loss may be charged to the first four weeks' fishing which represents but 20 per cont of the season's time.

The period of maximum catch and greatest average weight is the same for both trollers and traps, i. e., the four weeks ending July 15 , the 110 trollers taking 24,122 chinook salmon, and the 6 traps, 6,305 . The 110 trollers took during their entire season 3.79 times as many chinook salmon as the six traps did for the same period of time. After the middle of September neither the traps nor the trollers took very many chinook salmon.

In making an estimate of the loss due to taking silver salmon on the banks outside Cape Flattery it will be necessary to compare the catch of the trollers during the early part of the season with their catch in the latter part. As already stated the silver salmon that are caught in the ocean are all in their third and last year, and make the greatest part of their growth during the summer of this year.

Table 12 shows the total number of silver salmon taken each week during the season, and their total and average weights. The following table gives a summary of Table 12 and shows the number taken during the eight weeks that immature fish were caught, their average weight, the average loss when compared with the average weight of the mature fish taken in September and October, the total loss for the 110 trollers and the astimated loss for the entire fleet of 500 boats. The average weight of the silver salmon taken after September 1 was 10.62 pounds.
 BANKS OLTSIDE CAPE FLATTERY.

| Four Weeks Fnding | Numbor Silvers Caught | Averag? Weight | Average Loss | Total Loss to 110 T'rollers | Estimated Loss to Flept of miol Iboats |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July 15. | 10,9nt | 6.29 | 4.33 | (1, CH 4 | :5\%,015 |
| Aug. 12. | 17,549 | 7.8 | ?.7\% | +゙, 611 | 20,0, 9 |
| Totals.. | 36,4.73 |  |  | 120, 45\% | 5 E 2 a 7 |


(1) Purse seine boats unloading fish at Neah Bay cannery. (2) Section of trolling fleet-anchored at Neah Bay. (3) Twenty-two thousand silver salmon on Neah Bay cannery floor-all immature.

A comparison of the figures in Tables 12 and 13 shows that the trollers took silver salmon in large numbers from the beginning of the season while the traps in the Puget Sound did not take them in significant nunders much before September 1. The trollers took 53.8 per cent of their entire catch of silver salmon before September 1 , while the six traps of the Puget Sound took but 12.5 per cent of theirs. Unfortunately a more complete comparison with those taken in the traps of the Puget Sound is not possible as no cannery was found where the weights of the silver salmon caught in the Sound were kept. But it is known that the silver salmon taken at Cape Flattery average considerably more than those taken in the Puget Sound. Even including the small ones caught early in the season, the entire catch of the 110 trollers averaged 9.32 pounds which is more than that of the silvers taken in the Puget Sound during the height of the season.

The table shows that silver salmon were very abundant on the banks throughout the entire season. Had the average number of fishermen been fishing during the last weeks of October, as many silvers would have been caught as at any other period of similar length during the season.

It was difficult to get satisfactory records of the purse seiners' activities because of their migratory habits, and the fact that the dealers to whom they sold their fish did not keep a record of both their number and weight. However, some observations were made that show clearly the relation of the purse seiners to the taking of immature fish. All the species of salmon are taken in the purse seine nets while in operation on the banks in the ocean. During 9 days spent at Neah Bay beginning July 6, a careful study was made of the catches delivered by purse seiners to one cannery. A record of the number of each species, together with the estimated weights, was made.

The number of purse seine boats reporting catches to this cannery during the period of investigation varied between 5 and 12 a day for 7 out of the 9 days. The total catch was 46,102 silver salmon, 764 chinook salmon, 1,922 humpback salmon, 48 sockeye salmon and 2 dog salmon.

As it was impossible to weigh all the fish brought in by the purse seiners the approximate weight was estimated by weighing a considerable number taken on different days, striking an average and multiplying the average weight by the total number of the fish. For this purpose 352 silver salmon were taken at random, and the average weight was found to be 6.21 pounds. The average weight for the silver salmon caught at Neah Bay after September 1 was 10.62 pounds. Therefore, those caught by the purse seine nets during the period of investigation averaged 4.41 pounds less than that of the mature fish. On this basis then the 46,102 silvers taken by the purse seiners weighed 203,310 pounds less than the same number of silver salmon taken in September or October. The reader may readily understand the extent of the loss for a season when 25 or more purse seiners were engaged during the season in taking those immature salmon.

The purse seiner during the period of investigation did not take many chinook salmon, but the majority of those taken were small and immature. Out of 764 caught 591 were less than 6 pounds in weight. Therefore, while the number of chinook salmon taken by the purse seiners was much smaller than that taken by the trollers, the per cent of small ones was very much greater.

During the early part of the season the number of the other species taken by the purse seiners was insignificant. The humpback salmon taken were nearing maturity and averaged 5.96 pounds, this being considerably more than the average weight of those received at the canneries of Puget Sound, which is given as 4 pounds by the Pacific Fisherman Year Book, 1920. The sockeye and dog salmon taken during this period were too few in number to be of importance from the standpoint of our problem.

## FISHING IN PUGET SOUND.

The most inexcusable slaughter of immature salmon takes place in Puget Sound during the 8 or 10 weeks that follow the opening of the fishing season, April 15. During this period large numbers of small silver salmon, called by the fishermen salmon trout, feed in the Sound. These silver salmon are in their third year, but at the time the fishing season opens they do not weigh more than one or two pounds and many of them weigh less than one pound. These fish mature in the fall of their third year, when they average 6 to 10 pounds in weight, depending on the region in which they are caught. To take these fish in the early part of the season when they average not more than one and one-half pounds means a loss of several hundred per cent. A smaller number of young chinook salmon is taken during this period. The majority of them are in their second or third year and weigh from 1 to 5 or 6 pounds. These fish if allowed to mature would average more than 20 pounds in weight. A few young humpback and dog salmon are also taken.

The region where the most of these young fish are taken is Possession Sound and the banks just south of Whidby Isiand. Possession Sound is a narrow strip of water lying between the southern end of Whidby Island and the mainland. In this fishing area most of the common types of fishing gear are used. During a visit to Possession Sound in April, 1918, traps, purse seines, trolls and gill nets were found in use for taking these sinall fish, and during a visit in April, 1919 , between 25 and 30 trolling boats andi between 50 and 60 gillnet boats were similarly engaged.

Each troller took on an average, 20 to 30 fish daily, while each gillnetter was reported to average not less than 200 daily. A maximum of over 2,000 fish was reported as a night's catch for one gillnetter. On the basis of these figures it is easily shown that many tons of these young fish are taken annually. For every ton taken the loss in food to the state is not less than 5 tons, for if the fish had been left until fall, when they would be mature, they would have weighed 5 to 7 times as much as they did when caught.

The laws of the State of Washington permit, during the spring season, the use of nets having a 3 -inch stretched mesh. They also provide that it is a punishable offense to sell or have in possession salmon under 15 inches in length. These nets catch large numbers of fish under the legal size which. according to law, must be returned to the water. The majority of these fish, when taken from the nets, are either dead or so injured that they cannot live, so that they constitute a total loss. The other gears of whatever kind take their share of these undersized fish and so add to the loss.

There is no question whether but that fishing for these small salmon for commercial purposes should be stopped.

## SEMMARY.

The taking of immature salmon in the Puget Sound and on the banks along the coast of Oregon, Washington and Vancouver Island is responsible for a great loss in one of the important food products of the region; not only is the loss great but much of the food is oi inferior quality.

During the 1919 season 26 trollers flshing on the banks off the mouth of the Columbia River caught 2,931 chinook salmon weighing 9,666 pounds, and averaging 3.3 pounds, which, when compared with the adults caught inside the mouth of the river, represent a loss oi 44,984 pounds. If the entire fleet, estimated at 1,500 boats, caught a proportionate number of these small salmon they would be responsible for a loss of $2,595,576$ pounds. Besides these the 26 trollers caught 7,982 chinook salmon of larger size, weighing 123,326 pounds, and averaging 15.49 , which when compared with those caught inside the river's mouth represent a loss of 42,409 pounds, and an estimated loss for the fleet of $2,447,000$ pounds. This totals for the 26 trollers a loss of 87,393 pounds on the chinook salmon they caught and an estimated loss of $5,042,576$ pounds for the fleet.

Added to this, these 26 trollers caught 3,500 silver salmon previous to August 24 which weighed 24,687 pounds and averaged 7.05 ; these, when compared with those caught after September 1 , show a loss of 14,861 pounds. On this basis the estimated loss for the fleet was 857,479 pounds of silver salmon.

Some loss has been shown as a result of taking immature chinook salmon by the drag seines on the south shore of Sand Island. This is without doubt due to the flooding of the mouth of the river with large volumes of sea water at high tide, when numbers of salmon are swept in from the ocean.

At Neah Bay 110 trollers took during the season 46,455 chinook salmon weighing 735,313 pounds and averaging 15.83 pounds. When compared with the chinook salmon taken by 6 traps during the season they represent a loss of 213,485 pounds and an estimated loss of 970,385 pounds for the fleet of 500 boats. During the first eight weeks the 110 trollers took 36,453 silver salmon weighing 256,776 pounds and averaging 7.04. When compared with the average weight of silver salnion taken after September 1 , the catch before August 12 represents a loss of 130,455 pounds and an estimated loss of 592,987 pounds for the fleet.

It was difficult to determine the extent of loss due to the purse seiners as isolated records for short periods were all that were available. However, the indications are that they caused a proportionately greater waste than did the trollers.

The most inexcusable waste is caused by the spring fishing in the Puget Sound near the south end of Whidby Island. Here many tons of young silver and spring salmon are taken whose weight average not more than one and one-half to two pounds. The silver salmon would mature in the fall of the same year and produce 5 to 7 tons of flsh for every ton taken in the spring. The chinook salmon if left until maturity, which would be in two to three years, would yield even greater returns.

Analyses of the immature fish show that they are much poorer in fat content and therefore inferior in food qualities to the mature fish.

The figures in Tables 8 and 11 show the very rapid growth of silver salmon taken in the ocean during the summer of their third year. The average increase in weight for those taken at the mouth of the Columbia River was from 3.80 pounds for those taken in May to 13.08 pounds for those taken during the week ending November 16. Those taken at Neah Bay do not show quite such a rapid growth.

While most authors state that the average weight of silver salmon is 5 to 8 pounds, we found that the average weight of those taken in the ocean after September 1 was 10.45 pounds. This average was obtained frow 82,621 silver salmon taken at the mouth of the Columbia River and at Neah Bay during September, October and November.

# THE TAKING OF IMMATURE SALMON IN THE WATERS OF THE STATE OF WASHINGTON DURING THE 1920 FISHING SEASON 

By<br>14. VICTOR SMJTH<br>University of Washington

Seatide, Washingron, September 1, 1921.
Hon. L. H. Daruin, State Fish Commissioner, Scattle, Washington.
Dear Sir: I am submitting yoi herewith a supplemental report on the result of the investigations which I have made at your request, of the taking of immature salmon in the waters of the State of Washington.

Respectfully,

> E. Victor Smitir, University of Washington.

At the request of the State Fish Commissioner, L. H. Darwin, the author undertook a further investigation of the fishing conditions in the salt water of the state to determine whether the results for 1920 corroborated those for the previous year published by the state fisheries department in a pamphlet entitled "The Taking of Immature Salmon in the Waters of the State of Washington."

## REGIONS WHERE IMMATURE SALMON ARE TAKEN.

As in the report of the preceding year, three regions where the most serious destruction of immature salmon takes place will be considered.

1. The waters of the ocean lying within a few miles of the mouth of the Columbia river.
2. The banks extending along the coasts of Washington and Vancouver Island for a distance of fifty miles north of Cape Flattery and the same distance south of it.
3. The waters of the Puget Sound lying around the southern end of Whidby Island.

## FISHING ON THE BANKS AT THE MOUTH OF THE COLUMBIA RIVER.

The pursuit of the salmon in these outside waters was carried on more vigorously during the 1920 season than during the previous season. While the number of trollers engaged in fishing was probably no more than for the 1919 season, yet the number of purse seiners was very decidedly increased.

One factor enters into the situation for 1920 that modifies the results so far as they will appear in this report, but which, in all probability, does not affect the actual conditions to a very great degree. The canners on the

Columbia found by experience that the canned product from the smaller of the immature salmon was of a decidedly inferior quality and could not be readily marketed; so at the beginning of the 1920 season they announced that they would not buy any Chinook salmon that weighed less than 8 pounds each.

During the 1919 season, up to July 1, more than 40 per cent of the Chinook salmon taken by 26 trollers were under 5 pounds in weight, in fact the entire catch for the season, up to July 1, averaged less than 8 pounds each; so that it will not be an unfair estimate to consider that at least 50 per cent of the number caught were under 8 pounds. It is impossible on any other basis than this to estimate the number of fish under 8 pounds that were taken during the 1920 season. It is true that some of those under 8 pounds, returned to the water, were not injured beyond recovery, but many of them were, and many of them were not returned to the water at all, but were retained for fresh fish consumption.

As in the report for 1919, the loss to the fishing industry through taking of immature salmon on the feeding grounds is estimated by comparing the catches of fish taken in the ocean by the trollers with those taken by gillnetters and traps within the mouth of the river.

We had at our disposal records of the daily catches of 25 gill net boats, 49 traps and 27 troll boats.

It seems evident that the estimated number of trollers operating outside the mouth of the Columbia river during the 1919 fishing season was too large. The trollers themselves stated that there were between 2,000 and 3,000 hoats engaged in trolling. Our 1919 report estimated the number at 1,500 , which is probably still higher than the number actually engaged. The author spent the entire time between 8 a.m. and 8 p.m., August 3, 1920, at the Lookout Station on the cliffs at the mouth of the river, on the north side. The day was bright and the water comparatively smooth. A careful count was made of the troll loats that entered the river between these hours. The number was 432 . For one reason or another a rather large per cent of the boats are not fishing on any one day. Of the 27 trolling boats that landed fish at the Ilwaco cannery during the 1920 season, the daily average was 6.3 boats for the 20 days fishing in May, 10 boats for the 23 days fishing in June, 7 boats for the 25 days fishing in July, and 10 boats for the 22 days fishing in August. On August 3, the day the boats entering the river were counted, 8 trollers delivered fish at the Ilwaco cannery. During the entire season from May 1 to August 25 there were only 12 days when there were more than one-half of the 27 boats fishing. The average number fishing for the season was a little less than 9 boats per day. While probably not very exact, a fair estimate of the number of trollers, from all figures obtainable, would put it at 1,000 boats.

The following tables are complled from the dally records of the catches of 27 troll boats, 25 gill net boats and 49 traps. All the fish were delivered to the Ilwaco cannery. Almost the entire catch of the trollers was taken in the ocean within 12 to 15 miles of the mouth of the Columbia river. A few were hrought down from the neighborhood of Destruction Island during the latter part of the season. The gill-netters operated in the Columbia river within a few miles of its mouth. The traps were located along the north bank of the river and within a few miles of the mouth. For convenience, the tables show
the totals for each period of four weeks from the beginning of the season. The dates are arranged so as to be identical with those in the previous year's report, in order that comparisons may be more easily and accurately made. The first table shows in parallel columns the catches, first of the trollers, then of the gill-netters and, lastly, of the traps.

TABLE 1. - SCMMARY OF CHINOOK SALMON TAKEN AT THE MOCTH OF THE COLUMPIA RIVER.
(Fish in Round.)

The next table shows, in the second column, the total number of Chinook caught for each period of four weeks by both gill-netters and traps. The third column gives the total weights for the catches of both gill-netters and traps, while the fourth column gives the average weight. Column five gives the average weight of the Chinook caught by the trollers and the sixth column shows the average difference in weight between those caught inside and those trolled outside the mouth of the river, which is considered as loss through taking immature fish. The remaining three columns show the number of trolled fish, the losses due to the work of 27 trollers, and the estimated loss for 1,000 trolling boats.

TABLE 2. - SHOWING LOSSES ON TROLLED CHINOOK SAIMON.

| FOUR WEEKS FNDING | Number Caught Inside River | Weight | Average Woight | Average Woight Trolled Fish |  | Total Number Caught by 27 Trollers | Loss Due to 27 Trollers | Estimateri Loss for 1000 Boats |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 1. | 2.574 | 54, 404 | 21.12 | 15.38 | 5.75 | 2,6¢1 | 15,416 | 770,933 |
| June 29. | 2,876 | 76,497 | 26.00 | 16.42 | 10.18 | 2,050 | 20,849 | 772,926 |
| July 27.. | 3,761 | 91,808 | 24.42 | 21.06 | 3.36 | 917 | 3,081 | 114,111 |
| Aug. 24... | 16,415 | 423,982 | 25.93 | 24.35 | 1.60 | 3,292 | 5,267 | 195,044 |
| Sept. 21... | 592 | 15, $\mathrm{SO}_{5}$ | 26.心 | 27.03 |  |  |  |  |
| Oct. 19... | 95 | 703 | 28.12 | 29.43 | -. 69 | 7 | 40 | 1,4si |
| Nov. 22. | 3 | 93 | 31.60 | 32.00 |  |  |  |  |
| Totals. | 26,246 | 063,372 | 25.35 | 19.54 |  | 8,947 | 44,673 | 1,654,595 |

An estimation made from table 5, page 19, of the author's report for 1919, shows that the loss due to 1,000 trollers fishing in the open sea was $1,631,333$ pounds on all Chinook over 5 pounds. This year's estimation shows that the loss on the fish taken by the same number of boats for all fish over 8 pounds
was $1,654,555$ pounds. It is probable that the entire loss was not less for 1920 than for 1919. It is interesting to compare the average weights of the fish caught by the different gears for the two years. The next table shows these weights.

TABLE 3. - AVERAGE WEIGH' OF CHINOOK SALMON CAUGHT HY DIFFERENT GEARS HOR 1919 AND 1820.


This table shows that there was a very marked increase in the average weight of the fish caught by all gears. It is probable that the average weight of those caught in the ocean would not have differed much for the two years if the Chinook salmon under 8 pounds taken by the trollers had been included in their catch. The foregoing tables tell a similar story to the report of the previous year. Of the $1,654,555$ pounds loss to the fishing industry through the taking of immature Chinook salmon by the trollers, $1,343,889$ pounds were lost through fishing operations before July 1, or to put it in other terms, over 81 per cent of the entire loss due to trolling was done before July 1.

## SMALL CHINOOK SALMON TAKEN IN THE COLUMBIA RIVER.

A number of reports were current that fishermen were taking large numbers of small Chinook salmon from the Columbia river above its mouth. These fish were reported to weigh $21 / 2$ to 3 pounds and were thought to be immature. The Doty Fish Company at Kalama furnished the author with a considerable number of these fish. They were weighed and examined as to their state of maturity. These fish averaged about 3 pounds in weight. All of them were males in their second year and their sex organs were nearly mature. These fish would go to the spawning grounds with the fall run of Chinook and would not outlive the breeding season. It is a wise move, therefore, to catch these fish and dispose of them for food, as they are not desirable for breeding purposes.

## the silver salaion taken at the mouth of the colunibia RIVER.

As is generally known, the silver salmon spawn in their third year. Their life in the ocean is comparatively brief, as the most of them enter the salt water in their second year. In the spring of their second year they are between 3 and 4 inches in length. They grow quite rapidly during their second summer, attaining a length of 6 to 14 inches. Their growth during their second winter is not very great so that when the spring of their third year arrives they are not more than 10 to 18 inches in length, and vary in weight between 8 ounces and one and one-half pounds. At the beginning
of the fishing season in April, these fish are rarely more than one and onehalf pounds, and as they mature in the fall of their third year, their growth during their last summer is very rapid. Silver salmon caught in the earlier part of the summer are not half grown, and when thus caught must be considered as contributing a big loss to the food supply of the state.

Observations at the mouth of the Columbia river were made on the catch of the same 27 trollers, whose records were obtalned for the Chinook salmon. As in the case of the Chinook, the daily records were obtained, but for this report the four weekly period is all that is given.

The following table shows the condition of silver salmon fishing, both inside and outside the mouth of the Columbia river.

TABLE 4. - SILVER SALMON TAKEN AT THE MOETH OF THE COLUMBIA RIVER.

| FOUR WEEKS ENDING | TROLLERS |  |  | GILL NETTERS |  |  | TRAPS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number | Weight | Average Weight | Number | Weight | Average Weight | Numbor | Weight | Average Weight |
| June 1... | 317 | 1,441 | 4.24 | 3 | 14 | 4.66 | 2 | 9 | 4.50 |
| June 29... | 2,034 | 11,677 | 5.74 | 54 | 330 | 6.11 | 13 | 67 | 5.15 |
| July 27... | 1,016 | 6,407 | 6.30 | 10 | 75 | 7.50 | 13 | 79 | 6.07 |
| Allg. 24... | 1,60S | 12,002 | 7.52 | 4 | 35 | 8.75 | 322 | 2,373 | 7.37 |
| Sopt. 21. | 7 | 52 | 7.43 |  |  |  | 103 | 713 | 6.92 |
| Oct. 19. |  |  |  |  |  |  | 208 | 1,901 | 9.52 |
| Nov. 22. | 840 | 9,378 | 11.05 |  |  |  | 225 | 2,125 | 9.44 |
| Totals. | 5.828 | 41,047 | 7.04 | 71 | 4.74 | 6.39 | 884 | 7,327 | 8.29 |

The number of silver salmon taken by the gill-netters inside the mouth is so small that the figures are of little use for comparative purposes, the total catch being but 71 fish for 25 gill net boats. Their small catch is due to the fact that the meshes of their nets are so large that silver salmon can readily pass through them.

The table shows that the trollers caught the largest number of silver salmon early in the season when the salmon were scarcely more than half grown. The traps which caught a considerable number of silver salmon did not make any showing until late in the season after the trollers had ceased to catch them in large numbers. The trollers caught practically 85 per cent of their catch before August 24 , while the traps caught nearly 61 per cent of theirs after this date. The average weight of the silver salmon caught after July 27 was 8.76 pounds. The loss to the fishing industry for 1920 due to fishing on the feeding banks of these fish is estimated on this base.

## TABLE 5, - SUMMARY SHOWING LOSS DUE TO TAKING OF IMMATCHE SILVER SALMON AT THE MOLTH OF THE COLUMBIA HIVER.

FOUR WEEKS
ENDING

This table shows that the trolling fleet at the mouth of the Columbia river is responsible for a loss of 443,483 pounds as a result of catching silver salmon before they were mature. It also shows that practically 63 per cent of the loss was due to fishing before July 1.

## PURSE SEINE FISHING AT THE MOUTH OF THE COLUMBIA RIVER.

Previous to 1920, a comparatively small number of purse seine boats operated in the neighborhood of the mouth of the Columbia river, but this year there were not less than 150 of them engaged in fishing on the shallow banks lying close to shore, both north and south of the river's mouth. The coast guardsmen at Lookout Point on the north side of the mouth of the river are required to keep, so far as they possibly can, an accurate record of all schooner-type vessels that enter and leave the river. Some days, on account of the thickness of the fog, it was impossible to get accurate counts, but the records are evidence enough that not less than 150 purse seine boats were operating off the mouth of the river. Their count on August 1st was 149 of these boats entering the river. The author counted 91 purse seine boats entering the river August 3 , between $8 \mathrm{a} . \mathrm{m}$. and $8 \mathrm{p} . \mathrm{m}$.

The method of fishing is quite different to that usually followed by purse seine boats. Usually the fishing is done in water of a greater depth than the nets. Under such conditions the circle of the net is completed as expeditiously as possible and the net pursed without delay. At the mouth of the Columbia river the fishing is done in quite shallow water. In fact nearly all of the fishing was done along the shore north of the jetty in water 6 to 8 fathoms deep, ana ranging from one-half mile to three or four miles from shore. Most of it was done close in shore. The method followed was to extend the net in a crescent at right angles to the flow of the tide. Throughout its entire length the lead line was on the bottom. The net was held in this position for about one hour, when the ends were slowly brought together. There was no haste in pursing the net as there was no possibility of the fish enclosed escaping. As the net was pursed, the lead line was dragged along the bottom and everything within the compass of the net was caught. Besides salmon there were bass, soles, flounders, skates, hake, dogfish, crabs and other forms of life.

It is certain that this method of fishing is very destructive to the fauna living on the bottom. The shore adjacent to where this flshing took place was thickly strewn with the remains of crabs. It was not possible to make extensive observations on the purse seine operations on the ocean, but the results of one may represent, to a fair degree, the results of all. August 10 was spent. on board one of these boats. The crew of this boat made four hauls with the net, resulting in the taking of 155 Chinook salmon. 48 of which were less than the size accepted by the canneries. Forty-one of the 48 were under 5 pounds in weight. A large per cent of the 41 were hung up in the meshes of the net and had nearly half of their scales rubbed off. A few of them were dead. Nearly all the small ones which were still living were returned to the water and disappeared from sight. When the desirable fish were taken from the pocket in the net, all the flsh that remained were turned free, probably not much the worse for being cauglit.

The efficiency of the purse seines in fishing along the coast is indicated by the record of a few days' fishing obtained at Tallant \& Grant's cannery.

TABI, 6 . - CATCH OF CHINOOK SALMON BY PIRENE SEINE BOATS.


These observations were made during that part of the fishing season when a comparatively small number of immature salmon were taken, yet if an estimate is made from the catch of one boat, August 10 , there must have been about 770 Chinook salmon caught which were less than 8 pounds in weight, so that the total catch of 27 purse seine boats fishing one day was 3,259 Chinook weighing about 65,000 jounds. Besides the Chinook, these boats delivered at the cannery over one ton of silver salmon, steelheads and sturgeon. The number taken by 100 of these boats in 100 days is easily estimated. The purse seine boat is the last word in efficiency for taking fish.

## FISHING AT CAPE FLATTEERY.

The fishing conditions on the ocean banks off the coast of Northern Washington and the adjacent coast of Vancouver Island were practically the same as for 1919. The fishing fleet consisted of about 500 trolling boats and a small number of purse seine boats. The nost of the fishing was done in a strip of water lying along the coast stretching from Destruction Island, fifty miles south of Cape Flattery, to Iarclay Sound, fifty miles north of Cape Flattery, and extending out from shore 10 to 12 miles. The depth of the water in this strip is from 20 to 50 fathoms. Most of the fishing was done rather close to shore. On the American side, much fishing was done within the three miles limit; while on the Canadian side, American fishermen are not permitted to fish within the three miles linit. Some fishing was done within the Juan de Fuca Strait, but the conditions are not so favorable for flshing as outside the strait; consequently, the fishing inside the Cape was of minor importance.

Through the courtesy of the officers of the Fishermen's Union Cannery at Port Angeles, the records of the daily catches of 100 trollers for the entire season were placed at our disposal. This group of fishermen represented practically one-fifth of the entire fleet fishing out from Neah Bay. The Fishermen's Union Cannery being located at Port Angeles more than 50 miles from Neah Bay, it was necessary to have a receiving scow at the latter place, where the fishermen delivered all their fish. At this scow the fish were weighed and packed with ice in standard boxes. From this scow the fish were taken to the cannery at Port Angeles by the company's boat.

During the earlier part of the fishing season the fishermen started for the fishing banks between 2 and 3 o'clock in the morning and returned the erening of the same day. The fish taken were delivered at the scow in the round. As the season advanced and fishing became poorer in the waters comparatively close to Neah Bay, niany of the fishermen extended their field of operations.
going so far from Neah Bay that it was impossible to return the same day they started out. When they could not return the same day, they usually prolonged the trip to three or even more days. On these protracted trips it was necessary to make proper provision for the preservation of their fish; accordingly, the fish were butchered and packed in boxes with enough ice to keep them in good condition until delivered at the receiving scow. As a result, the records show two groups of fish, one weighed in the round and the other butchered. In order to make the report unlform the average weight of those delivered in the round was used to estimate the weight in the round of those that had been butchered. The trollers catch, practically, only Chinook and silver salmon as these are the only members of the salmon genus that take the hook. These two species will be considered separately, the Chinook salmon being considered first.

## THE TAKING OF CHINOOK SALMON AT NEAH BAY.

The estimates will be made on the dally catches of the 100 trollers, and the entire feet wili be considered as consisting of 500 boats. Comparisons are made with the catch throughout the season of a number of traps located in different parts of the Puget Sound. It seems fairer to take the catch of these traps for the entire season rather than for the period during which the troliers caught the greatest number of immature fish. The average weight of the Chinook salmon taken throughout the season in thie Puget Sound is considerably less than that of the fish taken before the middle of July. The reports at our disposal of fish caught in the Puget Sound show tiat 21,721 red Chinook salmon averaged 20.48 pounds. The loss due to trollers taking immature salmon will be based on this as the average weight of mature Chinook salmon for the season 1920.

The following tables will show only totals for periods of one week and iour weeks, and the dates will correspond with those given in the previous year's report.

TABLE 7. - CHINOOK SALMON TAKEN BY TROLLERS AT NEAH BAY.
(Fish in the round.)

| WEEK ENDING | $\begin{aligned} & \text { Number } \\ & \text { Red } \\ & \text { Chinook } \end{aligned}$ | Weight | Average Weight | No. White Chinook | Weight | Average Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 24. | 117 | 930 | 7.95 | 10 | 147 | 14.7 |
| July 1. | 391 | 6,507 | 16.62 | 30 | 657 | $\underline{-1.9}$ |
| July 8 | 1,704 | 96,997 | 15.84 | 84 | 1,137 | 13.53 |
| July 15. | 3,048 | 46,402 | 15.22 | 401 | 8,254 | 20.58 |
|  | 5,960 | 80,830 | 15.36 | 525 | 10.19\% | 19.42 |
| July 29. | 678 | 12,856 | 18.90 | 178 | 3,693 | 20.76 |
| July 29. | 671 | 13,189 | 19.65 | 158 | 3,772 | 23.87 |
| Aug. 5. | 196 | 4,490 | 22.91 | 48 | 1,304 | 29.04 |
| Aug. 12. | 19 | 464 | 24.42 | 6 | 1222 | 37. |
|  | 1,564 | 30,999 | 19.82 | 390 | 9,083 | 23.29 |
| Aug. 19. | 50 | 907 | 18.14 | 12 | 415 | 34.58 |
| Aug. 26. | 24.5 | 4,961 | 20.25 | 74 | 1,863 | 25. 17 |
| Sept. 2. | 361 | 6,910 | 19.14 | 82 | 1,967 | 23.99 |
| Sopt. 9. | 97 | 1,865 | 19.22 | 29 | 671 | 23.14 |
|  | 73.3 | 14,643 | 19.44 | 197 | 4,916 | 94.95 |

This table shows the number of red and white Chinook that were delivered in the round at the receiving scow at Neah Bay. Column 4 gives the average weights of the reds and column 7 gives the average weights of the whites. It is interesting to note that the whites all through the season weighed much more than the reds.

The following table will show the entire number of Chinook salmon, both red and white, taken by 100 trollers for the season, and also the weights estimated on the average weights of fish taken in the round for the weekly period.

TABLE 8.-TOTAL NUMBEK OF CHINOOK SALION TAKEN BY 1OO TROLLERS AT NEAE BAY.

| WEEK ENDING | Number Ked Chinook | Weight | Average Weight | No. White Chinook | Weight | Average Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| June 24. | 117 | 930 | 7.95 | 10 | 147 | 14.7 |
| Tuly 1. | 500 | 8,460 | 16.62 | 49 | 1,07.3 | 21.9 |
| July 8 . | 2,927 | 46,344 | 15.84 | 178 | 2,4ik | 13.73 |
| July 15. | 3,048 | +6,390 | 15.29 | 401 | 8,2,3 | 30.53 |
|  | 6,601 | 112.14 | 15.47 | 638 | 11,881 | 12.fi |
| Tuly 22. | 2,111 | 40,025 | 18.90 | 477 | 9,903 | 20.76 |
| July 20. | 2,775 | . 4,0 (2) | 19.63 | 302 | 9,357 | 23.85 |
| Ang. 5. | 935; | 21,444 | 29.91 | 210 | 6,009 | 09.04 |
| Aug. 12. | 237 | \%,787 | 24.42 | 59 | 2,183 | 37. |
|  | 6,059 | 101,485 | 20.09 | 1.138 | 27,541 | 24.20 |
| Aug. 19. | 209 | 3,701 | 18.14 | 05 | 2,248 | 34.58 |
| Aug. 2 , | 1,864 | 37,746 | 20.25 | 420 | 10,5i1 | 25.17 |
| Sopt. 2. | 1,859 | 36,1\%) | 19.14 | 3-0 | 8,307 | 23.9 |
| Srpt. 9 | 168 | 3,2,2) | 19.22 | 35 | 810 | 2:3.14 |
|  | 4,130 | S0, 921 | 19.59 | 850 | 29,006 | 05.30 |

This table is a statement of all the Chinook salmon taken by 100 trollers who delivered fish to the Union scow at Neah Bay. It shows the number taken each week and the totals for each four weeks period. The third column gives the weights of those delivered in the round and the estimated weights of the butchered. The fourth column gives the average weight of the fish for each week, based on the weight of those delivered in the round. The fifth, sixth and seventh columns give the corresponding figures for the white Chinook salmon caught by the same trollers.

## ESTIMATED LOSS.

The loss due to taking many of these salmon before maturity is estimated on the assumption that these fish, if left until.mature, would have averaged 20.48 pounds, which is probably less than they would have weighed. On this basis, the following table shows the loss for red Chinook salmon, the loss for the white Chinook salmon being so small as to be of little importance.

TAABLE D. -LOSS ON RED CHINOOK SALMON TAKEN AT NEAH BAE.


This table shows a loss sustained by the fisheries of the state of 195,550 pounds due to taking immature Chinook salmon by trolling on the feeding banks near Cape Flattery. Another important fact brought out by the table is that a very great part of the loss was due to fishing before July 15 . A comparison with the report for 1919 shows a similar relation. In 1919 the per cent of loss before July 15 was 57.9 of the entire loss for that year, while this year 84.5 per cent of the entire loss was due to fishing before July 15.

## THE TAKING OF SIIVER SALMON BY THE TROLLERS AT NEAH BAY.

The silver salmon, as already stated, mature in their third year and grow so rapidly during their third summer that they are four to five times as heavy when they are ready to go to the spawning beds in October as they were in April of the same year; consequently, to catch them in the early part of the season means a very great loss. The trollers at Neah Bay caught large numbers of these fish throughout the season, but the heaviest catch was taken in the earlier part of the season, and therefore, attended with the greatest loss.

The only way to estimate the loss through taking silyer salmon before they are mature is to compare the weight of the fish caught in the earlier part of the season with the weight of those caught at the time the silver salmon are mature. Silver salmon taken by the trollers after August 26 th had an average weight of 9.67 pounds. This average is based on 3,128 fish having a total weight of 30,258 pounds, and is used as a basis for estimating the loss due to taking the fish before fully grown. These fish taken in the earlier part of the season are not nearly so fat as those taken at the end of the season, and therefore do not make nearly so desirable a canned product.

The silver salmon as caught at Neah Bay were subject to the same fishing conditions as the Chinook, so that many of them were delivered to the cannery butchered and it. is necessary, for this report, to estimate their weight in the round. Consequently, in the two following tables we have recorded, in the first, the weekly catch of silver salmon in the round, while in the second we have the estimated weight of the entire weekly catch.

TABLE 10 - THE CATCH OF SILVER SALMON AT NFAH BAV BY TROLIERS. (In the round.)

| WEEK ENDING | Numbrer Silvers | Weight | Average Weight |
| :---: | :---: | :---: | :---: |
| June 24. | 335 | 1,607 | 5.06 |
| Italy 1. | 1.16i | 7,195 | 6.17 |
| July 9. | $\underline{-339}$ | 13,163 | 5.63 |
| July 15. | 5,674 | 30,302 | 5.36 |
|  | 9.313 | 82,47 | 5.51 |
| July 22. | 1, Ans | 10.82x | 6.73 |
| July 22. | 987 | 6.747 | 7.07 |
| Aug. ${ }^{\text {a }}$ | 1,276 | 8.59\% | 6.97 |
| Alug. 12. | 63 | 48 C | 7.74 |
|  | 3,904 | 26,962 | 6.91 |
| Aug. 19. | 27.7 | Q,072 | 7.53 |
| Aug. 26. | 1,618 | 11,953 | 7.38 |
| Sept. 9. | 2,310 | $\underline{23}$ | 9.75 |
| Sopt. 9. | 818 | 7,73s | 9.45 |
|  | 5,021 | 44,285 | 8.82 |

TABLE 11- THE ENTIRE CATCH OF SILVER SALMON AT NEAH BAY BE 1MO THOLLERS.


A comparison of these tables shows that more than half of the fish were butchered. This fact adds a possible factor of error, but since over 18,000 were in the round, the error cannot be of such a size as to materially affect the results.- Table 11 shows that the taking of the fish was distributed, so far as numbers are concerned, fairly uniformly over the entire season.

Those taken at the last oî the season were nearly twice as heavy as those taken at the beginning of the season. The next table, compiled from table 11,
will show the loss due to taking the fish in the earlier part of the season. The average weight, 9.67 pounds, of the fish after August 26 is taken as the basis for estimating the loss.

TABLE 12. SHOWING LOSS DUE TO TAKING LMMATURE SILVER SALMON AT NEAH BAY BY 100 TRROLLERS.

| FOUR WEEKS ENDING | Number Silver Sylmon | Average Weight | Average Loss in Pounds | Loss to 100 Trollers | Fstimated <br> Loss to Fleet of 50 Boats |
| :---: | :---: | :---: | :---: | :---: | :---: |
| July 15. | 11,401 | 5.51 | 4.18 | 47,428 | 237,140 |
| Aug. 12. | 13,080 | 6.91 | 2.76 | 36,101 | 180,505 |
| Aug. 30. | 4,981 | 7.40 | 2.27 | 11,307 | 56,535 |
|  | 2,462 |  |  | 94,836 | 474,180 |

This table shows a total loss of 474,180 pounds silver salmon as a result of trolling on the feeding banks at the mouth of the Juan de Fuca Strait. Onehalf of the loss resulted from fishing before July 15.

## FISHING IN PUGET SOUND.

During the spring fishing season following April 15, a similar inexcusable slaughter of immature salmon took place around the southern end of Whidby island that has taken place there for years. The principal loss was due to taking silver salmon in their third year. At this time of the year the silver salmon do not average one and one-half pounds. These fish would weigh on the average at least five times as much at maturity, and as many tons of these fish were taken, the loss was not less than four tons for every ton taken by the fishermen. A smaller number of young Chinook salmon are taken at the same time with the silver salmon. On these the proportionate loss is even greater.

With the present serious condition facing one of the most important industries of the state, this slaughter of young salmon should be stopped at once.

## SUMMARY.

The taking of immature salmon for commercial purposes in the waters of the State of Washington presents very similar conditions and results to those of the previous year.

The action of the canners of the Columbia river in refusing to purchase any Chinook salmon under 8 pounds in weight modifies the results as shown in this report, but probably does not alter them much in fact, for in all probability the proportion of fish under 8 pounds taken by the trollers was as great as during the previous season.

There was a very great increase in the number of purse seine boats operating at the mouth of the Columbia river during the 1920 season over the number fishing during the 1919 season.

The loss through taking immature Chinook ealmon outside the mouth of the Columbia river over 8 pounds in weight, was 44,673 pounds for 27 trollers and the estimated loss for the fleet was $1,654,555$ pounds. Of this loss 81 per cent was due to fishing before July 1.

The loss through taking immature silver salmon in the ocean at the mouth of the Columbia river by 27 trollers was 11,974 pounds, and the estimated loss for the fleet was 443,483 pounds.

While it is impossible to estimate the loss due to purse seine boats taking immature salmon in these waters, there is not a doubt but that the total loss caused by them was much greater than that of the trolling fleet, as their total catch was very much larger than that of the trollers.

At Neah Bay 100 trollers took during the season 16,780 red Chinook salmon, which brought about a loss of 39,110 pounds through many of them being immature. The estimated loss for the entire fleet for the season was 195,550 pounds of red Chinook salmon. At least 84 per cent of this loss was due to fishing before July 15 . The loss due to taking immature white Chinook salmon was insignificant.

Previous to August 26, the 100 trollers of the Union fleet took 29,462 silver salmon, which resulted in a loss of 94,836 pounds, and by estimation the loss to the entire trolling fleet for the season was 474,180 pounds through taking silver salmon before mature.

As in the previous year, the most inexcusable waste was in Puget Sound around the south end of Whidby Island, where four to flve tons were lost for every one that was caught.

The present status of the salmon fishing industry is such that everything possible should be done to prevent loss through taking of immature salmon.


This picture shows how salmon eggs are secured and fertilized in a State hatchery. With the exception of the Steelhead, all salmon die after naturally depositing their spawn, so the salmon are killed before the eggs are taken from them, thus diminishing the egg loss. Scene at Chehalis Salmon Hatchery, Satsop, Mason County.

# FISH CULTURE METHODS IN WASHINGTON STATE HATCHERIES 

Prepared at request of<br>I. H. DARWIN, State Fish Commissioner, By E. VICTOR SMITH, University of Washington.

The growth of the fisheries industry furnishes a remarkably interesting page in the history of the commercial development of the Pacific Northwest. The importance of the industry may be readily appreciated when one considers the development of the salmon canning part of it. The canning of salmon began on the Sacramento River, Cal., in 1864 , with an output of 96,000 pounds. From this small beginning the pack has increased until in 1917 there were more than $485,000,000$ pounds canned.

The ever increasing demand for this article of food, coupled with the steady advance in prices has caused the industry to be exploited to such a degree that there is grave danger of its being ruined. Appreciation of this danger has led the states and territories interested to put forth strenuous efforts to conserve this important resource. Legal measures have been enacted to regulate the taking of salmon and to protect their spawning grounds. These measures have been attended with some degree of success. But by far the most important movement for the maintenance of the salmon fisheries has been the establishment of hatcheries and rearing ponds for the artificial propagation and care of the young salmon.

Hatchery operations were first undertaken on the Pacific Coast of America by the United States Bureau of Fisheries in 1872 . The McCloud River, California, was chosen as the stream on which to make the first experiment in artificial propagation of the salmon. The total output for the year was 50,000 eggs, of which, owing to high temperature, 20,000 ware lost. The remaining 30,000 were shipped east, all of which perished, except 7,000 fry which were planted in the Susquehanna River, Pennsylvania. From this rather discouraging beginning the industry has grown until in 1915 the total number of fry planted in the Pacific coastal streams was over 500,000,000.

The State of Washington began this industry in 1896 with an output of $4,500,000$ chinook fry. Washington has shown a most remarkable growth in this important field. In 1915 the total output of fry for the state was over $245,600,000$, or nearly half the entire output for the Pacific Coast of America. Of this number $131,510,000$ were produced by the hatcheries owned and operated by the state, while about $114,090,000$ were produced by the hatcheries belonging to the United States Bureau of Fisheries. In 1917 the state had increased its operations considerably, taking a total of $173,325,925$ eggs. The State of Washington has constructed 36 hatcheries, which are distributed on the most important spawning streams of the state.

## THE FISH OF IMPORTANCE TO THE CELTURIST.

[^0]therefore, of interest to the culturist. The largest and most valuable is the chinook salmon ( $O$. tschawytscha), also called king, spring, tyee, quinnat, Sacramento River and Columbia River Salmon. The next in importance is the Sockeye or blueback salmon (O. nerka), known in Alaska as red salmon. The others in order of importance are the silver or coho salmon ( 0 . kisutch), the humpback, or pink salmon ( $O$. gorbuscha), and the dog salmon or chum (O. keta). Other members of the family Salmonidae that are of interest either commercially or from the sportsman's standpoint, and consequently of importance to the fish culturist are the steelhead trout (S. gardneri), the cutthroat trout (S. clarkii), and the rainbow trout (S. iridens). These belong to the genus Salmo. One other of the Salmonidae must be considered with those already mentioned, the eastern brook or speckled trout ( S . fontinalis) belonging to the genus Salvelinus. This interesting and gamy fish has been introduced from the east and promises much for the western sportsman. There are numerous trouts known by other names in the streams and lakes of Washington but they are varieties of those already mentioned.

## NATURAL PROPAGATION.

The salmon, which are anadromous fishes, i. e., run into fresh water to spawn, complete the major part of their growth in the ocean and at maturity seek their spawning beds in the upper waters of the rivers and streams flowing into salt water. All of the species seek gravel beds in which to spawn, where the water is comparatively shallow and flows rather swiftly. Some of the fish run hundreds of miles up stream before they spawn, others may enter very short streams and spawn within a few miles of the salt water. On starting for the spawning beds they cease to feed and continue fasting until they have completed the spawning act when they die. Thus, the salmon spawn but once in their life time. While some of the trouts are anadromous and others are not, they differ from the salmon in that they spawn a number of times.

The salmon, on their arrival at the spawning beds, wait for a longer or shorter period until the eggs and milt are ripe. In ripening, certain changes take place which prepare both eggs and sperm for the fertilizing process. At the same time the tissues of the ovaries disintegrate and permit the separation of the eggs from the stroma, so that the eggs may be readily extruded from the body. A similar change takes place in the spermaries which permits the easy escape of the sperm.

As soon as the eggs are ripe the spawning process begins. The female selects a gravelly spot at the upper end of a riffle where the current is strong. Here she turns over on her side, dips her tail into the gravel, and during swift undulatory motions of the body, extrudes a few eggs which lodge in the crevices of the gravel. She then moves away and the male takes her place and extrudes a small quantity of milt. It is said that this process is kept up at irregular intervals for about two weeks by each pair of chinook salmon before spawning is complete. After the spawning is ended, the flsh are completely exhausted and soon after die. There is no authentic record of a salmon ever spawning twice.


## WASTEFULNESS OF NATURAL PROPAGATION.

The question naturally arises as to the advantage of the artificial method of propagation over the natural method. As the country becomes settled the natural spawning beds of the salmon and trout are rendered less and less productive, because of the increasingly unfavorable conditions incident to the commercial enterprises along the rivers and streams. It is imperative, therefore, that some means be adopted to counteract the depletions arising from this source; but the most important reason for the artificial propagation is the fact that the natural method is extremely wasteful, which is not true of the artificial method. The average number of eggs deposited by the females of the five species of salmon is about 4,000 . Were it not for very great losses, the increase in the number of these flshes would be so enormous that in a few years there would not be food enough to keep them from starving by myriads. The greatest loss comes, without doubt, in the earliest stages of development. While there is much work to be done in determining the efficiency of natural propagation, yet enough has been done to show that the losses are very great during the first three or four months of development. In natural spawning Rutter estimates that at least 15 per cent of the eggs are not fertilized. This loss, he says, is small compared to the number destroyed before the hatching period. A considerable number of eggs is destroyed by the movement of the fish and gravel incident to spawning, a larger number is devoured by predatory fishes which abound in the spawning streams, and a still larger number is buried so deeply by the shifting gravel and sand, due to the winter's freshets, that they are smothered; or, if hatched, the young are not able to make their way to the surface. Again, many eggs are buried not more than three to four inches in the gravel, so when these hatch the young struggle to the surface long before the yolk sac is absorbed, and being of a bright attractive color and exceedingly helpless, they soon become the prey of voracious enemies. So it is probable that not 15 per cent of the eggs produce fry that reach the stage of complete yolk-sac absorption.

## ARTIFICIAL METHOD.

By the artificial method of propagation practically all the agencies so destructive to the salmon in their early stages of development under natural conditions are eliminated, and by the use of the most improved modern methods more than 90 per cent of the eggs may be hatched out and the young fish brought to the stage of complete yolk-sac absorption.

## METHOD OF SECURING FISH FOR SPAWNING.

The hatcheries are built as near to the mouth of the spawning streams as is feasible in order to get the fish before they begin to spawn. At the most favorable place in the vicinity of the hatchery a rack is constructed across the stream in order to arrest the farther migration of the fish up stream. This rack is a temporary structure of strips of wood fastened about one and one-half inches apart to stringers placed across the stream. The whole structure is supported in place by tripods weighted down with stones. At some distance below this rack another one is built across the stream. In it are placed openings constructed in such a way that the fish
readily find their way up through them, but are not able to find their way back. In this area of the stream between the racks the fish are retained until they are ripe.

Various methods are used for taking the fish from this inclosure. One method is to build above the upper rack traps which have openings leading into them through the rack. These traps have floors constructed of slats which may be raised or lowered. While fishing, the fioor is lowered and the lead through the rack is open. When it is desired to spawn the fish in the trap, the lead through the rack is closed and the floor is raised until the fish are partly out of the water. The hatchery men are then able to take the fish with ease. This method is used on the streams where a comparatively small number of fish are spawned daily. Such traps are used at the Green River hatchery near Auburn, Washington, and other places. Where large numbers of fish are to be spawned the drag seine is used. This net is swept through the river below the upper rack and the fish are brought into shallow water near the shore where they can be readily handled by the men. At Kalama, Wind River, and other places, platforms of slats are constructed in a shallow part of the river, down stream from the place where the seining is done. The platform is so arranged that it is easy to haul the seine with its catch of fish on to it, and as there is not more than one or two inches of water on this platform, the fish are rendered helpless and can be easily taken care of by the operators. The ripe males and females are quickly separated from the unripe, the latter being returned to the river, and the former retained for immediate spawning. The experienced spawn taker can as a rule tell by a look at the female whether she is ripe or not, but ordinarily he determines this by feeling the abdomen to determine whether the eggs are free or not. To get the best results, the fish should be perfectly ripe, otherwise a considerable number of the eggs will adhere to the tissues of the ovaries and the fertilization of those taken will not be as complete as if the female were dead ripe.

## SPAWNING.

In the earlier years the method of taking the eggs was by a process called stripping. The ripe female having been captured and held carefully until she ceased to struggle, the operator then grasped the fish by the tail with his left hand, and held her body firmly between his left arm and his own body with the head high under his arm, and the tail pointing in a downward direction. He then proceeded to press out the eggs with a steady downward pressure along the abdomen, the stroke beginning just posterior to the pectoral fins and continuing to the vent. Several strokes were usually required before the operation was complete. The eggs were received in a moistened pan in which they were fertilized. By this method about 1 per cent of the eggs were destroyed by the pressure and on an average about 15 per cent remained in the female after the most skilled operator had finished his work. The stripping method of spawning salmon has been discontinued for several years, or since the incumbency of State Fish Commissioner L. H. Darwin, and is used only in taking the eggs of fish that spawn more than once in a lifetime.

Since the salmon spawns but once and then dies there is no necessity for preserving its life, so the stripping method has been superseded by the
method of incision. By this method the female is killed by a vigorous blow on the head with a club. The fish is then bled either by cutting the aorta just ventral to the gills, or by partially severing the head by cutting down from the dorsal surface until the dorsal aorta is severed. The bleeding is done in order to prevent the mixture of the blood with the eggs when the abdomen is opened, as much blood, when mixed with the eggs, interferes with their fertilization, probably because the blood clots around the eggs and prevents the access of the sperm. After the female has been thoroughly bled, the operator carefully slits the abdominal wall from the vent to the pectoral girdles, care being taken not to cut deeper than necessary, as the cutting of many eggs would liberate enough yolk material to interfere with the best fertilization. As soon as the incision is begun the eggs run out


Racks at Green River Hatchery near Auburn, Wash.
into a moist pan placed to receive them. On the completion of the incision the operator inserts his hand into the abdomen and gently shakes the remaining eggs loose from the meshes of the disintegrating ovaries. Eggs that adhere tightly to the ovaries should not be forcibly removed, as they are not ripe.

## PROCESS OF FERTILIZATION.

In fertilization the main object is to bring the milt and eggs into contact as quickly as possible after they leave the body of the fish. Therefore, immediately after the eggs have been received in the spawning pan, one of the operators takes a ripe male and by a method similar to that used in stripping a female, forces the milt directly into the pan of eggs. The eggs are then gently stirred by the hand until the milt is thoroughly mixed with them. This may be facilitated by adding a little water to the pan after the milt has been introduced. At least an ounce of milt should be used to every

4,000 eggs. The eggs are aimost instantly impregnated and washing may begin immediately after the germinal elements are thoroughly mixed. The washing is done by dipping the pan containing the eggs into the river until it is nearly full, then as soon as the eggs settle to the bottom, the water is carefully poured off. This process is repeated until all signs of milt have disappeared. The pans are now nearly filled with water and placed in racks, so that the lower half of the pan is in the water of the river. The eggs remain undisturbed for the next two hours during which the hardening process takes place. During this period the eggs are in such a delicate condition that the slightest disturbance is likely to cause injury. After the eggs have absorbed water until quite hard they are ready for removal to the hatchery.

Rutter has shown the importance of the time factor in the fertilization process. When mixed with water both eggs and sperm quickly lose their vitality. Rutter mixed fresh milt with water and then at intervals, portions of the mixture were used to fertilize freshly spawned eggs. He tablulated the following significant results:


Eggs are not rendered nonfertilizable when placed in water quite so quickly as sperm. yet quickly enough to make it important that the fertilizing take place as quickly as possible after the eggs and sperm are extruded from the body.

Rutter's experiment with the eggs was similar to that with sperm. Eggs were mixed with water and at intervals portions of them were mixed with fresh milt. The following table shows the results:

Time eggs had been in water.
$\begin{array}{ll}0.25 & \text { minute } \\ 0.5 & " \\ 1 & 4 \\ 2 & 4 \\ 3 & 4 \\ 4 & 4\end{array}$

Percentage of egss fertilized. 4.
9.

95

It has been shown experimentally that if the milt and eggs were not mixed with water the vitality was retained for a much longer time. Milt kept in an open large-mouthed bottle was capable after 24 hours of fertilizing 74 per cent of the eggs with which it was mixed. Eggs exposed to the air in open pans but kept moist by the fluid of the body cavity were uninjured at the end of 30 minutes, as 99 per cent were fertilized when mixed with fresh milt. These and other experiments showed that water was not essential to fertilization, consequently the dry method. of fertilization. as it is called, is the one now almost universally used. The outstanding and important conclusion resulting from all experiments and observations is that the milt and eggs should be brought together as quickly as possible after they leave the bodies of the parent fish.

## TRANSPORTATION OF EGGS AFTER FERTILIZATION.

It has been the general belief until recently that eggs after fertilizatiu? could not be transported any considerable distance without great danger to them, consequently the practice has been to do the spawning as near as pos-

$$
-4
$$



Traps for Taking Stellleads at Dateros
sible to the hatchery, and that the eggs be carried thither with the greatest care. The method pursued was to attach the trays to yokes which were borne on the shoulders of the hatchery employees. It has been demonstrated conclusively by the Fisherles Department of the State of Washington (1913 to 1919) that these precautions were altogether unnecessary and that the eggs may be carrled a considerable distance in automobiles over comparatively rough roads without appreciable injury.

The custom at the present time in the State of Washington is to seek the best possible spawning grounds without particular reference to their proximity to the hatcheries. At Kalama, for example, the most satisfactory place for taking the fish is four miles down stream from the hatchery. The racks are constructed at this place and all the work of spawning carried out. After the eggs are hardened they are put into the hatchery baskets. First a water-soaked gunny sack is spread over the bottom and along the sides of the basket, then about 30,000 eggs are.placed in it and covered with another wet sack. The baskets are then placed in boxes which are made to hold six of them. The boxes are then transported in an automobile truck over the four miles of rough country road to the hatchery, where the gunny sacks are removed and baskets placed in the hatchery troughs. The results are found to be highly satisfactory, as no appreciable injury is done to the eggs. The adoption of this method of transportation has simplifled a difficult problem found at more than one of the hatcheries of the state.

To test the ability of the eggs to be safely shipped for considerable distances at this stage of development, State Fish Commissioner Darwin had 30,000 eggs placed in a basket as described above and packed carefully in a box. This box was shipped by express from Kalama on the Columbia River to Bellingham. No marking of any kind was put on the box to indicate the contents or that any special care should be taken in handling it. It was found that practically no harm had been done to the eggs in transportation.

The author of this paper had a somewhat similar experience in transporting eggs. About 10,000 chinook eggs were spawned at the Green River hatchery and were allowed less than one hour to harden, when they were put on canton flannel trays and packed in a box. They were then transported by automobile to the University of Washington, Seattle, a distance of about 25 miles. The automobile was driven rapidly so that the box containing the eggs was frequently severely jolted, but no serious injury was done to the eggs.

## HATCHERY AND ITS EQUIPMENT.

The hatcheries are, for the most part, substantially constructed buildings, varying in size according to the number of eggs obtainable from the rivers on which they are located. Each hatchery usually consists of one very large room and one or more small ones. The large room is the hatchery proper and is filled to its capacity with hatching troughs. These troughs are usually 16 feet long with an inside width of 12 and a depth of 6 inches. They are arranged in pairs, with two or three pairs placed end to end in such a way that the water has a fall of three or four inches from the upper trough to the one next below. Each trough is divided into compartments about 26 inches in length by pairs of galvanized iron plates placed two
inches apart and known as riffle boards. These are so arranged that the upper plate of each pair forms a partition across the trough reaching from the bottom to about one inch from the top of the trough, while the lower one reaches from the top to within an inch of the bottom. This arrangement causes the water to flow over the upper and under the lower plate so that the water enters each compartment at the bottom of the trough at one end and leaves it at the top of the trough at the other end. The water is thus forced to flow upward through the basket giving the best possible supply to the eggs.

In these compartments are placed the hatching baskets. Each basket is about twenty-four inches long, 11 wide and 5 deep. They are made of woven wire with rectangular meshes five-eighths inch in length and varying in width, depending on the size of the eggs to be hatched in them. The eggs vary in size from those of the chinook, which are four-sixteenths to five-sixteenths of an inch in diameter, to those of the trout, which are about


Fis. 1. A vertical section of hatching trough, showing the arrangement of riffle boarcls. Bent arrows indicate the flow of the water.
one-lalf of this diameter. The basket is supported in such a way that its bottom is about an inch above that of the trough.

The hatcheries of the state are provided with the means of excluding light from the hatching troughs. It has been found that the embryos and fry do not thrive nearly so well in the light as they do in the dark.

## WATER SUPIDLY.

An abundant and constant supply of the purest and most highly aerated water is necessary for the best results in fish culture. A river or stream with a rocky or gravelly bed in which the water is churned into foam by passing over falls or rapids will furnish the most highly aerated water, and the more highly aerated the water is the smaller the volume required to do a given amount of work. If the water cannot be well aerated it will be necessary to supply a proportionately larger quantity. Under favorable conditions not less than 3 to 4 gallons per minute should be allowed for each $100,000 \mathrm{eggs}$. In the hatcheries the aeration of the water is improved by causing the water to fall in thin sheets into the troughs.

Owing to the fact that there is always more or less sediment in river water and during times of freshets it is heavily charged with foreign matter, it has been found imperative to construct settling or filtering tanks through which the water passes before entering the hatching troughs. These tanks are arranged with screens, where necessary, to separate the lighter material, and are of such a size that the heavier material has plenty of time to settle out hefore the water reaches the overflow to the hatchery.

## CARE OF THE EGGS.

It takes about six weeks for the eggs to hatch out, but the temperature is an important factor affecting the time. The colder the water the longer the time required for hatching. If the water is very cold the time may be lengthened by several weeks; on the other hand, the time is considerably shortened by a high temperature. The best results are obtained when the water is comparatively cold and constant in temperature.

During the period of development it is essential to successful results that the eggs be kept as clean as possible, that they be handled with proper care, and that they are supplied with an abundance of pure, well-aerated water.

Within 24 hours after the eggs have been placed in the hatching troughs the non-fertilized and the injured begin to turn white. These are removed each day by using a pair of tweezers, made of any convenient wood, the ends of which are tipped with a pair of wire loops of a convenient size for holding the eggs. During the first five or six days the eggs may be handled freely without danger, and during this period nearly all the bad eggs will have appeared and been removed.

It is conceded by all fish culturists that a critical period begins in the life of the embryo about the 5th or 6th day, which lasts for about two weeks. During this time the embryo is much more liable to suffer injury than at any other stage of its development; consequently, the custom has arisen of leaving the eggs absolutely untouched for this period. During these two weeks the eggs frequently become deeply covered with sediment, sometimes to such an extent that many of them are smothered. Again, it not infrequently happens that disease in the form of a fungus attacks the eggs and causes a very considerable mortality. In the State of Washington the hatchery men no longer neglect the eggs during this critical period but gently stir them up each day and remove all dead and diseased eggs. Their method is to gently raise the basket until the eggs are near the surface of the water, then to quickly lower the basket into its original place. The eggs settle down in a new position and the sediment passes through to the bottom of the trougl. It has been found that by this new procedure the eggs suffer much less than when left untouched during this period. This movement of the eggs brings about a much better and more uniform aeration; all danger of suffocation is eliminated; the picking of the dead eggs removes the foci from which frectuently spreads epidemics of fungous disease; and the young embryos develop more uniformly and are more uniformly strong and healthy.

After the critical stage has passed which is indicated by the presence of the black eye spots in the embryo, the baskets are removed while the troughs are thoroughly cleansed. The daily movement of the eggs and the removal of the dead ones are continued until the time of hatching which is three or more weeks later, depending on the temperature of the water. The extreme care in handling noed not be observed after the eye spots have appeared, as the enbryos have entered on a stage in which they are much hardier.
L. E. Baldridge of the Yes Bay station, Alaska, has developed to a high degree of efficiency a method of separating the dead eggs from the living.
and which is a great labor saver when there are large numbers of dead eggs to be removed. A brief description of this method follows: A tank, 4 feet long, $21 / 2$ feet wide, and 10 inches deep, is filled with a salt solution of such density that the living eggs sink in it and the dead ones float. The baskets of eggs are gently lowered into this solution and the floating dead eggs are carefully skimmed off; then the basket is lifted out and replaced in the hatching trough. It requires considerable skill in preparing the solution as there is but a very slight difference between the specific gravity of the living and the dead eggs. A full description of this method is given in document No. 766 , published by the United States Bureau of Fisheries.

In the Washington state hatcheries this method is used only when accident or disease causes an unusual mortality among the eggs. By observing


Salmon fry shortly after hatching.
strict care and cleanliness and working the eggs over daily throughout the critical period the mortality is kept so low that very little labor is required in removing the dead eggs. There are possible advantages in giving the saline bath to the eggs, as it tends to prevent fungous growth and seems to stimulate the eggs, giving them a brighter, healthier appearance.

The hatching period covers nearly two weeks. The number hatched the first four or five days is usually small, then the rate of hatching increases very materially. After the young fish leave their shells they wriggle about until they work their way through the meshes of the basket and then drop to the bottom of the trough. Many of the shells are removed during the hatching period; on the completion of this period the baskets are taken out, all shells removed and the troughs made as clean as possible. About the
time the baskets are removed, each pair of riffle boards is replaced by a single perforated sheet of metal which makes a complete partition from the bottom to the top of the trough. This plate permits a ready flow of water through it but serves to keep the fry from crowding too much in one part of the trough and smothering one another as they would if all were allowed the freedom of the trough.

For the first ten or twelve days the fry he in a comparatively helpless condition on the bottom of the trough, after this they begin to swim up and soon distribute themselves throughout the water.

The young fry, during the first six or seven weeks, obtain their nourishment from the contents of the ventral yolk sac. During this period they make no attempt to take any other nourishment. As the yolk approaches absorption hunger drives them to seek food. The practice among fish culturists during the earlier years was to liberate the fry at the time of complete yolk-sac absorption, and permit them to seek their natural food which consisted of small water crustaceans and insect larvae.

## FEEDING THE FRY.

Observation has shown that fry liberated about the time of complete yolk absorption were weak and sluggish in their movements and not able to escape the ravages of numerous voracious enemies, consequently large numbers of them were destroyed. As a result of this discovery rearing ponds of various kinds have been constructed in connection with the hatcheries in which the fry are retained and fed until they are better able to take care of themselves.

At some places sections of small streams in the vicinity of the hatcheries have been enclosed by dams and used as rearing ponds; at other places artificial ponds of concrete have been constructed for this purpose. Some of them are under cover, others are exposed to the light. One of the most modern types of rearing ponds or tanks is at the state trout hatchery near Walla Walla. These tanks were designed by Mr. Mayhall, state superintendent of hatcheries. They are constructed of reinforced concrete, are square on the outside and round on the inside. They are six feet in diameter and 16 inches deep. The water is delivered to them from a trough running above them, and is supplied in such a way as to give it a rotary motion in the tanks. The outlet from each tank is through a pipe placed in the center, and which stands up from the bottom about 12 inches. There are 40 of these tanks in the hatchery, which have a total capacity of 400,000 trout fry. As the conditions under which this type of rearing equipment are so completely under the control of the operator the results obtainable should be of the best kind.

FOOD.
Almost every kind or food available has been used with very varied results. The food ordinarily obtained in nature by the fish themselves, as small water crustaceans and insect larvae, gives the best results, but this is too difficult and expensive to get. Finely ground, raw liver has given the best results of any of the easily obtained foods, but the high price has made it prohibitive. Fair results have been obtained by using the preserved, spawned-out salmon. These fish, after being spawned, were salted down and
packed in barrels until needed. When food was to be prepared some of these salted salmon were soaked for several days until all the salt had been removed. They were then thoroughly cooked with some wheat middlings, and before feeding ground as finely as possible, more recently the canned salmon known as "do-overs" has been extensively used. "Do-overs" is a term applied to cans of salmon which have been found defectively sealed after the first cooking and require after being resealed to be processed a second time in order to preserve them.

Carefully conducted experiments, by the author of this paper, show that this doubly cooked salmon gives but indifferent results, the young salmon not thriving on it nearly so well as those which were fed fresh salmon.

TRANSPORTATION OF EGGS AND FRY.
Shipping of fry is avoided as much as possible, as they require constant attention during the period of transit. When it is necessary to ship fry


Kalama hatchery. Covered rearing ponds on the left and hatchery on the right of the road.
they are placed in large cans of water (large milk cans serve the purpose well) and kept as cool as possible by the use of ice. In order to supply the amount of air necessary to keep them alive the attendants must, every few minutes, dip up water from the cans and let it fall from a considerable height back into the cans. The falling water absorbs a considerable amount of oxygen and at the same time carries much air in the form of bubbles to the bottom of the can. On arriving at their destination care must be taken that the fish are not changed to water that is much different in temperature, as sudden changes in temperature have a very harmful effect upon the fish.

Eggs just fertilized are seldom transported farther than from the spawning grounds to the nearest hatchery. When it is necessary to make
shipments for a considerable distance, the eggs are placed in cans of water kept as cool as possible with ice. At this stage of development there is little danger of their suffering for lack of air, as the germinal cells require a very small amount to keep them alive.

The best time for distribution of eggs is when the embryos are in the eyeing stage. At this period of development they are hardier and can be transported with the least attention. For transportation from one place to another in the state two kinds of shipping boxes are used, one for trout eggs and the other for salmon. The trout eggs, being more delicate than the salmon eggs, must be handled with greater care. The packing cases in which the trout eggs are shipped are of two sizes, one holding a single tier of twelve trays, and the other two tiers of 12 trays. These trays are made of perforated galvanized iron and are 12 inches square by about 1 inch in depth. They are constructed so that the bottom of the one fits deep enough into the top of the one below it that there may be no movement between them. Spaces are provided at the ends of each tier for sufficient ice to keep the eggs cool while on their journey. The bottom of each tray is covered with a piece of wet gunny sack or other cloth and upon this enough trout eggs are placed to nicely fill the space between it and the bottom of the tray that fits into it.

The boxes in which the salmon eggs are shipped are constructed so as to contain six of the ordinary hatching baskets, arranged in 3 rows of 2 each. The baskets are lined with wet gunny sacks and filled with 30,000 to 40,000 eggs. The upper baskets are supported by slats laid across the tops of the lower ones. In this way eggs are safely shipped from one hatchery to another in the state. Of course, if the eggs had to be shipped long distances greater attention would, of necessity, have to be given to them.

## HATCHING SALMON FRY IN GRAVEL.

In 1910 John P. Babcock, Deputy Commissioner of Fisheries, British Columbia, suggested a new method of hatching salmon fry, which has since been developed by Mr. Robertson, superintendent of the Harrison, B. C., hatchery. As the method has met with excellent success under Mr. Robertson's management it cannot be out of place to give a brief description of it in this report. The method is an attempt to follow as closely as possible the conditions found in natural propagation. The equipment is very simple, consisting of a series of wooden boxes each of which is three feet long, one foot wide and 12 to 15 inches deep. The bottom is covered with coarse gravel to permit free passage of the water. The boxes are then filled with gravel that varies in size from two inches in diameter downward. The eggs, as soon as they are fertilized, are nixed with this gravel in the proportion of one part of eggs to ten of gravel. gravel and eggs being added alternately until within 2 inches of the top of the boxes. The water flows into the boxes on top of the gravel at the rate of 10 gallons per minute. The contents of the boxes are not touched again until the fry have emerged from the gravel. After the fry are hatched they wriggle about working their way gradually upward until about the time the yolk-sacs are absorbed, when they escape from the gravel and are ready to take care of themselves.

Mr. Robertson has been experimenting with this method for three or four years and claims that it gives much better results than the common hatchery method. He claims for this method that the fungous diseases are so completely eliminated that there is no danger whatever of the dead eggs doing any harm to the living, so that no attempt is made to remove the dead ones; again, the fry are more uniformly strong and healthy than those hatched in ordinary troughs; also, the hiding instinct is more highly developed by this method, as a consequence of which they are better able to take care of themselves when they make their escape into the streams. The expense item is also worthy of consideration. No expensive buildings are necessary as the eggs and fry are receiving the natural protection in the boxes; and as the eggs and fry are never touched all the care needed is for a watchman to see that a constant supply of water is furnished.

# AN ANNOTATED LIST OF PUGRT SOUND FISEES. 

By TREVOR KINCAID, University of Washington.<br>Prenared at the Renuest of and Issued bu<br>L. H. JARWIN.<br>state Fish Cuialiissionrr.

So many inquiries have been made in recent years in regard to our native fishes, it was deemed advisable to publish a brief popular survey of our fish fauna for the benefit of those interested in the marine life of this region.

The most recent list of the species of fish found in Puget Sound was published by Professor E. C. Starks of Stanford Cniversity in 1911. He enumerates 168 forms of fish life known to exist in our waters or recorded from contiguous Canadian territory with the presumption that they occur in Puget Sound. Sereral species have come to light since his paper was published and there is little doubt the number of kinds oi nish in this region will be increased to at least 200 in the near future.

Many of the species now on record are extremely rare, although this may simply mean we do not know where or how to search for them. In some cases but a single specimen has ever been seen and a number are recorded irom a knowledge of less than half a dozen exaniples. Some are strays from southern waters or have straggled down from Alaska, while others have been swept into Puget Sound by some unusual circumstance fromi the open ocean where they normally reside.

The richness of the Puget Sound fauna is doubtless due to the fact that we have here a meeting place for two great centers of marine evolution. Many species of animals originally developed in Alaska have gradually extended their range till they reached the Sound, while from the other great center off the shores of California a similar nigration has occurred in times past. Thus Puget Sound is the southern linit of the distribution of many northern forms, while it is likewise the northern limit of a number of southern species.

The greatest diversity of fishes within our territory is to be found in the waters about the San Juan lslands, where a surprising diversity in depth and shore conformation make for a remarkable display of narine life. The central and southern sections of the Sound are, however, well provided with representatives of the finny tribes as may well be seen when the proper equipment is brought into use to compel them to emerge from their hidden haunts.

Owing to the limits of space it was deemed inadvisable to give detailed descriptions of the various suecies, but rather to point out a few of the more salient characteristics and to depend mainly on the use of copious illustrations to delineate as many as possible of the local forms. For those desiring to study our fishes in a more extended manner we would advise the use of the great monograph of the fishes of America published by Jordan and Evermann as Bulletin 47 of the Cnited States National Museum. which is a veritable monument to the patience and taxonomic skill of the authors. For similar reasons it has been decided not to incorporate analytical keys of the species, as these involve a technical knowledge of fish anatomy which the average person is not likely to attempt to master. A further limitation of the present list is the exclusion of species confined to fresh water.

When we pass from the classification of our native fishes to a discussion of their habits and economic relations we discover a great hiatus, since little has been done along these lines except when some immediate economic stimulus has provided the spur to effort. Hardly a beginning has been made in this field of investigation.

Of the species listed at least 70 are definitely known to be of value as human food, but of course, many of these are not customarily marketed. Some of them are too small, others are rare or else do not attract the public taste in competition with well established food fishes. It is on the other hand rather obvious that most of the smaller varieties furnish food for the larger edible fish, and hence are of great indirect value in the maintenance of our fisheries.

In assembling the illustrations used in this report numerous sources were drawn upon. The majority of the cuts were originally published in the great monograph of American fishes previously mentioned and were made under the direction of Dr. David Starr Jordan of Stanford University. Several were taken from a bulletin of the United States Fish Commission dealing with the fishes of Alaska, written by Dr. B. W. Evermann. Professor Starks of Stanford has contributed a number of the important papers on the fishes of Puget Sound and several of his illustrations have been utilized. Use has also been made of figures prepared by Dr. Charles H. Gilbert, who has published many valuable papers dealing with the fishes of the Pacific. In a number of cases no illustration could be found in the literature available. To assist in the identification of such species closely similar forms, belonging to the same genus have been illustrated for comparison.

In attempting to point out the salient characteristics of the species enumerated in the following list, it is necessary to use some of the technical phraseology of the ichthyologist and a cut is therefore given to illustrate the more important superficial features in the structure of a fish. Where doubt exists as to the Identification of flshes found in our waters, specimens may be sent to the College of Fisheries at the University of Washington where material is at hand for more exact comparison.

Many of our fishes are so seldom seen, even by persons in close contact with fishing operations, that but few of them have received common names, and many of these are more or less misleading. The names presented in the following pages are offered in the hope of filling this hiatus, although better ones will no doubt be evolved for many of the spectes as they become more familiar.

## FAMILY 1. LAMMPREY EELS; PETROMYZONIDAE.

In the strict sense of the word the lampreys are not really fish at all, but they are so fish-like in character it is customary to include them in a list of this group of vertebrates. They may be recognized by their elongate ell-like form, the absence of both the pectoral and ventral fins and the peculiar character of the mouth. No jaws are present, but in their place we have a sucking apparatus analogous to that of a leech.

Two species of lampreys occur in Puget Sound. The Sea Lamprey, Entosphenus tridentatus (Gairdner), (Fig. 1) is a large species several feet in length, which may be recognized by the form of the dorsal fin, the latter being divided into two separate parts. It has migratory habits similar to those of the salmon, leaving the sea and ascending the rivers to spawn. The Brook Lamprey, Lampetra cibaria (Girard), is a smaller species about five inches long. It

differs from the Sea Iamprey in the form of the dorsal fins which are connected together so as to form a continuous structure. The Sea Lamprey is edible but is not commonly employed as food.

## FAMILY 2. THE COW-SHARKS; HEXANCHIDAE.

Two species of this family are found in our waters. The Common CowShark, Hexanchits ariseus (Gmelin), (Fig. 3) is the most frequently seen of our larger sharks. It can easily be recognized by the presence of a single dorsal fin and the existence of six gill-clefts or openings into the gill chamber. It attains a great size, specimens over 28 feet in length being on record.

The Spotted Cow-Shark; Notorhynchus maculatus (Ayres), (Fig. 2) is a smaller and less common variety. Like the Cow-Shark it has a single dorsal fin, but the gill-clefts are seven in number. It is more slender in form than its relative, and as its name indicates it is covered with large black spots on a gray ground-color.

## FAMILY 3. BLUE SHARKS; GALEIDAE.

Here belongs the beantiful Blue Shark, Prionace glauca (Linnaeus), (Fig. 4). This species attains dimensions of 25 feet but specimens of this size are rare in our waters. Two dorsal fins are present, but these do not have spines connected with them. The snout is long and sharp and the pectoral fin is elongate and wing-shaped. As suggested by the name, the color of this flish is bright blue-gray above and pale beneath.

## FAMILY 4. CAT-SHARKS; SCYLLIORHINIDAE.

Only one member of this family is known to inhabit the Sound and it is very rare. The only specimens seen by the writer were taken in Hoods Canal. The Brown Cat-Shark, Catulus brunneus (Gilbert) may be recognized immediately by the peculiar form of the tail, which is bent downwards and not upwards as is almost invariably the case in other sharks. There are two dorsal fins, neither of which is provided with spines.

## FAMILY 5. SCIMNOID SHARKS; DALATIIAE.

Here belongs the great Sleeper Shark, Somniosus microcephalus (Bloch). This species has no anal fin. The fins are all small and spines are lacking in the two dorsals. They are large clumsy flsh, attaining dimensions of 25 feet, and are extremely ferocious.

## FAMILY 6. DOG-FISHES; SQUALIDAE.

The most abundant of the sharks in our .waters is the oinnipresent Dogfish, Squalus sucklii (Girard), (Fig. 5). It differs from the preceding species in that it has two dorsal fins, each provided with a long sharp spine. The anal fin is lacking and the lower lobe of the tall is comparatively small. This species has come into prominence recently, under the sobriquet of Grayfish, as an article of food. Owing to difticulties encountered in canning the packing of Grayfish has ceased for the present, hut an excellent smoked product is put up, which commands a ready sale. The value of the Dog-flsh in producing oil and fertilizer has long been recognized and great quantities have been taken from the Sound and utilized for these purposes.

## FAMILY 7. RAYS AND SKATES; RAJIDAE.

The Rays are near relatives of the Sharks but are recognized by their strange flattened form. The wing-like extensions at the sides of the body represent the greatly modified pectoral fins of other fish. The tail is produced into a long whip-like structure and the gill openings are on the under side of the body. The eggs are laid in large brown cases from which the young escape when the yolk has been absorbed.

Three members of this family inhabit our waters. The Spotted Ray, Raja binoculata (Girard), is our commonest species. It becomes very large, specimens weighing over a hundred pounds being on record. The common name of this form is derived from the presence of two large eye-like spots on the back of the fish when it is young. These become faint as the animal grows older. The most distinctive structural feature of the Spotted Ray is the shape of the ventral fin which is regularly concave on its free margin. The Snouted Ray, Raja rhina (Jordan and Gilbert), is similar to the Spotted Ray but the snout is sharper and the ventral fins are of a different shape, a large rounded notch being present on the free border. The Spiny Ray, Raja stellulata (Jordan and Gilbert), (Fig. 6) resembles the two species just described, but differs in the presence of a great number of small spines over the surface of the body. The snout is blunt and rounded and the ventral fin is deeply notched on its free margin.

## FAMILY 8. RAT-FISHES; CHIMAERIDAE.

The common Rat-fish, Chimaera colliaei (Lay and Bennett), (Fig. 7) is our only representative of this curious group which bridges the gap between the elasmobranch and teleost fishes. The gill openings are not exposed as in the shark but are protected by an operculum as in the higher fishes. The head is clumsy and irregular and the body tapers off to a long slender tail. The teeth resemble the incisors of a rat, which accounts for the common name. The eyes are large, prominent and of an opalescent greenish color. In the male a strange knobbed structure is found attached to the top of the head. The body is beautifully mottled with gray and silvery white. The rat-fish is valuable for the oil which is extracted from the liver.

## FAMILY 9. STURGEONS; ACIPENSERIDAE.

Members of this family are recognized by the absence of scales which are replaced by rows of great bony plates which extend along the sides. The snout is shovel-shaped and has five long barbels hanging down in front of the mouth.

Two species of sturgeon occur in our waters. The White Sturgeon, Acipenser transmontanus (Richardson), (Fig. 8) is a fish which attains an immense size, specimens weighing 1,000 pounds having been taken. Like the salmon it ascends the rivers to spawn. The sturgeon is a valuable food fish and the roe is suitable for the manufacture of caviare. It was so eagerly fished it has become quite scarce.

The Green Sturgeon, Acipenser medirostris (Ayres) is a near relative of the White Sturgeon but does not attain such a great size. It is of a peculiar. greenish hue, with light olive stripes on the ventral surface. It is not valued as a food fish and by some is thought to be poisonous, although this belief is not justified.

## EXPLANATION OF HIGURES.

1. Sea Lamprey, Entosphenis tridentatus (Gairdner).
2. Spotted Cow-Shark, Nolorhynchus maculatus (Ayres).
3. Cow-Shark, Hexanchus griseus (Gmelin).
4. Blue Shark, Prionace glauca (Linnaeus).
5. Dog-fish, squalus sucklii (Girard).
6. Spiny Ray, Raja Stellulata (Jordan and Gilbert).
7. Rat-fish, Chimaera colliaei (Lay and Bennett).
8. Sturgeon, Acipenser sp.
9. Pacific Herring, Clupea pallasi (Cuvier and Valenciennes).
10. Snipe Eel, Nemichthys avocetta (Jordan and Gilbert).
11. California Sardine, Sardinia caerulea (Girard).
12. Northern Anchovy, Engraulis mordax (Girard).
13. Shad, Alosa sapidissima (Wilson).
14. Dog Salmon or Chum, Onrorhynchus leefa (Walbaum).


## FAMILY 10. SNIPE EELS; NEMICHTHYIDAE.

The Pacific Snipe Eel, Nemichthys avocetta (Jordan and Gilbert), (Fig. 10) is a strange and comparatively rare flsh. It is a long snake-like creature, about two feet in length and one-third of an inch in thickness. The jaws are long and slender like the beak of a snipe, hence the name. It is almost transparent and is practically invisible as it swims through the water.

## FAMILY 11. HERRINGS; CLUPEIDAE.

The members of this family, of which we have three species in our local waters, are constructed upon the plan of the common herring. The body is covered with large rounded scales. There is no adipose fin and the ventral fins are located well back on the under side. The tail is deeply forked. There are no scales on the head.

The Pacific Herring, Clupra pallasi (Cuvier and Valenciennes), (Fig. 9) is very closely related to the herring of the Atlantic. It is one of our most important food fishes and is destined to form the basis of an immense industry in the years to come. The young fish are already packed in great quantities on the California coast as sardines and in Alaska the salting of herring has assumed considerable proportions.

The California Sardine, Sardinia caerulea (Girard), (Fig. 11) resembles the herring but can be distinguished from the latter at a glance by the presence of a fan-shaped group of ridges on the gill cover. The lack of teeth in the roof of the mouth is also diagnostic as these are not present in the sardine. This fish is closely allied to the pilchard of Europe and is a most desirable food fish as it is superior in many respects to the herring.

The Shad, Alosa sapidissima (Wilson), (Fig. 13) is not native to our waters but was introduced into the Pacific a number of years ago and has now multiplied extensively. The general anatomical peculiarities of the shad follow the lines of the herring, but the body is deeper and the breast and belly possess saw-like serrations. It spawns in fresh water. This species is little appreciated as a food fish on the Pacific Coast, but is growing in importance.

## FAMILY 12. ANCHOVIES; ENGRAULIDAF.

This lamily is closely related to the herrings, but may be distinguished by the large size of the mouth and the overhanging snout, which extends beyond the mouth opening.

The Northern Anchovy, Engraulis mordax (Girard), (Fig. 12) is a slender, graceful fish with a bluish back and silvery sides. It is a valuable food fish, but is little used at present, although some are canned as sardines on the California coast. The species attain a length of 7 inches.

## FAMILY 13. SALMON AND TROUT; SALMONIDAE.

From an economic standpoint this family of fishes overshadows all others on the Pacific Coast, since it includes the five species of Pacific Salmon which form such a conspicuous feature in the preserved fish trade of the world.

The most characteristic structure in the anatomy of members of this group is the curious organ known as the adipose fin. This is not confined to the Sal-
monidae, however, as it exists in several other families of fishes. The ventral fins are far back on the body. The body is covered with circular scales, but these are absent from the head. The dorsal fin has from 9 to 15 rays. A lateral line is present on the side. Three genera are represented in our fauna.

The fish known commercially as Pacific Salmon are zoologically different from the Atlantic Salmon, the former belonging to the genus Oncorhynchus while the latter is a species of Salmo. The technical differences between these two genera are rather finely drawn, but the crucial point is in the count of the rays in the anal fin. In Salmo the number ranges from 9 to 12, while in Oncorhynchus there are from 14 to 20 . Five species of Pacific Salmon exist in our waters.

The Chinook Salmon, Oncorhynchus tschawytscha (Walbaum), (Fig. 15) is the noblest of the salmon tribe since it outranks all other species in size and quality. Specimens are on record weighing more than 100 pounds. In different parts of its range it has been given a number of common names such as Tyee, King, Quinnat, Spring, etc. The technical points that mark this species from its relatives are as follows: The gillrakers number from 20 to 25 . The scales are of medium size, 135 to 155 in longitudinal series. The branchiostegal rays number from 15 to 19 . The back and upper fins are marked with round black spots.

The Sockeye, Oncorhynchus nerka (Walbaum), (Fig. 17) is known in other parts of its range as Blueback and Red Salmon. It is of immense economic importance because it constitutes the main run of salmon in the rivers of Alaska and Britisli Columbia. It is discriminated by the following combination of characters. The gillrakers are numerous, ranging from 30 to 40 . The scales are large. The count of scales on the lateral line is about 130 , while the number of branchiostegal rays is from 13 to 15 . The color is clear blue above and silvery on the sides. In the adult there is no black spotting, but in the young fish obscure markings are present. During the breeding period the color changes, more or less dark red appearing on the back and sides. The Sockeye attains a length of two feet and a weight of from 3 to 7 pounds. It does not run in rivers that are unconnected with lakes.

The Silver Salmon or Coho, Oncorhynchus kisutch (Walbaum), (Fig. 16) stands third in commercial importance among the Salmon. It attains a length of 15 inches and a weight of from 3 to 8 pounds. It is particularly abundant in Puget Sound and is particularly valuable as a fresh product. The Silver can be recognized by its peculiar bluish green back and silvery sides. Spots are absent except a few obscure markings on the upper portions of the body. The scales are relatively large, with 125 to 135 in longitudinal series. The anal fin has 13 or 14 rays while the branchiostegals number the same.

The Humpback or Pink Salmon, Oncorhynchus gorbuscha (Walbaum), (Fig. 18) is the smallest species in the genus, attaining a weight of 3 to 6 pounds. It is regarded as of inferior merit as a canned product but considerable quantities of it are put up for the market. It may be distinguished by the scales, which are very small, with more than 200 in longitudinal series, and by the large ohlong markings on the tail fin. The number of anal rays is 15 while in the branchlostegals 11 or 12 are present. The color of the back is

## EXPLANATION OF FIGURES.

15. Chinook or Spring Salmon, Oncorhynchus tschawytscha (Walbaum).
16. Silver or Coho Salmon, Oncorhynchus kisutch (Walbaum).
17. Sockeye or Red Salmon, Oncorhynchus nerka (Walbaum).
18. Humpback or Pink Salmon, Oncorhynchus gorbuscha (Walbaum).
19. Steelhead Trout, Salmo gairdneri (Richardson).
20. Cut-throat Trout, Salmo mykiss (Walbaum).
21. Dolly Varden Trout, Salvelinus malma (Walbaum).
22. Surf Smelt, Hypomesus pretiosus (Girard).
23. Eulachon or Candlefish, Thaleichthys pacificus (Richardson).
24. Pacific Smelt, Osmerus thaleichthys (Ayres).
25. Lantern-fish, Myctophum $s p$.
26. Lancet-fish, Plagyodus ferox (Lowe).
27. Sparkler, Arctozenus coruscans (Jordan and Gilbert).
28. Sand Lance, Ammodytes personatus (Girard).
29. Tube Snout, Aulorhynchus favirlus (Gill).

blue, that of the sides silvery. Numerous small black dots are scattered over the dorsal surface.

The Dog Salmon or Chum, Oncorhynchus keta (Walbaum), (Fig. 14) is an abundant species in Puget Sound, but has not been utilized extensively until recent years, when the pressure for fish has brought it into the market. The scales are of medium size with 135 to 155 in longitudinal series. The anal rays and branchiostegals both vary from 13 to 14 . The color is dusky above, with the sides paler. Black markings are absent or faintly indicated. The Dog Salmon attains a weight of 11 or 12 pounds. It runs in quite small streams and spawns near the sea.

The genus Salmo contains species that are, zoologically speaking, close kin to the Atlantic Salmon. We have three species in this region, but only two appear in the salt water.

Salmo gairdneri (Richardson), (Fig. 19) is the scientific name of the fish known as the Steelhead or Salmon Trout. This is one of our most valuable food fishes, since it is abundant in all of our coastal streams and attains a considerable size. Specimens may weigh up to 20 pounds, although the average is apt to be 5 or 6. Unlike the Pacific Salmon the Steelhead does not perish after spawning, but like its relative, the Atlantic Salmon, may return to the sea. Great quantities of this species are used, both fresh and canned. The Steelhead may be immediately separated from the Pacific Salmon by the lesser number of rays in the anal fin, the usual count being 11. The back of the Steelhead is dark blue and the sides silvery with a band of rose color running lengthwise. Numerous small black dots are scattered over the upper surface of the body, but not extending below the lateral line. The strip of red on the lower jaw so characteristic of the Cut-throat Trout, is lacking.

The Cut-throat Trout, Salmo mykiss (Walbaum), (Fig. 20) is ordinarily thought of as a fresh-water fish, but it descends to the estuaries of the rivers which it inhabits and may be found in salt water at considerable distances from any stream. It is extremely variable in its characteristics, and in some instances is hard to distinguish from the steelhead. The most constant mark of the species is the streak of red on the lower jaw, which gives rise to the common name. The scales are smaller than in the Steelhead and the black spotting is spread over the area below the lateral line and intensified in the region of the tail.

The Dolly Varden Trout, Salvelinus malma (Walbaum), (Fig. 21) is technically not a trout at all, but a charr. It has a number of common names including Bull Trout, Oregon Charr, etc. Aside from the anatomical peculiarities of this fish its color distinguishes it immediately from all allied forms. The sides are marked with round red spots which extend as smaller markings to the back. The delicate reticulate coloration, so characteristic of the brook trout and other charrs, is lacking. Like the Cut-throat Trout, the Dolly Varden is primarily a fresh water fish, and is merely a visitor in the brackish and salt water where it is so frequently found.

## FAMLLY 14. SMELTS; ARGENTINIDAE.

The smelts have much in common with the Salmonidae in structure. As in the latter an adipose fin is present. The ventral fins are small and are near the middle of the body. The dorsal fin is short and nearly median. The tail fin is deeply forked. Three genera are represented in our fauna, each with a single species.

The Surf Smelt, Hypomesus pretiosus (Girard), (Fig. 22) is an excellent food fish common in Puget Sound. It attains a length of a foot. The body is covered with scales of moderate size. The angle of the jaw extends to the middle of the eye, while anteriorly the lower jaw protrudes beyond the upper. It is light olive in color with a silvery band along the side. The eggs are laid in the surf.

The Eulachon or Candlefish, Thaleichthys pacificus (Richardson), (Fig. 23) is the finest of the smelts. The flesh is oily and of very delicate texture. The scales are small and firmly set in the skin. The mouth is large and the angle of the jaw extends beyond the middle of the eye. The color is pale with numerous fine dark dots over the upper surface. They are about a foot long and enter the rivers to spawn early in the spring.

The Pacific Smelt, Osmerus thaleichthys (Ayres), (Fig. 24) is a common fish in our waters, but is not highly regarded for its food value. It is smaller than the other smelts and its fiesh is soft, although of agreeable fiavor. The scales are of moderate size and loosely attached. The teeth are better developed than in the allied forms, those on the tongue being unusually large. The pectoral fins are elongated, reaching to the base of the ventrals.
-

## FAMILY 15. LANTERN-FISHES; MYCTOPHIDAE.

These are small deep-water fishes somewhat resembling smelt, since a small adipose fin is present. The scales are of relatively great size and along the sides occur a number of round clear spots, which in the live fish are phosphorescent, giving these fish their common name. Two species of this family occur in our waters. Myctophum californiense (Eigenmann and Eigenmann), (Fig. 25) may be termed the Pacific Lantern-fish. No figure of this species was available and an allied species of Myctophum has been reproduced in the accompanying cuts. Bean's Lantern-fish, Tarletonbeania crenularis (Jordan and Gilbert) is an allied form known from a few examples taken at widely separated points. It differs from Muctophum in the absence of a lateral line, as well as in other anatomical detalls.

## FAMILY 16. LANCET-FISHES; PLAGYODONTIDAE.

In this family we have one of the rare species occasionally seen on our coast. The Lancet-fish, Plagyodus ferox (Lowe), (Fig. 26) is a large and ferocious creature, with long sharp teeth set in the wide opening mouth. The body tapers from head to tail and the dorsal fin, which is very high, extends nearly its whole length. The tail is long and deeply forked. The length of the fish is about three feet.

## EXIPANATION OF HGURES.

30. Alaska Stickleback, Gasterosteus cataphractus (Pallas).
31. Gray-lined Pipe-fish, Syngnathits griscolineatus (Ayres).
32. Barracuda, Sphyraena sp.
33. Mackerel, Scomber sp.
34. Pompano or Butterfish, lihombus sp.
35. High Brow, Zaprora silenus (Jordan).
36. Willoughby's Rag-fish, Acrotus willoughbyi (Bean).
37. Bridled Surf-fish, Brachyistius frenatus (Gill).
38. Viviparous Perch, Cymatogaster aggregatus (Gibbons).
39. White Perch, Damalichtiys argyrosomas (Girard).
40. Viviparous Perch, a female with the young enclosed.
41. White Surf-fish, Phtmerodon furcotus (Girard).


## FAMILY 17. THE PARALEPIDS; PARALEPIDIDAE.

The rare fish known as Arctozenus coruscans (Jordan and Gilbert), (Fig. 27) which may be termed the Sparkler, is the only member of this family recorded from our region. Only one specimen is known to exist. It was taken at Port Townsend in 1880. The Sparkler is a small fish resembling a miniature Barracuda and is noteworthy for a row of phosphorescent spots on the lower jaw, which suggests the common name.

## FAMILY 18. SAND LANCES; AMMODYTIDAE.

The common Sand Lance, Ammodytes personatus (Girard), (Fig. 28) is the sole type of this family found locally. It is a small silvery fish, six to eight inches in length found along our shores, and having the peculiar habit of burying itself in the sand. The jaws are without teeth and the ventral fins are lacking. The dorsal fin is low and continuous. The body is covered with small scales and ends in a deeply forked tail. They are edible and are used also for bait.

## FAMILY 19. TUBE-SNOUTS; AULORHYNCHIDAE.

In this family we have small odd-looking fish with the snout drawn out into a tubular projection. The eves are large. Scales are absent and the tail is small and deeply forked. Our only species is the common Tube-snout, Aulorhynchus flavidus (Gill), (Fig. 29).

FAMILY 20. STICKLEBACKS; GASTEROSTEIDAE.
Sticklebacks are usually classed as fresh water flsh, since they are abundant in interior lakes and streams, but marine and brackish water species are present along our coast. The Alaska Stickleback, Gasterosteus cataphractus (Pallas), (Fig. 30) is our local marine form. It is a small fish devoid of true scales, the latter being replaced by a series of large vertical oblong plates. The dorsal fin is preceded by several free spines and a large stout spine is developed in connection with the ventral fin. The damage done by the Stickleback is out of proportion to his size as he is able to kill the fry of larger fish, notably the salmon, for which reason the Stickleback is known locally as the Salmon Killer.

## FAMILY 21. PIPE-FISHES; SYNGNATHIDAE.

Fishes of this family are the nearest relatives we have of the sea-horses so common in southern waters. The group is represented with us by the Graylined Pipe-fish, Syngnathus griseolineatus (Ayres), (Fig. 31). The body is extremely long and slender and is enclosed in a tough covering of bony plates. The snout is long and narrow, terminating in toothless jaws. The tail fin is small and fan-shaped, while the ventrals are absent. Fishes of this genus have unusual breeding habits, the male possessing a pair of pouches on the under side of the body in which the female places the eggs till they are hatched.

## FAMILY 22. BARRACUDAS; SPHYRAENIDAE.

The Silver Barracuda, Sphyraena argentea (Girard), (Fig. 32) is not a common fish in Puget Sound, as this is the northern limit of the species, which is notably abundant in the waters of California. The Barracuda may be recog. nized by its long pike-shaped body, large mouth and projecting lower jaw. The
teeth are long and sharp. The two dorsal fins are small and widely separated. The lateral line is straight. The scales are small. It is a valuable food fish, but is not taken in sufficient numbers to enter into the market.

## FAMILY 23. FLATOLES; STROMATEIDAE.

Like the Barracuda our local representative of the Stromateidae, the California Pompano or Butterfish, Rhombus simillimus (Ayres), (Fig. 34) may be regarded as a straggler from more southern climes, since it is comparatively rare in Puget Sound. Lacking a suitable illustration of the local species, a cut of a closely related form has been utilized in the plates.

The species known on the Pacific Coast as the California Pompano is not a true Pompano, since the latter belongs in an entirely different family of fishes, the Carangidae. The resemblance between the two types is quite superficial.

In the Butterfish or California Pompano the body is greatly flattened sidewise, and terminates in a mouth armed with feeble teeth. The cheeks are covered with scales, and the lateral line is well developed. The anal fin is much like the dorsal, and the tail is broadly forked. It attains a length of 10 inches and is a good food flsh.

## FAMILY 24. MACKERELS; SCOMBRIDAE.

Fishes of this family may be recognized by the unusual character of the dorsal fin, since the last rays are detached and form a series of separate finlets. The same structure appears in the anal fin. The head is pointed and the colors are richly metallic.

The California Bonito, Sarda chilensis (Cuvier and Valenciennes), is a large fish two to three feet in length and weighing 12 to 16 pounds. It is rare in our waters. The body is a dark metallic blue and the tail has a keel on either side.

The Chub Mackerel, Scomber japonicus (Hutuyn), is a near relative of the true Mackerel, but is a much less valuable fish. The latter scomber scomber (Linnaeus), (Fig. 33) is the form figured in the plates. The Chub Mackerel is rare in Puget Sound. It has two keels on either side of the base of the tail fin. The color is blue with a number of wavy streaks of black on the back above the lateral line.

## FAMILY 25. RAG-FISHES; ACROTIDAE.

A rare straggler from the outer ocean is our sole representative of this family, namely Willoughby's Rag-fish, Acrotus willoughbyi (Bean), (Fig. 36). The first specimen of this fish was taken on the outer coast of Washington but examples have now been taken as far south as Tacoma in Puget Sound. It is a strange fish, measuring between flve and six feet in length, entirely devoid of scales, with a large caudal fin and lacking the ventral fins. The body is soft and yielding as the bones are cartilaginous, indicating a normal deep-water habitat.

## FAMILY 26. POMFRETS; BRAMIDAE.

The Pomfret, Brama raii (Bloch), is reported from the northern section of Puget Sound. It is an excellent food flsh. The body is compressed, of an oblong shape and covered with small scales. The mouth is very oblique. The dorsal and anal fin each have their three anterior rays developed as spines. The color is sooty gray with black on the vertical fins. It attains a length of three or four feet.

## FAMILY 27. HIGH-BROWS; ZAPRORIDAE.

This is a rare and curious flsh not yet observed in Puget Sound, but as it was taken on the inner coast of Vancouver Island it is probable it will be taken on our side of the line. It has a large coarse head with an elevated front which caused the learned savant who described it to call it Zaprora silenus (Fig. 35). Since the Greek from which the generic name is derived may be freely translated as "high-brow" the writer is responsible for the common name here applied.

## FAMIIY 28. SURF-FISHES; EMBIOTOCIDAE.

This family is one of the most characteristic groups of fishes found on the Pacific Coast. Their main distribution is southern, but we have in our fauna seven species, some of which are exceedingly abundant in Puget Sound. They are small perch-like fish from 6 to 18 inches in length. The anal fin has three spines and more than 15 soft rays. The lower pharyngeals are united.

The White Perch or Pacific Porgee, Damalichthys argyrosomus (Girard), (Fig. 39) is a species attaining a length of 15 inches. It is very abundant, but is not regarded highly as a food flsh the flesh being dry and tasteless. The dorsal fin has 10 spines and 23 rays. The color is pale with a silvery luster.

The Striped Perch, Taeniotoca lateralis (Agassiz), is a brightly colored flsh rather common in the Sound. It is reddish above, becoming bright orange below. The rows of scales have blue edgings which gives the fish a delicately striped appearance. It is edible and attains a weight of two pounds.


#### Abstract

The Common Sarf-fish or Black Perch, Embiotoca jacksoni (Agassiz), is a species with a somewhat mottled and variable coloration. The ground color is brown, shading into yellow on the under side, and variegated with mottlings of blue, red or yellow. The sides have a number of faint vertical dusky bars. It attains a length of 12 inches and is classed as one of our edible fishes.

The Bridled Surf-fish, Brachyistius frenatus (Gill), (Fig. 37) is one of the rare species of this group. It is greenish brown above, shading into coppery red on the belly. The scales are flecked with blue and black dots. The fins are all bright red. It reaches a length of eight inches.

The Silver Surf-fish, Amphistichus argenteus (Agassiz) is recorded from the Straits of Fuca. Its general coloration is silvery, the sides being ornamented with vertical bars and spots of brassy green. It is abundant on sandy shores and reaches a length of one foot.

The White Surf-fish, Phanerodon furcatus (Girard), (Fig. 41) is re orded from Vancouver Island and enters the Straits of Fuca. It is light olive above, shading into silvery below.


The Viviparous Perch, Cymatogaster aggregatus (Gibbons), (Fig. 38) is exceedingly abundant in Puget Sound. The schools of young may be seen swimming about wharves in shallow water and are spoken of as Shiners. It is the smallest of the species in this family, attaining a length of six inches. Specimens vary greatly in details of color, some of the individuals being very dark. The scales have groups of black points which unite to suggest a longitudinal striping. These stripes are interrupted by several vertical bands of yellow. This species is edible but its small size renders it unsultable for the market.

The strange habit of this fish, in common with other members of this family, of bringing forth its young alive, has attracted considerable attention, since this phenomenon is rare in the fish world. As many as 36 young in various stages of development have been found in the brood sack of the mother animal.

## FAMILY 29. CROAKERS; SCIAENIDAE.

The only representative of this large family of southern fishes that extends its range into our territory is the California White Sea Bass, Cynoscion nobilis (Ayres). As might be expected, it is rare with us. It is a large fish, attaining a welght of 20 to 80 pounds. The body is compressed and is covered with ctenoid scales. The head is large and scaly and the caudal fin is rounded. The dorsal fin is notched to make two distinct parts. The color is bluish with fine spotting. Lacking a picture of this species, we have used a drawing of an allied but somewhat different species belonging to the same genus (Fig. 42).

## FAMILY 30. HEAD-FISHES; MOLIDAE.

On several occasions in recent years specimens of the immense Head-fish, Orthagoriscus mola (Bloch), (Fig. 43) have been brought into Seattle from the Straits of Fuca and from the open sea beyond the Cape. Specimens are on record weighing nearly a ton. The name of the species is derived from the curious formation of the body, which has the appearance of a great head minus the major part of the trunk. The great dorsal and anal fins stand one above the other, while the tail fin has a sinuous outline.

## FAMILY 31. ROCK-FISHES; SCORIAENIDAE.

This family constitutes one of the most important and valuable groups of fishes found on the Pacific Coast. About 260 species are on record throughout the world, of which 13 are known to inhabit Puget Sound. They are bass-iike in appearance with spines on the operculum. The dorsal is continuous but notched so as to mark the two portions of the fin. The head is crossed by ridges which in many cases terminate in spines. In this, as in several of the families that follow, a characteristic feature is the presence of a bony bar extending from beneath the eye across the cheek. All of our Puget Sound Rock-fishes belong in the genus Sebastodes.

The Black Rock-fish, Sebastodes melanops (Girard), (Fig. 44) is one of our abundant species. It is 20 inches in length and is a valuable food fish. It is dark greenish brown in color blotched with slatey black.

## EXPLANATION OF FIGURESS.

42. Sea Bass, Cynoscion sp.
43. Head-fish or Giant Sun-fish, Orthagoriscus mola (Bloch).
44. Black Rock-fish, Sebastodes melanops (Girard).
45. Priest-fish, Sebastodes mystinus (Jordan and Gilbert).
46. Orange Rock-fish, Sebastodes pinniger (Gill).
47. Sebastodes clavilatus (Starks).
48. Dean's Rock-fish, Sebastodes deani (Starks).
49. Scbastodes emphaeus (Starks).
50. Black-banded Rock-fish, Sebastodes nigrocinctus (Ayres).
51. Northwestern Rock-fish, Sebastodes caurinus (Richardson).
52. Yellow-backed Rock-fish, Sebastodes maliger (Jordan and Gilbert).
53. Red Greenling, Hexagrammos superciliosus (Pallas).


The Priest-fish, sebastodes mystinus (Jordan and Gilbert), (Fig. 45) is very much like the preceding but has a spine over each eye. It is even darker in color than the Black Rock-fish, the prevailing hue on the upper surface being slatey black. The sides are paler and somewhat mottled. It is not so common as S . melanops.

The Orange Rock-fish, Sebastodes pinniger (Gill), (Fig. 46) is a large and handsome representative of the family. It is richly colored, the ground tint being gray, but this is mottled with large areas of orange. It is abundant in deep water.

The Red Rock-fish or Red Snapper, Sebastodes ruberrimus (Cramer) is the largest of this group of fishes, attaining a length of 30 inches or over. In color it is a brilliant vermillion. It is common in deep water and is brought to market in considerable quantities.

The Alaska Red Rock-fish, Sebastodes introniger (Gilbert), is of the same reddish cast as the Red Rock-fish but is smaller and differs in certain details of anatomical structure.

Three small species of Sebastodes named by Professor Starks, S. deani (Fig. 48), S. clavilatus (Fig. 47), and S. emphaeus (Fig. 49), occur in the San Juan Islands. They are somewhat similar in appearance, the ground color being reddish brown with irregular darker mottling over the back and sides.

Dall's Rock-fish, Sebastodes auricalatus dalli (Eigenmann and Beeson), is a variation of the Brown Rock-fish found in more southern waters. It is pale brown with mottlings of darker color. This is a common shallow water species.

The Yellow-backed Rock-fish, Sebastodes maliger (Jordan and Gilbert), (Fig. 52 ) is reported as being abundant in the northern section of Puget Sound. It reaches a weight of 6 pounds. In color it is light brown with rich mottlings of yellow on the back and extensive yellow markings on the breast and under parts.

The Yellow-spotted Rock-fish, Sebastodes nebulosus (Ayres), is a common variety in the Sound. The general coloration is black but the body is spotted and speckled with yellow. It is a good food fish, although rather small, as it measures about one foot in length.

The Black-banded Rock-fish, Sebastodes nigrocinctus (Ayres), (Fig. 50) is a large and beautiful species, attaining a length of 2 feet. It is not common in the Sound, but is reported as abundant in the Straits of Fuca. Specimens are taken about the San Juan Islands. It is orange red in color with five vertical bars of black.

The Northwestern Rock-fish, Sebastodes caurinus (Richardson), (Fig. 52) is a species that is taken in abundance in the Sound and constitutes an important food fish. It is dark brown in color washed with copper.

## FAMILY 32. GREENLINGS; HEXAGRAMMIDAE.

This family is represented in our fauna by five species. In these the body is covered with fine scales and the dorsal fins are united. A single nostril is present on either side of the head. The anal fin is elongate. They are carnivorous fishes of medium or large size inhabiting the kelp beds of the North

Pacific. Three of our species are classed in the genus Hexagrammos and constitute the true greenlings. They differ from the other members of the family in that the lateral line is branched, as many as five parallel lines being present on the side. The greenlings are often called Rock-trout and Kelp-cod. As they are in no wise related to either the trout or the cod family it would seem unfortunate to saddle these names upon the fishes.

The Ten-lined Greenling, Hexagrammos decagrammus (Pallas), (Fig. 55) attains a length of 18 inches and is an excellent food fish. Five distinct divisions of the lateral line may easily be traced across each side of the fish. Two pairs of small dermal flaps are present on the head in this form, whereas only one pair occurs in other species of greenlings. Scales are present over the entire surface of the cheek.

The Red Greenling, Hexagrammos superciliosus (Pallas), (Fig. 53) can be separated from the preceding by the absence of one of the pairs of small fleshy flaps on the head. It is extremely variable in color and is often finely mottled, which make the common name somewhat of a misnomer. Scales are present on the sides of the head except over the bony stay and the interopercular bone. It is equal in size and food value to the preceding species.

Steller's Greenling, Hexagrammos stelleri (Tilesius), (Fig. 56) resembles the preceding species, but the cheeks and opercular bones are almost free from scales and the dermal flaps are much smaller. As in the other species, there is a wide range of color.

The Ling Cod, ohiodon elongatus (Girard), (Fig. 54) which is also known as the Cultus Cod and Blue Cod, is one of our large and valuable food fishes. It is marketed in the fresh state in large quantities. Efforts have been made to can it, but the results have not been entirely satisfactory. It attains a weight of 60 pounds and a length of five feet.

The Ling Cod, which by the way is related neither to the Lings nor to the Cods, may be distinguished from other members of its family by the presence of a single lateral line, the large mouth with powerful teeth, and the development of spines on the preoperculum. The ground color' is dark brown, much mottled with rusty spots, shading into bluish green on the under side.

The Painted Greenling, Oxylebius pictus (Gill), (Fig. 57) is one of our most brilliantly colored fishes. It is common about docks where it may be seen nosing up and down the piles. It attains a length of 10 inches. The body is relatively deeper than in other members of this family and the snout is acutely pointed. The sides are traversed by alternate vertical stripes of black and of pale orange. It is not used for food.

The Broad-finned Greenling, Zaniolepis latipinnis (Girard), may be recognized by the great height of the dorsal fin and the presence of several exceedingly long free spines at its anterior end. The scales are small and very rough. It is edible but is not abundant. Its length is about 12 inches.

## FAMILY 33. SKIL-FISHES; ANOPIOPOMATIDAE.

This family is a small one, containing but two genera, each with a single species, but both of these are of great interest. The group is closely allied to the preceding family, the Hexagrammidae, and by some authors the two are united.

$$
-5
$$

The Black Cod or Skil-fish, Anoplopoma fimbria (Pallas), (Fig. 58) which is of course no relative of the true cod, has come into extensive use as a food fish in recent years, and is now supplied abundantly in our markets. It attains a length of two feet or more and, as its name indicates, is very dark in color. The body is gracefully formed, with two well-separated dorsal fins. The tall fin is set on an elongated base and is formed for speed. The scales are minute and ctenoid. The anal fin has three spines. Two nostrils are present on either side.

The Giant Sea-bass, Erilepis zonifer (Lockington), (Fig. 59) was originally described in 1880 from a specimen one foot in length taken at Monterey, California, but in recent years it has been discovered to exist in the North Pacific as a fish of great size, measuring 8 feet in length and of considerable weight. It is not related to the true sea-bass which belongs to the family Serranidae, a group not represented in our fauna. No better name has been suggested for the fish up to the present time.

Erilepis resembles the Black Cod, but is a much larger species, as has been indicated, and differs in the form of the body, which is much deeper and basslike. The dorsal fins are united, the point of union being indicated by a deep notch. No specimens have been taken within the limits of Puget Sound, but a number of examples have been captured on the neighboring Canadian shore.

## FAMILY 34. SCULPINS; COTTIDAE.

This is an immense family of fishes, represented in our waters by 28 species. The group is a diffcult one to define on account of the wide range of characters. In common with several families already discussed these fishes have a bony bar across the cheek. The head is usually spiny. The dorsal fins are as a rule separate or slightly connected. The tail fin is rounded at the margin and the pectoral is large. A lateral line is present. The preoperculum is usually provided with one or more spines. The ventral fins are attached to the thoracic region. Very few of the sculpins are used as food, although the larger species may be classed among our edible flshes.

Jordan's Sculpin, Joriania zonope (Starks), (Fig. 60) is a small species about four inches in length. It has an unusually long dorsal fin. The ventral fins have one spine and five rays. The back is covered with rough scales.

The Perch-like Sculpin, Radulinus asprellus (Gilbert), (Fig. 61) is a slender species five or six inches in length with two spines on the operculum and a very short spinous dorsal fin. The back is covered with rough scales. A series of keeled plates is present on the lateral line.

The Darter Sculpin, Radulinus boleoides (Gilbert), is like the preceding but smaller, being only 3 or 4 inches in length. The space between the eyes is covered with scales, whereas in R. asprellus this space is scaleless.

Bean's Sculpin, Triglops beani (Gilbert), (Fig. 62) is a long slender fish, 5 to 7 inches in length, bearing upon each side a row of bony plates along the base of the dorsal fin. The breast is without scales, but the skin is thrown into fine cross folds. The color is olive brown with a stripe of dark brown along the side and four large blotches on the back.

The Spotted Sculpin, Triglops macellus (Bean), is similar to the preceding, but has a conspicuous black spot on the snout just above the edge of the maxillary.

The Rough-backed Sculpin, Chitonotus pugetensis (Steindachner), (Fig. 62) has the back clad with rough scales above the lateral line. The preoperculum has a long spine armed with three antler-like processes. The lateral line has a row of keeled scales. The fish is 6 inches in length.

The Broad-headed Sculpin, Stelginotus latifrons (Gilbert and Thompson), (Fig. 63) is a bright green species with a broad interspace between the eyes, and lacking spines on the head. A single curved spine is present on the preoperculum. It is a rare form, only two specimens having been taken, both at Friday Harbor.

Meany's Sculpin, Ruscarius meanyi (Jordan and Starks), (Fig. 66) is apparently a rare species since no additional specimens have been secured since the types were collected in Port Orchard in 1895. It was named in honor of Professor Edmond S. Meany of the University of Washington. The back of the fish is covered with rough scales, the head being particularly rough. There are no bony plates along the base of the dorsal fin. The spine on the preoperculum is long and bifurcate. The length of the specimens was one and one-half inches.

The Northern Sculpin, Ieelinus borealis (Gilbert), (Fig. 65) has a set of enlarged plates along the lateral line and another series along the back, but the space between these is devold of scales. There are a number of processes on the preoperculum. No filamentous spines are developed in connection with the dorsal fin. The length is 4 inches.

The Reindeer Sculpin, Tarandichthys filamentosus (Gilbert), is so named from the antler-like processes on the preopercular spine, which suggest the horns of the reindeer. Another striking feature is the development of the anterior spines of the dorsal fin which are lengthened and filamentous. This species is three and one-half inches in length.

- The Star-topped Sculpin, Astrolytes fenestralis (Jordan and Gilbert), is about five inches in length, and is distinguished by the presence of a number of star-shaped scales on the top of the head. The lateral line is unarmed and the preopercular spine is provided with a single hooked process. None of the dorsal spines are filamentous in form.

Harrington's Sculpin, Axyrias harringtoni (Starks), (Fig. 68) was first taken at Port Ludlow, Washington, in 1895 and was named in honor of Dr. Mark W. Harrington, who was at that time President of the University of Washington. It was later found in the San Juan Islands by Mr. Starks. It is about four inches long and has a considerable development of short cirri on the top of the head. The space between the eyes is concave. The ground color is ollve with five bars of brown on the back.

Artedi's Sculpin, Artedius lateralis (Girard), is another of the small sculpins. It is similar to Axyrias but is five inches in length, the cirri are absent from the top of the head, and the space between the eyes is fiat. In color it is richly mottled with olive, red and black.

## EXIPLANATION OF FIGURES.

54. Ling Cod or Cultus Cod, Ophiodon elongatus (Girard).
55. Ten-lined Greenling, Hexagrammos decagrammus (Pallas).
56. Steller's Greenling, Hexagrammos stelleri (Tilesius).
57. Painted Greenling, Oxylebius pictus (Gill).
58. Black Cod or Skil-fish, A noplopoma fimbria (Pallas).
59. Giant Sea-bass, Erilepis zonifer (Lockington).
60. Jordan's Sculpin, Jordania zonope (Starks).
61. Perch-like Sculpin, Radulinus asprellus (Gilbert).
62. Bean's Sculpin, Triglops beani (Gilbert).
63. Broad-headed Sculpin, Stelginotus latifrons (Gilbert and Thompson).
64. Rough-backed Sculpin, Chitonotus pugetensis (Steindachner).
65. Northern Sculpin, Icelinus borealis (Gilbert).
66. Meany's Sculpin, Ruscarius meanyi (Jordan and Starks).
67. Red Sculpin or Irish Lord, Hemilepidotus hemilepidotus (Tilesius).
68. Harrington's Sculpin, Axyrias harringtoni (Starks).


The Red Sculpin or Irish Lord, Hemilepidotus hemilepilotus (Tilesius), (Fig. 67) is one of our larger species, extending over 18 inches. The back and sides have two separate bands of rough scales and the spinous dorsal is notched.

The Great Sculpin or Kalog, Myxocephalus polyacanthocephalus (Pallas), (Fig. 74) is a species which attains a length of two feet. The top of the head is covered with small warty protuberances. The preopercle has three strong straight spines. The dorsal fins are barely in contact.

The Buffalo Scuipin, Enophrys bison (Girard), (Fig. 71) is one of our common species. It is about a foot in length and has a long simple spine on the preopercle. The body is without scales, but along the lateral line there is a band of coarse bony plates.

The Smooth Sculpin, or Cabezon, Leptocottus arnatus (Girard), (Fig. 70) is abundant everywhere throughout the Sound region. The skin is smooth and the head is oblong. No cirri are developed. The preopercular spine is strong, with two or three points hooked upwards. The dorsal fins are separate. It attains a length of 12 inches.

The Marbled Sculpin, Scorpaenichthys marmoratus (Girard), is the largest of our cottoid fishes since it attains a length of 30 inches and a weight of 20 to 25 pounds. It is used for food but the flesh is coarse. The skin is smooth and the ventral fin has one spine and five rays.

The Round-headed Sculpin, Blennicottus globiceps (Girard), is a species with a perfectly smooth skin lacking both scales and prickles. The preopercular spine is short and blunt with the point turned upwards. The snout is very blunt. It reaches a size of 4 to 7 inches.

The Moss-dwelling Sculpin, Oxycottus embryum (Jordan and Gilbert), (Fig. 73 ) is a small species found living among the rocks and seaweeds along the shore. In its structure it is very similar to the following species, the main difference being in the form of the spine on the preoperculum. In oxycottus it is simple while in oligocottus it is forked. This species varies greatly in color, ranging from green to maroon. It is less than three inches in length and is quite rare.

The Johnny or Tide-pool Sculpin, Oligocottus maculosus (Girard), (Fig. 72) exists in countless numbers along our shores, and every pool left by the retreating tide has its quota. It is one of our smallest species, seldom measuring as much as three inches. The skin is smooth and the color ranges widely from green to gray or crimson, the darker mottling being also highly variable. The fins are prettily barred. The preopercular spine is slender and forked.

The Wooly Sculpin, Dasycottus setiger (Bean), (Fig. 69) is a species having a very large head with numerous bony tubercles over its surface. The skin covering the head supports a large number of filamentous growths which suggest the common name. The skin is without scales and the preoperculum bears two spines at its angle. The tail fin is rounded in outline. It attains dimensions of 8 inches.

Kincald's Sculpin, Malacottus kincaidi (Gilbert), is related to the two preceding species. It is entirely devoid of scales and the spinous dorsal is separated from the posterior part of the fin by a deep notch. The preoperculum
is armed with three slender diverging spines. A series of mucous pores is arranged along the lateral line and similar pores are scattered over the surface of the head. All of the fins are more or less barred and mottled. The back and sides are gray with a number of irregular dark blotches.

The Sallor-fish, Nautichthys oculofasciatus (Girard), (Fig. 75) is a species of such unusual appearance one would hardly take it to be of the sculpin family. Its name is derived from the formation of the first dorsal fin, which is short and greatly elevated so as to suggest a triangular sail. Another striking characteristic is a broad band of black which passes diagonally through the eye. It is perhaps to be expected that a deep-water sailor-fish would carry a black eye. Specimens range up to 6 inches in length.

The Cirrhated Sculpin, Blepsias cirrhosus (Pallas), (Fig. 76) is another species that departs rather widely from the general run of Sculpins. Its body is compressed so as to be quite thin and the head is comparatively small. The skin is devold of scales, but is covered with small prickles. The first dorsal is elevated and is divided into two portions by a deep notch, the second portion belng much the smaller. The second dorsal and the anal fin are relatively large. In color it is dark olive above, shading into yellow beneath. The back and sides are marked with black blotches and with several areas having a metallic sheen. Mature specimens are about 6 inches in length.

The Red-finned Sculpin, Ascelichthys rhodorus (Jordan and Gilbert), (Fig. 77) Is a smooth species 'in which the ventral fins are entirely absent. The dorsal fins are connected by a membrane. In the living fish the first dorsal fin is edged with bright crimson. It is reported as abundant at Neah ${ }^{\text {Bay. }}$

The Tadpole Sculpin, Psychrolutes paradoxus (Gunther), (Fig. 78A) is one of the smallest of the Cottidae. It is seldom more than two inches in length, and is devoid of both scales and spines. The body is covered with loose movable skin. The color is creamy white mottled with dark blotches.

Gilbert's Sculpin, Gilbertidia sigalutes (Jordan and Starks), is similar to Psychrolutes but differs among other things in the shape of the dorsal fin, which is much larger in Gilbertidia and more elevated in front. The color of Gllbert's Sculpin is dusky, with hazy darker markings on the back about the front of the dorsal and above the base of the tail. It is two and one-half inches in length.

## FAMILY 35. GRUNT-FISHES; RHAMPHOCOTTIDAE.

This is a small family, containing but a single genus with one known species of fish. It is allied to the great family of the sculpins, but has characters which link it up to another important group known as the Sea-poachers or Agonidae.

The Grunt-fish, Rhamphocottus richardsoni (Gunther), (Fig. 78B) is one of the most singular of our local species. The head is very large in proportion to the body and is rough with a number of projecting bony prominences, which would delight the heart of a fish phrenologist. The skin is without scales which are replaced by small prickles. The first dorsal is small, fitting into a groove in the back. The lower rays of the pectoral fin are free from the membrane. The eyes are large and prominent. The color is creamy white, with irregular oblique stripes passing downward across the sides. Mature specimens are about
three inches in length. When lifted from the water these fish produce a peculiar vibrant grunting sound which has caused the application of the above common name.

## FAMILY 36. SEA-POACHERS; AGONIDAE.

This family, sometimes known as Alligator Fishes, is related to the Sculpins but may be recognized by the armature of bony plates which encloses the body. Most of our twelve species are of small size, and none are of any direct value as food for man. Many of the forms are of singular appearance.

The Spineless Sea-poacher, Aspidiophoroides inermis (Gunther), may be recognized by its close-fitting vestiture of smooth plates and the lack of sharp angles or spines. No figure of our local species was available so a closely allied form, native to Alaska, is used to illustrate the type (Fig. 79).

The Masking Sea-poacher, Bothragonus swani (Steindachner), (Fig. 81) is unquestionably the most singular fish inhabiting Puget Sound. The head is greatly out of proportion to the body, and in the top of the cranium there is a deep oval pit about the margin of which is a series of tooth-like spines, thus simulating a widely opened mouth. When viewed from above there is the suggestion of a caricature of the human countenance, the great pit in the skull representing the mouth, while the surrounding plates are grouped to simulate the forehead, cheeks, nose and chin. Only two specimens are known to exist. The type was collected at Port Townsend in 1876 by Judge Swan, after whom the species was named by Steindachner, and is now in the collection of the Imperial Austrian Museum in Vienna. The second specimen was taken in the San Juan Islands, and is now in the collection of the University of Washington.

The Four-horned Sea-poacher, Hypsagonus quadricornis (Cuvier and Valenciennes), (Fig. 85) is a singular fish with four rows of spines along each side of the body. The first dorsal is relatively large and high. On the top of the head are four strong horn-like spines which suggest the common name. The general color is gray, with several vertical bands of black across the body and fins.

Pallas' Sea-poacher, Pallasinu aix (Starks), is a species with a long slender body and an elongated tubular snout. The plates enclosing the body are keeled, but lack spines. An allied form, P. barbata, (Fig. 80) is figured in the plates.

The Sturgeon Sea-poacher, Podothecus acipenserinus (Pallas), (Fig. 82) has a general appearance which suggests a small sturgeon. A firinge of barbels depending from the snout increases the similitude.

The Inky Sea-poacher, Averruncus emmelane (Jordan and Starks), (Fig. 84) has a very rough external surface, and is covered everywhere with rough coarse plates and spines. The general coloration is so dark as to suggest the above specific name. The ground color is, however, relieved through the presence of some beautiful white markings, especially on the fins, which are handsomely mottled.

The Black-finned Sea-poacher, Bathyagonus nigripinnis (Gllbert), is a long slender fish with rough spiny exterior, and with the pectoral fins divided by a notch into two portions, the lower section being composed of simple spines. All of the fins are intensely blue-black. This species has been recorded from the
outer coast of Washington, but no specimens have been reported from Puget Sound.

The Broad-headed Sea-poacher, Xeneretmus latifrons (Gilbert), is a familiar form in Puget Sound. In common with three other species of this genus which follow, it has a peculiarly formed pectoral, this fin being divided by a deep notch into two portions, the lower of which is composed of greatly thickened rays which are simple and longer than those of the upper lobe. The interorbital space is unusually narrow in the Broad-headed Sea-poacher which gives this form its specific name.

The Three-spined Sea-poacher, Xeneretmus triacanthus (Gilbert), (Fig. 83) differs from the preceding in minor anatomical details.

The Alaskan Sea-poacher, Xeneretmus alaskanus (Gilbert), is the third of these closely related forms. It differs from the two preceding forms in having three vertical spines on the rostral plate rather than one. The breast is composed of numerous plates.

The Weak-spined Sea-poacher, Xeneretmus infraspinalus (Gilbert), is very similar to $X$. alaskunus.

The Pitted Sea-poacher, Odontopyxis trispinosus (Lockington), rather suggests the Masking Sea-poacher but is much more slender in build. A pit is present on the top of the head but lacks the inwardly projecting spines of Bothragonus.

## FAMILY 37. LUMP-SUCKERS; CYCLOPTERIDAE.

Here we have a small family of short, thick flshes having a ventral suckerlike organ formed by a modification of the ventral fins. By means of this structure they are able to cling to rocks or other submerged objects, a pecullarity which has led to the assignment of the common name. The body is covered with a skin lacking in scales and either smooth or warty. The spinous dorsal is distinct. Two species of these odd fish are recorded from our waters.

The Warty Lump-sucker, Eumicrotremus orbis (Gunther), attains a length of four inches. It is rounded in form and swims clumsily. The skin is covered with numerous warty profections. It is fairly common.

The Smooth Lump-sucker, Lethotremis vinolentis (Jordan and Starks), (Fig. 86) is known by a single specimen. It is a tiny sub-globular fish, half an inch in length, with a smooth skin and two distinct dorsal fins.

## FAMILY 38. SEA-SNAILS; LIPARIDAE.

A group of tadpole-shaped fishes with a loose scaleless skin. The dorsal fins are joined to form a continuous structure. The ventral fins are modified as in the preceding group to form a sucking disk. Seven species of this family are on record from this region. All of these are placed in the genus Liparis and the specific distinctions are in some cases so technical they are hard to discriminate. Most of them are of small size, rarely more than six inches in length. The several species may be enumerated as follows:

[^1]
## EXPLANATION OF FIGURES.

69. Woolly Sculpin, Dasycottus setiger (Bean).
70. Smooth Sculpin, Leptocottus armatus (Girard).
71. Buffalo Sculpin, Enophrys bison (Girard).
72. Johnny or Tide-pool Sculpin, Oligocottus maculosus (Girard).
73. Moss-dwelling Sculpin, Oxycottus embryum (Jordan and Gilbert).
74. Great Sculpin or Kalog, Myxocephalus polyacanthocephalus (Pallas).
75. Sailor-fish, Nautichthy/s oculofasciatus (Girard).
76. Cirrhated Sculpin, Blepsias cirrhosus (Pallas).
77. Red-finned Sculpin, Ascelichthys rhodorus (Jordan and Gilbert).

78A. Tadpole Sculpin, Psychrolutes paradoxus (Gunther).
78B. Grunt-fish, Rhamphocottus richardsoni (Gunther).
79. Spineless Sea-poacher, Aspidiophoroides sp.
80. Pallas' Sea-poacher, Pallasina sp.
81. Masking Sea-poacher, Bothragonus swani (Steindachner).
82. Sturgeon Sea-poacher, Podothecus acipenserinus (Pallas).


Beautiful Tooth Sea-snail, Liparis callyodon (Pallas), (Fig. 88). The origin of the scientific name of this species is rather odd. When it was first studied by Pallas in 1811 in material derived from Alaska he noticed the peculiar tricuspid teeth of the fish, and he therefore called it callyodon, a Greek word meaning beautiful tooth.

Round-finned Sea-snail, Liparis cyclopus (Gunther).
Denny's Sea-snail, Liparis dennyi (Jordan and Starks). Named in honor of Mr. Charles L. Denny of Seattle.

Straits Sea-snail, Liparis fucensis (Gilbert).
Beautiful Sea-snail, Liparis pulchellus (Ayres).

## FAMILY 39. RONQUILS; BATHYMASTERIDAE.

This small family is represented by a single species in Puget Sound. It is known as Jordan's Ronquil, Ronquilus jordani (Gilbert), (Fig. 89). The body in this fish is elongated, suggesting the blenny type, and the skin is covered with small ctenoid scales which extend onto the cheeks. Along the lateral line the scales are enlarged. There are no barbels, crests or spines on the head. The dorsal fin is long and high, and the anal has a similar formation. The lateral line is conspicuous and high up on the side. The coloration is quite variable, some specimens being much more beautifully marked than others.

## FAMILY 40. GOBIES; GOBIDAE.

Although five species of this family are recorded from Puget Sound or adjacent waters, none of them seem to be common. Most of them are quite small, rarely exceeding a few inches. The body is slender and clothed with scales. The lateral line is absent. The distinctive characteristic most easily noted is, however, the formation of the pectoral fins, which merge together on the under side of the body to form an imperfect suctorial organ. Most of the species have the habit of burrowing in the sand or mud.

Nichols' Goby, Rhinogobius nicholsi (Bean), is our sole representative of a genus which is mainly southern in its distribution. It has six spines in the dorsal fin, whereas the species that follow have seven. It is said to be abundant in some parts of Vancouver Island, but only one specimen has come to hand in the San Juan Islands.

The Shining Goby, Lepidogobius lepidus (Girard), must be a rare species as very few have been taken up to this time. It has seven dorsal spines and is clothed with small cycloid scales.

The Long-jawed Goby, Gillichthys mirabilis (Cooper), as its name suggests, has the jaw reaching far back, nearly to the base of the pectoral fin. The head and belly are devoid of scales.

The Y-marked Goby, Quietula $Y$-cauda (Jenkins and Evermann) is similar to Gillichthys, but with flaps of skin on the shoulder girdle. A row of spots extend along the side of the body, the last assuming the form of the caplal " $Y$ " of the Greek alphabet, hence the name.

The Arrow Goby, Clevelandia ios (Jordan and Gllbert), (Fig. 90) is a slender species, two inches in length, with four or five spines in the dorsal fin. The scales are minute and cycloid. Specimens were encountered in Hoods Canal when digging in a sandy beach at low tide.

## FAMIIY 41. TOAD-FISHES; BATRACHIDAE.

Unly one species of this small family is native to Puget Sound, but this form, known as the Midshipman or Singing Fish, Porichthys notatus (Girard), is one of our commonest fish. It resembles a sculpin, but can be identified immediately by the branching lateral lines which extend across the head and body. Along these lines are distributed shining spots looking like rows of buttons, thus giving rise to the name. The female is frequently met with in collecting along the shore, since she deposits her eggs on the under side of loose rock or other debris, and stands guard over them till they are hatched. When disturbed the fish utters a loud vibrant noise which may be heard at a considerable distance. The illustration used is that of a closely allied species. (Fig. 92.)

## FAMILY 42. CLING-FISHES; GOBIESOCIDAE.

The Common Cling-fish, Caularchus meandricus (Girard), (Fig. 91) is found almost everywhere along our shores. Between the wide-set ventral fins a broad sucking disk is developed, which enables it to cling tightly to rocks or other objects. There is no spinous dorsal fin. Scales are absent. It attains a length of six inches.

## FAMILY 43. BLENNIES; BLENNIDAE.

This immense and variable family of fishes is represented with us by thirteen species. They may be recognized by their elongated eel-like form, small ventral fins, which are at times absent, the elongate dorsal fin, and the usually rounded tail fin. Most of the species are of small size and hence the group has little direct economic value.

The Decorated Blenny, Bryostemma decoratum (Jordan and Snyder), (Fig. 93) is one of the most striking of our local forms. The top of the head is covered with a growth of branching tentacles which suggested the name of the species. No lateral line is present. The ventral fins are well developed and the surface of the body is covered with small scales. The skin is richly mottled.

The Ornamented Blenny, Bryostemma nugator (Jordan and Williams), (Fig. 94 ) is closely allied to the preceding species, having the same sort of tufted head, but the coloration is quite different. There is a row of ocellated spots along the middle of the dorsal fin.

The Chameleon Blenny, Pholis ornatus (Girard), (Fig. 95) is a worthy reciplent of this name on account of its extraordinary range of coloration. It may be red, green, brown or yellow, and various shades in between. The individual blenny does not seem to be able to change its hue as some fishes are known to do. The structural peculiarities of this species are as follows: The lateral line is obsolete and there are two small spines in connection with the anal fin. The ventrals are reduced to a single spine and one ray. The tail fin is well developed, as are the pectorals. The dorsal fin is long and low and is composed of short, stiff spines. It is about one foot long.

The Variable Blenny, Apodichthys favidus (Girard), resembles Pholis in its wide range of coloration, varying from green to purple. In this species the ventral fins are lacking and the anal in is provided with a single stout sheathed spine. A narrow bar of black passes through the eye from the top of the head to the lower part of the cheek. It is about ten inches in length.

The Amphibious Blenny, Xererpes fucorum (Jordan and Gilbert), resembles Apodichthys but difiers in the smaller size of the anal spine and in the reduced size of the pectoral fins. Like the preceding it is extremely variable in color. It is found hiding in masses of seaweed at low tide and its ability to survive under these conditions has suggested the name.

The Crested Blenny, Anoplarchus atropurpureus (Kittlitz), (Fig. 96) can be singled out from its relatives by the presence of a prominent fleshy crest on the top of the head. The body is covered with very small hidden scales. The lateral line is obsolete and the mouth is set obliquely in the head. The dorsal fin is very low. This species is quite variable in color, some specimens being gray, others olive or brown. The type described by Kittlitz from Alaska in 1858 was evidently a variety with a dark purple shade. Mature specimens are eight inches in length.

The Belted Blenny, Xiphistes chirus (Jordan and Gilbert), (Fig. 97) is noteworthy for the presence of several parallel branches of the lateral line, each with many short cross branches. The pectorals are small but well formed. It measures about 12 inches in length. Color variable and more or less mottled. Several dark lines radiate from the eye.

The Rock Blenny, Xiphidion rupestre (Jordan and Gilbert), (Fig. 100) is a near relative of the preceding species, but the pectoral fins are extremely minute, not longer than the width of the eye. It lives among the rocks along the shore where it may be found hiding in masses of seaweed. It is about 12 inches in length. Several bands of color radiate from the eye.

The Dagger Blenny, Xiphidion mucosum (Girard), is one of the common Blennies of the Sound waters. It reaches a length of 18 inches and resembles the Rock Blenny very closely. The differences lie in certain relative measurements and in the character of the bands which radiate from the eye. The body tapers off posteriorily after the manner of a dagger, hence the name.

The Barred Blenny, Plectobranchus evides (Gilbert), (Fig. 98) is one of our rare and beautiful fish forms. Only a few specimens have come to light since it was named in 1890. In this species there is no lateral line, the pectorals are long and rounded and the ventrals are well developed. The color is dusky, the sides being crossed by a considerable number of narrow whitish bars. It is four inches in length.

The Snake Blenny, Lumpenus anguillaris (Pallas); is a long snaky fish with an obsolete lateral line. The paired fins are well developed and the mouth is set obliquely in the head. It measures 18 inches.

The Striped Blenny, Delolepis virgatus (Bean), is of the same long snaky type as Lumpenus, but the ventral fins are lacking. It is brownish yellow in color with three brown stripes on each side of the body. It attains a length of 30 inches.

The Aleutian Blenny, Lyconectes aleutensis (Gilbert), (Fig. 99) is like unto a small edition of the Striped Blenny, but is smaller, measuring about seven inches in length. The body is without scales. The color is reddish. Only two specimens of this fish have ever been taken, one in Alaska and one in Puget Sound.

## FAMILY 44. WOLF-FISHES; ANARHICHADIDAE.

Our representative of this family is the large, powerful, eel-like species known as the Wolf-fish, Anarrhichthys ocellatus (Ayres). It measures as much as 8 feet in length and excites great interest wherever it is captured. It is shaped like an eel, but the head is large and wolfish in aspect, with a great array of sharp teeth set in the powerful jaws. The ventral fins are absent. The pectorals are broad and set low down on the body. Color dark green, with numerous faint ocellated spots over the head and body.

## FAMILY 45. EEL-POUTS; ZOARCIDAE.

In this family are classified fishes with long eel-shaped bodies covered with small cycloid scales. The head is large, and the mouth is bordered by jaws set with conical teeth. The dorsal and anal fins are very long and the pectorals are small. The lateral line is absent. Three species occur in our fauna.

The Pacific Eel-pout, Lycodopsis pacificus (Collett), may be recognized by the black margins on the vertical fins. It reaches a length of 18 inches.

The Short-Inned Eel-pout, Lycodes brevipes (Bean), can be discriminated by the minute size of the ventral fins, which are only one-third of the distance across the eye.

The Wattled Eel-pout, Lycodes palearis (Gllbert), originally described from Alaska, was unknown from Puget Sound till a few specimens were brought up in the trawl at Friday Harbor in 1909. The ventral fins are much longer than in $L$. brevipes, and in $L$. palearis a wide membranous border is present on the inner edge of the mandible, terminating in front in a pair of sharp-pointed flaps, the whole arrangement suggesting wattles. It is 7 inches in length.

## FAMILY 46. VIPER-FISHES; SCYTALINIDAE.

The only species classified in this family is the curious Viper Fish, Scytalina cerlale (Jordan and Gilbert), (Fig. 101) originally described from Neah Bay and not since found elsewhere. It is a small blenny-like fish with a snaky head. The body is narrowed to a neck behind the head. There is no lateral line. The dorsal fin is very low, the pectorals are small and the dorsal and anal fins are united to the caudal. It burrows in the debris among rocks at low tide.

## FAMILY 47. CODS; GADIDAE.

In this group we have the cod and its various relatives. They are readily recognized by the division of the dorsal fin into three separate parts, and by the presence of a barbel on the lower jaw. The anal fin is likewise divided to form two sections. Four species of the cod family occur in our waters.

The Pacific Codfish, Gadus macrocephalus (Tilesius), (Fig. 102) differs but little from the cod of the Atlantic, but the species have been regarded as

## EXPLANATION OF HIGURES.

83. Three-spined Sea-poacher, Xeneretmus triacanthus (Gilbert).
84. Inky Sea-poacher, Averruncus emmelane (Jordan and Starks).
85. Four-horned Sea-poacher, Hypsagonus quadricornis (Cuvier and Valenciennes).
86. Smooth Lump-sucker, Lethotremis vinolentis (Jordan and Starks).
87. Green's Sea-snail, Liparis greeni (Jordan and Starks).
88. Beautiful-tooth Sea-snall, Liparis callyodon (Pallas).
89. Jordan's Ronquil, Ronquilus jordani (Gilbert).
90. Arrow Goby, Clevelandia ios (Jordan and Gilbert).
91. Cling-fish, Caularchus meandricus (Girard).
92. Midshipman or Singing Flsh, Porichthys sp.
93. Decorated Blenny, Bryostemma decoratum (Jordan and Snyder).
94. Ornamented Blenny, Bryostemma nugator (Jordan and Williams).
95. Chameleon Blenny, Pholis ornatus (Girard).
96. Crested Blenny, Anoplarchus atropurpureus (Kittlitz).
97. Belted Blenny, Xiphistes chirus (Jordan and Gilbert).
98. Barred Blenny, Plectobranchus evides (Gllbert).
99. Aleutian Blenny, Lyconectes aleutensis (Gilbert).
100. Rock Blenny, Xiphidion rupestre (Jordan and Gilbert).

zoologically distinct. The main distribution of the Pacific Cod is on the banks in the North Pacific. It does not occur in sufficient abundance in our waters to constitute a fishery.

The Tom-cod, Microgadus proximus (Girard), (Fig. 104) has the appearance of a miniature cod, the young of which it resembles very closely. The technical difference between the two genera is in the position of the vent. In Gadus it is below the second dorsal fin, while in Microgadus it is in front of the same fin. It is a valuable food fish, attaining a length of about one foot.

The Puget Sound Pollack, Theragra fucensis (Jordan and Gilbert) is closely related to the Alaska Pollack, Theragra chalcogramma (Pallas), (Fig. 103) which it replaces to the southward. It differs from the cod and Tom-cod in that the lower jaw projects beyond the upper and the barbel is of small size. It is a valuable food fish and attains a length of two feet.

The Cusk-Codling, Brosmophycis marginatus (Ayres), is a fish which was formerly classed in the family Brotulidae but its relationship with the Cod family having been established it is now placed with the latter. It is an exceedingly rare fish at present since our knowledge of it is based on two specimens, one taken at San Francisco, the other in Puget Sound. It rather does violence to the usual cod type, since the dorsal fin is not divided to form the usual three finlets but is a continuous structure, and the anal is formed on the same type. The ventral fins are developed as long flaments. There are no barbels on the head. The Californla example measures 12 inches.

## FAMILY 48. HAKES; MERLUCCIDDAE.

A family of fishes closely allied to the cods, the differences between the groups being based on technical points in the skeleton. The only species on the Pacific Coast is the Horse Mackerel or Pacific Hake, Merluccius productus (Ayres), (Fig. 105). The second dorsal fin is deeply notched but not divided into two separate fins as in the cods. The head is sharply pointed. The scales are very small and are deciduous. The fish is silvery gray in color and attains a length of three feet.

## FAMILY 49. RIBBON FIBHES; TRACHYPTERIDAE.

The only species of this family recorded from Puget Sound is the remarkable fish known as the King of the Salmon, Trachypterus rexsalmonorum (Jordan and Gilbert), (Fig. 106). It is very rare as it appears to be a deep-water species which comes to our shores only through some accidental cause. Its body is from 5 to 7 feet in length, compressed so as to be exceedingly thin and covered with a skin shining like burnished silver. The dorsal fin extends far forward and at its anterior end there is a raised finlet consisting of four greatly lengthened rays. The eye is very large, and the tall-fin, instead of spreading out fan-like in the usual manner, is greatly elongated and directed diagonally upwards.

## FAMILY 50. THE FLAT FISHES; PLEURONECTIDAE.

This large family which is represented in our waters by fifteen species contains fishes which are almost without exception of food value, although only a limited number of kinds ordinarily reach the market.

The members of this family are immediately recognized by the characteristic flattened form, the animals actually swimming on one side, with a corresponding distortion of the bodily structure, the most noticeable change being in the position of the eyes, one of these organs necessarily shifting around from the under side. The shifting of the fins is also rather striking in most cases.

The forms commonly called flat fishes include two families, the second of these being the Soles (Soleidat). None of the latter occur within our faunal limits, so all of our flat flshes are necessarily halibuts, flounders and turbots.

The Halibut, Hippoglossus hippoglossoides (Linnaeus), (Fig. 107) is our largest and, commercially speaking, most important flat fish. The ventral fins are symmetrical and the one on the ventral side is not extended along the ridge of the abdomen. The mouth is but slightly distorted, and the caudal fin is lunate. The scales are small and cycloid in form. The lateral line has a bow anteriorly. It attains a length of 6 to 8 feet and a weight of upwards of 600 pounds, but specimens of these dimensions are naturally rare. Halibut are taken within the limits of Puget Sound, but the commercial catch comes from the banks off Cape Flattery or farther to the north.

Jordan's Flounder, Eopsetta jordani (Lockington), is sometimes erroneously called California Sole. The fins and mouth are formed much as in the halibut. The lateral line lacks the bow at the anterior end and is without an accessory dorsal branch. Two rows of teeth are present in the upper jaw, one row in the lower. The scales are small. The fish attains a length of 20 inches and is an excellent food fish, but is not abundant in Puget Sound.

The Puget Sound Sandidab, Hippoglossoides elassodon (Jordan and Gilbert), (Fig. 108) resembles Eopsetta but has a single row of teeth in the upper jaw instead of two, and possesses a spine developed in connection with the anal fin. It has a length of 18 inches.

The Slender Flounder, Lyopsetta exilis (Jordan and Gilbert), is another relative of Eopsetta, but the scales are unusually large and the proportions are more slender.

The Black-spotted Flounder, Psettichthys melanostictus (Girard), (Fig. 109), resembles the preceding species but has an accessory branch to the lateral line. It is grayish brown with fine black markings. It is 20 inches long and highly regarded as a food flsh.

The Soft Flounder or Plaice, Citharichthys sordidus (Girard), (Fig. 110) is our only representative of the tribe of flat fishes known abroad as turbots. They differ from the above described species which are all related rather closely to the halibut and flounder, in possessing a relatively large mouth, and the eye and color is on the left side rather than on the right. The caudal fin is rounded and the ventral fins are dissimilar in form and position. The space between the eyes is concave. This species attains a weight of two pounds but is not highly regarded as a food fish, since the flesh is soft.

The Speckled Flounder, Citharichthys stigmaeus (Jordan and Gilbert), is of the same general type as the soft flounder, but with the space between the eyes raised in a sharp ridge. Very few specimens of this species have been taken.

## EXPLANATION OF FIGURES.

101. Viper-fish, Scytalina cerdale (Jordan and Gilbert).
102. Cod-fish, Gadus sp.
103. Pollack, Theragra sp.
104. Tom-cod, Microgadus proximus (Girard).
105. Pacific Hake, Merluccius productus (Ayres).
106. King of the Salmon, Trachypterus sp.
107. Halibut, Hippoglossus hippoglossoides (Linnaeus).
108. Puget Sound Sand-dab, Hippoglossoides elassodon (Jordan and Gilbert).
109. Black-spotted Flounder, Psettichthys melanostictus (Girard).
110. Soft Flounder or Plaice, Citharichthys sordidus (Girard).
111. Rough Flounder, Inopsetta ischrya (Jordan and Gilbert).
112. Rock Flounder, Lepidopsetta bilineata (Ayres).
113. Speckled Flounder, Pleuronichthys nephelus (Starks and Thompson).
114. Starry Flounder or Diamond Flounder, Platichthys stellatus (Pallas).


The Scaly-finned Flounder, Isopsetta isoleis (Lockington), has a small unsymmetrical mouth, with the bones on the blind side strongly curved. The lateral line has an accessory branch and is arched but slightly in front. The fins are low, and are covered with ctenoid scales. It reaches a length of 15 inches and is a good food fish.

The Rough Flounder, Inopsetta ischrya (Jordan and Gilbert), (Fig. 111) is similar to the preceding species but the teeth are incisor-like and the scales are not imbricated. Specimens weigh up to four pounds. It is not common in our waters but is a good food fish.

The Near-eyed Flounder, Parophrys vetulus (Girard). is closely related to Inopsetta and has the same incisor-like teeth, but the scales are imbricated and the space between the eyes is very narrow.

The Rock Flounder, Lepidopsetta bilineata (Ayres), (Fig. 112) is of the same general type as Isopsetta and Inopsetta, but the lateral line has a distlnct arch in front and an accessory branch is developed. The scales are imbricated. In color it is yellowish brown with many pale blotches.

The Starry Flounder or Diamond Flounder, Platichthys stellatus (Pallas), (Fig. 114) is one of our most familiar flat flshes, as it is very common and is constantly seen in the markets. It is immediately recognized by the absence of scales, their place being taken by a corresponding number of stellate tubercles. It is dark brown above with a number of pronounced blotches of black upon the fins. It attains a considerable size, specimens two feet in length being on record.

The Smear-dab or Slippery Sole, Microstomils pacificus (Lockington), is a species which secretes an extraordinary amount of mucus when taken from the water, which makes them extremely slippery. The mouth is small and the eyes unusually large. The pectoral fins are of about equal size. No spine is developed at the front end of the anal fin. Ground color, pale brown with darker blotches. The larger specimens weigh upwards of a pound and are used for food.

The Long-finned Flounder, Glyptocephalus zachirus (Lockington), is easily recognized by the extraordinary length of the pectoral fin on the upper side, which is fully one-quarter the length of the body. The lateral line is nearly straight. In color it is pale brown, varying to ashy. This species is so thin and the fiesh so dry it is not regarded as a desirable food fish.

The Speckled Flounder, Pleuronichthys nephelus (Starks and Thompson), is an abundant species in Puget Sound. The lateral line is nearly straight and has a dorsal branch. The scales are large, circular and imbedded in the skin. The lips are thick and have several lengthwise folds. The anal fin is preceded by a spine. In color this species is mottled and speckled in a variegated pattern, but several conspicuous dark spots on the side and others on the tail fin give a distinctive marking to the fish. It attains a length of about a foot.

## STATISTICS

FOR

## FISCAL YEAR 1919

April 1, 1919, to March 31, 1920.

# FISHERIES DEPARTMENT <br> STATE OF WASHINGTON 

Appropriations, Receipts and Disbursements; Output of Salmon and Trout Hatcheries and Costs; Licenses Issued;

Take and Value of Food Fishes; and Other
Information Regarding the Food
Fishing Industry.
APYROPRIATIGN AND EXPENDITURES OF FISHERIES FUND.

itemization of expenditures of fisheries fund.

APIROIDIATIONS AND EXPENDITURES OF GAME FUNL.
Fincal Year 1010.

| FUND | Appropria. tion for Two Years | Expended Fiscal Year 1919 | Balance April 1, 1920 |
| :---: | :---: | :---: | :---: |
| For the Offiee of the State Game Warden; salary and traveling expenses of State Game Warden, and salary and traveling expenses of two sperial deputy state game wardens, under the State Gaine Warden; maintenance of state trout hatcheries; nuw hatehary construction; cquipment, maintenance and stocking of state game farm at the Walla Walla penitentiary; new construction at the state game farm; salaries of employes, rent and incidentals, and printing of the State Game Warden, and purchase of game birds and animals..... | \$85,000 00 | \$42,370 74 | \$42,629 26 |
|  |  |  |  |
|  |  |  |  |
| For the Omes of the Chig Deputy Game Warden; salary of the chief deputy state game warden and traveling expenses; salary and traveling expenses of two special deputy state game wardens under the chief deputy state game warden; salariss of cmployes, rent, incidentals and printing of the ehief deputy state game warden.. <br> Totals $\qquad$ | 12,770 00 | 6,125 13 | 6,84487 |
|  | \$97,770 00 | \$48,495 87 | \$49,274 13 |

ITEMIZATION OF GXPENDITCHES OF GAME FUND.

|  | Sularios | Labor | Mileage | Subsist- ence | General Expense | Manten- <br> ance | Inprovements | Total Cost of Operation | $\begin{aligned} & \text { Egg } \\ & \text { Output } \end{aligned}$ | Cost per <br> Thousand |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Office Expense State Game Warden. | \$1,000 00 | \$80 01 | \$ ${ }^{3} 3283$ | \$1,007 16 | \$6,5S1 96 |  | \$75 00 | \$9,585 96 |  |  |
| Repair and maintenane of Hatcheries | 6,725 10 | 5,31781 | 1,392 84 | 1,092 97 | 1,305 29 | \$193 33 | 39982 | 17,347 14 | 23,503,835 | 8.74 |
| Maintenance Wulla Walla Game Farm... | 2,063 2\% | 1,602 99 | ${ }^{41628}$ | 8687 | 6,40761 | 1,461 17 | 3,999 49 | 15,437 64 |  |  |
| Ofthee Expenso Chinf Deputy Game Warden | 1,800 cm | 2050 | 91395 | 79453 | 2,590 15 |  | 600 | 6,125 13 |  |  |
| Totals. | \$11,598 3 | \$6,460 31 | \$3,555 90 | 82,981 51 | \$16,975 01 | \$2,454 50 | \$4,480 31 | \$48,495 87 |  |  |

* Inclutes cost of distribution of fry and of purchase of eggs in Eastern States, and transportation therefrom.


## APPROPRIATION AND EXPENDITURES OF STATE OYSTER RESERVE FUND.

Fiscal Year 1818.

| F U D D | Appropria. tion for Two Years | $\begin{gathered} \text { Expended } \\ \text { Fliscal Year } \\ 1919 \end{gathered}$ | $\begin{gathered} \text { Balance } \\ \text { Aprli 1, } \\ 1920 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| For the improvement and protection of the state oyster reserves | \$10,000 00 | \$8,309 89 | \$1,690 11 |

ITEMIZATION OF EXPENDITURES OF STATE OXSTER RESERVE FUND.

| Patrol Service | \$1,250 39 |
| :---: | :---: |
| [mprovement o | 7,049 50 |
| Total. | 88,309 |


Fineni Year 1910.

| CREDITED TO THE FISHERIES FUND | Puget Sound District | Columbla River District | Grays Harbor District | WIIapa Harbor Distriet | Entire State | Totals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LICENSES- |  |  |  |  |  |  |  |
| 8,688 Fishing ....... | \$20,213 47 | 814.04661 | * 8,480 25 | 82,48750 |  | [49,189 88 |  |
| 134 Buyers at \$1.00, ..... | 11400 | . 800 | 400 | 800 | , , , . .,.e..... | 18400 |  |
| 11 Seow buyer at \$50,00. |  | 55000 |  |  |  | 55000 |  |
| 183 Retail dealer ........ 183 Wholesale dealer . | 72100 | 19100 | 4800 | 2900 |  | 98800 |  |
| 138 Wholesale dealer ....... i4 Halibut wholesale dealer. | 770.00 | 18000 | 14000 | 17000 | ............. | 1,200 00 |  |
| 24 Halibut wholesale dealer.... | 10500 | 1500 |  |  | ............. | 12000 |  |
|  | 8000 |  |  | , | n............ | 3000 |  |
| 6 By-product manufacturing . ....................................... | 150 7500 | 195 (0) | (1.1.1.......4 |  | .............. | 15000 20000 |  |
| 8 Private hatchery ${ }^{8}$ Private hatchery product dealer............................................ | 7500 500 | 125 200 800 |  |  | .................. | 20000 760 |  |
| 13 Hotel serving private hatchery product | 900 | 400 | . . . . . |  |  | 1300 |  |
|  |  |  |  | 10 | 81500 | 1500 |  |
| 1511915 Llcenses | 8200 | 300 | 8300 | 1900 |  | 18700 | 852,833 83 |
| 8,118 Total |  |  | - |  |  |  |  |
| TJXES - |  |  |  |  |  |  |  |
| Fish caught ................................................ | 8,100 10 | 2,237 78 | 1,197 48 | 50300 |  | 12,090 20 |  |
| Fish bought, sold or otherwise dealt in at 81.25 per ton.. | 1447 | 1,572 44 |  |  |  | 1,586 91 |  |
| Finh bought, sold or otherwise dealt in at \$1.00 per tob.. | $\begin{array}{r}6,761 \\ 13,525 \\ \hline 8\end{array}$ | 210 9.485 | 20665 | $\begin{array}{r}86124 \\ 65 \\ \hline 8\end{array}$ | (re', | 8,095 00 |  |
| Canned Salmon ${ }_{\text {Canned }}$ food and shell fish other than salmon. | 13,525 98 | 9,435 79 | 86080 | 6570 |  | 23,368 36 |  |
| Cunned food and shell fish other than salmon. | 7921 | 5677 | 29613 | 3178 |  | 46884 | 45,578 91 |
| SALES- |  |  |  |  |  |  |  |
| Salmon eggs | 19125 |  |  |  |  | 19125 |  |
| Spawned fish ... Contiscated gear |  |  |  |  | 15,185 11 | 15,18511 |  |
| Confiscated gear Confiscated flsh | 7000 | 6000 |  |  |  | 18000 |  |
| Conliscated flyh | 3452 | 1,129 46 |  | 310 | .....0.2.'... | 1,161 08 | 10,007 44 |
| Misceillaneous- | 0500 | 5100 | 7800 | 15 |  |  |  |
|  |  |  |  |  |  |  |  |
| Collected by State Fish Oommissioner..................... Fines and Interest earninge on Fisheries Fund deposits reported by State Treasurer. | 880,11667 | \$29,875 39 | \$5,801 40 | 84,19817 | \$15,200 11 | $\begin{array}{r} 8115,31168 \\ 6,913 \mathrm{B4} \end{array}$ | 6,013 54 |
| Total credited to Fisheries Fund. |  |  |  |  |  | 8122,225 22 | \$122,225 22 |



|  | LICENSES |  |  | *Misc. Reccipts | Fee | Amount Oollected |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fishing | $\begin{array}{\|c\|} \hline \text { Dealers } \\ \text { and } \\ \text { Misc } \end{array}$ | Cannery |  |  |  |
| PUGET SOUND DISTRICT-- |  |  |  |  |  |  |
| Pound net .................................... | 259 |  |  |  | \$5000 | \$12,050 00 |
| Set net | 686 |  |  |  | 375 | 2,572 50 |
| Gill net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 540 |  |  |  | $\left\|\begin{array}{c} 85 \text { and } 1 \mathrm{c} \\ \text { ea. add. it. } \end{array}\right\|$ | 3,157 60 |
| Drag seine | 187 |  |  |  | 2 c per 1 t . | 1,251 62 |
| Purse selne | 258 |  |  |  | 2750 | 7,005 00 |
| Reef net | 14 |  |  |  | 500 | 7000 |
| Hook and line ................................... | 1,032 |  |  |  | 100 | 1,032 00 |
| Smelt drag bag net........................... . | 57 |  |  |  | $\begin{gathered} \$ 1 \text { and } 2 c \\ \text { es. add. it. } \end{gathered}$ | 25135 |
| Brugh weir . ${ }^{\text {a }}$............................... | 11 |  |  |  | 20. 2500 | 27500 |
| Beam trawl | 16 |  |  |  | 1000 | 16000 |
| Clams and mussols | 232 |  |  | - | 100 | 23200 |
| Grabs | 124 |  |  | . ....... | 100 | 12400 |
| Gill net extensions... |  |  |  |  | Ic per ft. | 1100 |
| Drag selne extensions. . . . . . . . . . . . . . . . . . |  |  |  |  | 2 c per ft . | 2140 |
| Smelt drag bag net extensions............ |  |  |  |  | 2 c per ft . | 1000 |
| Buyers ............................ |  | 114 |  |  | 100 | 11400 |
| Retail dealer |  | 721 |  |  | 100 | 72100 |
| Wholesale dealer |  | 77 |  |  | 1000 | 77000 |
| Halibut wholesale dealer | ......... | 21 |  |  | 500 | 10600 |
| Codfsh, canning and curing |  | 6 |  |  | 500 | 3000 |
| By-products, manufacturing .............. | ........ | 6 |  |  | 2500 | 15000 |
| Private hatchery .......................... |  | 3 | ....... | . . . . . . | 2500 | 7500 |
| Private hatchery product dealer........... |  | 2 |  |  | 250 | 500 |
| Hotel serving private hatchery product. |  | 9 |  |  | 100 100 | 900 1500 |
|  |  | 15 |  |  | 100 | 1500 |
| Cannery .... 1918 Licenses |  | ........ | 43 | 55 |  | 8200 |
| Totals. | 3,416 | 974 | 43 | 55 |  | \$31,289 47 |
| COLCMBIA RIVER DISTRICT- |  |  |  |  |  |  |
| First class pound net. | 132 |  |  |  | \$25 00 | 83,300 00 |
| Second class pound net . . . . . . . . . . . . . . . | 145 |  |  |  | 1500 | 2,17500 |
| Stationary fish wheel.. | 17 |  |  |  | 3500 | 50500 |
| Scow fish pheel............................... | 10 |  |  |  | 2500 | 25000 |
| Set net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 231 |  |  |  | 375 | 89825 |
| GIII net | 517 |  |  |  | 750 | 3,877 50 |
| Drag seine .................................... | 45 |  |  |  | 3 c per ft. | 85236 |
| Purse selne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 43 |  |  |  | 2750 | 1,182 50 |
| Hook and line...................... . . . . . . . | 330 |  |  |  | 250 | 82500 |
| Bag net | 118 |  |  |  | 100 | 11800 |
| Crabs.. | 5 |  |  |  | 100 | 500 |
| Buyer's ....... |  | 8 |  |  | 100 | 8800 |
| Scow buyer's |  | 11 |  |  | 5000 | 55000 |
| Retall dealer ... |  | 191 |  |  | 100 | 191,00 |
| Wholesale dealer ........ |  | 18 |  |  | 1000 | 18000 |
| Hallbut wholesale dealer. |  | 3 |  |  | ${ }^{5} 000$ | 1500 |
| Private hatchery ................. |  | 5 |  |  | 2500 | 12500 |
| Private hatchery product dealer......... |  | 1 |  |  | 250 100 | 250 400 |
| Hotel serving private hatchery product. |  | 4 |  |  | 100 | 400 |
| Cannery ......... |  |  | 9 | 3 |  | 300 |
| Totals. | 1,593 | 241 | 9 | 3 |  | \$15,125 11 |


|  | LICENSES |  |  | *Mise. Re. ceipts | Fee |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fishing | $\begin{gathered} \text { Dealers } \\ \text { and } \\ \text { Misc } \end{gathered}$ | Cannery |  |  | Amount Collected |
| GRAYS HARBOR DISTRICT- |  |  |  |  |  |  |
| Pound net | 48 |  |  | ...... | \$1500 | 372000 |
| Set net | 349 |  |  |  | 375 | 1,308 75 |
| Gill net | 117 |  |  |  | 750 | 87750 |
| Drag seine | 1 |  |  |  | 3c per ft. | 2700 |
| Hook and line. | 72 |  |  |  | 100 | 7200 |
| Clams and mussels. | 476 |  |  |  | 100 ! | 47600 |
| Crabs | 5 |  |  |  | 100 | 500 |
| Buyer's |  | 4 |  |  | 100 | 4 Gb |
| Retail dealer |  | 48 |  |  | 100 | 45 co |
| Wholesale dealer |  | 14 |  |  | 1000 | 14000 |
| Cannery |  |  | 20 |  |  |  |
| 1918 Licenses |  |  |  | 83 |  | 8300 |
| Totals. | 1,068 | 66 | 20 | 83 | ............. | \$3,761 25 |
| WILIAPA HARBOR DISTRICT- |  |  |  |  |  |  |
| Pound net .......................... | 63 |  |  |  | \$1500 | \$945 00 |
| Set net | 174 |  |  |  | 375 | 60950 |
| Gill net | 76 |  |  |  | 750 | 57000 |
| Drag seine ..... | $\bigcirc$ |  |  |  | 3c per ft. | 24003 |
| Hook and line. | 16 |  |  |  | 100 | 1600 |
| Bag net..... | 1 |  |  |  | 100 | 100 |
| Clams and mussels. | 164 |  |  |  | 100 | 16400 |
| Clams for bait.... | 13 |  |  |  | 100 | 1300 |
| Crabs | 32 |  |  |  | 100 | 5200 |
| Buyer's |  | 8 |  |  | 100 | 800 |
| Retail dealer |  | 23 |  |  | 100 | 2300 |
| Wholesale dealer |  | 17 |  |  | 1000 | 17000 |
| Oannery ... |  |  | 9 |  |  |  |
| 1918 Licenses |  |  |  | 10 |  | 1900 |
| Totals. | 561 | 48 | 9 | 10 |  | 92,657 50 |
| ALI DISTRICTS COMBINED - |  |  |  |  |  |  |
| Pound net . | 259 |  |  |  | \$50 00 | \$12,950 00 |
| First class pound net. | 132 |  |  |  | 2500 | 3,300 00 |
| Second class pound net. | 145 |  |  |  | 1500 | 2,175 00 |
| Pound net ........... | 111 |  |  |  | 1500 | 1,665 00 |
| Stationary fish whenl. | 17 |  |  |  | 3500 | 59500 |
| Scow fish wheel | 10 |  |  |  | 2500 | 25000 |
| Set net | 1,44ก |  |  |  | 375 | 5,400 00 |
| Gill net | 710 |  |  |  | - 750 | 5,325 00 |
| Gill net | 540 |  |  |  | $\$ 5$ and 1 c ea. add. ft. | 3,157 60 |
| Drag selne | 187 |  |  |  | ea. per ft. | 1,251 62 |
| Drag seine | 48 |  |  |  | 3e per ft. | 90336 |
| Purse solne | 301 |  |  |  | 2750 | 8,277 50 |
| Reef net ... | 14 |  |  |  | 500 | 7000 |
| Hook and line. | 1,120 |  |  |  | 100 | 1,12000 |
| Hook and line. | 330 |  |  |  | 250 | 82500 |
| Bag net ............. | 119 |  |  |  | 100 | 11900 |
| Smelt drag bag net. | 57 |  |  |  | $\begin{array}{r} \$ 1 \text { and } 2 c \\ \text { ea. add. It. } \end{array}$ | 25135 |
| Brush weir | 11 |  |  |  | 2500 | 27500 |
| Beam trawl | 16 |  |  |  | 1000 | 16000 |
| Olams and mussels. | 88 |  |  |  | 100 | 87200 |
| Clams for bait. | 13 |  |  |  | 100 | 1300 |
| Crabs | 186 |  |  |  | 100 | 18600 |
| Gill net extensions. |  |  |  |  | le per ft. | 1100 |
| Drag soine extensions............ |  |  |  |  | 2 c per ft. | 2140 |
| Smelt drag bag net extensions |  |  |  |  | 2 c per ft . | 1000 |
| Buyer's |  | 134 |  |  | 100 | 13400 |


*This item represents receipts which were isqued in liou of licenses, unon payment of licenso fees, to persons who had opsated the previous yar without securing licenses as required by law.
CATUH OF SALMON AND VALUE.*
Fincal Year 1919.

| DISTEICT AND (FEAR WITH WHICH TAEEN | Number of Chinook | Number of Dog | Number of Humpback | Number of Silver | Number of Sockeye | Number of Steelhead | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DISTRICT- |  |  |  |  |  |  |  |
| Pound nets ............... | 257,698 | 185,292 | 2,081,944 | 711,499 | 453,965 | 11,818 | - 3,702,056 |
| Set nets ... | 71,823 | 30,000 | 5,431 | 72,49 |  | 8,5220 | 126,334 |
| Gill nets | 47,022 | 62,938 | 37,584 | 129,895 | 4,803 | 2,275 | 284,517 |
| Drag soines | 720 | 80, 835 |  | 12,118 |  |  | 98,674 |
| Purse soincs | 12,250 | 1,112,404 | 2,513,591 | 427,586 | 283,600 | 1,878 | 4,351,289 |
| Reef nets.. | 1262 | 3,404 | 29,042 | 9,6\%0 | 3,210 | 50 | 46,307 |
| Hooks and lines | 19,345 | 47 | 298 |  | 906 | 158 | 20.844 |
| Bag nets.. |  | 171 |  |  |  |  | 171 |
| Totals | 247,766 | 1,475,001 | 4,067,890 | 1,363,153 | 746,604 | 24,098 | $8,605.292$ |
| Value | 8747,80650 | \$500,036 40 | \$1,166,055 00 | \$1,090,529 40 | \$672,024 60 | \$37,047 00 | \$4,304,282 30 |
| COLUMBIA RIVER DISTRICT- |  |  |  |  |  |  |  |
| First class bound nets......... |  |  | 17 |  |  |  |  |
| Speond class pound nets. | 28,199 | 8,922 |  | 15,770 | 2,043 | 11,859 | 63,093 |
| Stationary fish wheels... | 7,374 |  |  |  | 11,010 | 2,196 | 20,580 |
| Scow fish wheels. | 6.618 |  |  |  | 7,196 | ,717 | 14,531 |
| Sit nets | 3,623 | 3,253 | 10 | 465 | 3,307 | 3,491 | 14,154 |
| Gill nets ... | 169,566 | 72,711 | 741 | 22,385 | 11,421 | 26,824 | 296,608 |
| Drag seines | 24,430 | 57 | 32 | 18,198 | 9,404 | 14,037 | 61,097 |
| Purse seines Hooks and | 76,819 | , 1 +1.....,.,tt | 500 | 16,290 | 333 <br> 876 | 1,161 | 94,603 136,918 |
| Hooks and lins | 54,918 |  | 500 | 80,865 | 876 | 254 | 136,918 |
| Totals | 424,406 | 108,579 | 1,300 | 190,258 | 51,217 | 91,683 | 876,608 |
| Vatus, | 81,077,146 30 | \$05,147 40 | \$300 00 | \$179,327 70 | \$46,095 ${ }^{\circ}$ | \$91,683 60 | \%1,459,789 70 |
| GRAYS H.ARBOR DISTRICT- |  |  |  |  |  |  |  |
| Pound nets . . . . . . . . . . . Set nets | 8,006 9,178 | 65,899 65,386 | 4,205 | 23,295 35,190 | 962 | $1,0<8$ 5,105 | 98,945 119,785 |
| Gim nets. | 6,780 | 52,839 |  | 37,050 |  | 414 | 97,002 |
| Drag seines li... Hooks and lines. | 2,317 |  |  |  | .............. | ..... ....... | 2,317 |
| Totale | 26,946 | 184,124 | 4,205 | 95,553 | 662 | 6,607 | S18,097 |
| Value. | \$61,975 80 | \$110,474 40 | \$1,981 50 | \$85,987 70 | 872890 | $\$ 0,91050$ | \$270,348 10 |

Cateh of Salmon and Value*-Continued.
Fisenl Yenr 1910.


* Value based on average frice paid fisticrmen.
CATCH OF SHELL AND FOOD FISH (OTHER THAN SALMON), AND VALUE:*
Fincal Year 1919.

| DISTRICT AND GEAR WITH WHICH TAKEN | Pounds of Clams and Mussels | Number of Crabs | Pounds of Herring | Pounds of Shad | Pounds of Shrimp | Pounds of Smelt | Number of Sturgeon | Pounds of Olams for Bait | Total Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DISTRICT- |  |  |  |  |  |  |  |  |  |
| Pound net |  |  | 200 |  | ,...... | 2,958 | 3 | . $. . .1 .1 . .$. | ..... |
| Gili nets. |  | ............. | .............. | 9* |  | 5.748 | 2 |  | , ........... |
| Drag seines............................................ |  |  | 366,113 |  |  | 651,010 |  |  | . |
| Purse splnes.............................................. |  | , |  |  |  | 11,805 | 1 |  | ............ |
| Brush weirs...................................................... |  |  | 110,606 |  |  | 207,903 | ... | ............ | ............ |
| Beam trawls |  |  | 0 |  | 74,584 | 1 |  |  | ............. |
| Clams.. | 925,531 |  |  |  |  |  |  |  | ............ |
| Crabs |  | 483,151 |  |  | ...... . . . . . . |  | ............. |  | - |
| Tota | 925,631 | 488,151 | 700,618 | 2 | 74,584 | 968,318 | 57 | +1, | .............. |
| Value | \$23,138 27 | 850,84906 | \$7,006 18 | 8015 | \$5,220 88 | 838,732 72 | \$5 55 | -............. | \$124,965 81 |
| CoLUMBLA RIVER DISTRICT- |  |  |  |  |  |  |  |  |  |
| First elass pound nets.............................. |  |  | ............ | 12,563 |  |  | 102 | ............, | .... |
| Second class pound nets.................... . . . . . . Stationary fish wheels....................... | ............... |  | . ............ | 2,580 6,373 |  | ................ | 711 | , | ............. |
| Scow fish wheels....................................... |  |  | ... | 6,373 |  |  | 42 |  | , |
| Set nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  |  | ........... | . ${ }^{\text {8,533 }}$ |  |  | 136 | ............ | ............ |
| Gill nets.............................................. | .............. | .......... |  | 70,009 |  |  | 1,401 | . $\cdot$........... | . |
| Drag seines.......................................... | .,............. |  | 相 | 110,007 | , | ............ | 270 | - | .... |
| Purse seines Hooks and lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  |  |  | 10,570 |  |  | 41 |  | ............ |
| Bag nets....................................................... | ............... |  | . | . | , $1+1 . .$. | ${ }^{977,084}$ | 22 | ....... | .... |
| Crabs.................................................. |  | 5,160 |  |  |  |  |  |  | ............. |
| Totals................................... | .1.1.......... | 5,100 |  | 220,700 |  | 977,084 | 2,116 | .............. | [............. |
| Value...................................... |  | \$537 60 |  | 80,621 00 |  | \$14,656 26 | $\$ 21160$ | , | \$22,026 36 |

- Value based on average price paid fishermen
（Gnteh of Shell and Food Finh（Other Than Smimon），nind Vnlue Coneluded．

| DISTRICT AND GEAR WUTH WHICH | Pounds of Clams and Muserls | Urabs <br> Number of Urabs | Pounds of Herring | Pounds of Shad | Pomurls of Nhrimp | $\begin{aligned} & \text { Pounds of } \\ & \text { Sment } \end{aligned}$ | Number of Nturgeon | Pounds of Olima for l3alt | $\begin{aligned} & \text { Total } \\ & \text { Value } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I RAYS HARBOR IDSTRICT－ |  |  |  |  |  |  |  |  |  |
| Pound nets．．．．．．．．．．．．．．．．．．．．．．．．． |  |  |  |  |  |  | 151 |  |  |
| lilll nets． |  |  |  |  |  |  | 23 |  |  |
| lirag somes |  |  |  |  |  |  | 1 |  |  |
| （1amк． | 2， $\mathrm{M}_{3} 3,218$ |  |  |  |  |  |  |  |  |
| Cratis． |  | 6，5013 |  |  |  | － |  |  |  |
| ＇Totals． | 2．96：3，213 | （1），［143 |  |  |  |  | 174 |  |  |
| Value． | 沙22．24135 | Miso 77 |  |  |  |  | 835（61） |  | ＊22x，9世3 72 |
| WHILAPA MARBOR DISTRICT－ |  |  |  |  |  |  |  |  |  |
| Pound nets，．．．．．．．．．．．．． |  |  |  |  |  |  | 1 |  |  |
| （iill nets． |  |  |  |  |  |  | 270 |  |  |
| （Vlums．．． | 620，637 | 370，812 |  |  |  |  |  | 46，24 | ．．．．．．．．．．．． |
|  | ．．．．．．．．．． |  | －－－ | －．．．．．．．．．．． |  | －－－． |  |  | － |
| Totals． | 628,637 | 370，$x^{1} 2$ |  |  |  |  | $9 \times 3$ | \＄， 294 |  |
| Value． | \＄37，71822 | 946，361［0］ |  |  |  |  | \＄93 30 | ＊ 3.41176 | 887.51079 |
| ALI，IISTRICTS OOMBINED－ |  |  |  |  |  |  |  |  |  |
| $\underset{\text { Pround nets．．}}{\text { Fish whels．}}$ |  |  | 300 | 15,143 6,373 |  | 2，9\％M | 341 118 |  | ．．．．．．．．． |
| Fish whels sot notm．．． |  |  |  | 8，5138 |  |  | 142 |  |  |
| ailin nets．．．． iram spime |  |  |  | 710，071 |  | witiont | 1，7613 | ．．．．．．． |  |
| Prag s＂inc．．．．．．． |  |  | 316，113 | 110,067 10,570 | －．．．．．．．．．．．． | （611， 110 | 42 |  |  |
| Pursesmmnt．ine． |  |  |  |  |  | 1， | 22 |  |  |
| lang nets．．．．．．．．．．． |  |  |  |  |  | 976 |  |  |  |
| Sincte drag bag net |  |  | 110，max | ． |  | 287， 1413 | ．．．．．． |  |  |
| lirush wifr jagm trawls． |  |  | 223，600 | ．．．．．．． |  | s，$\times 24$ |  |  |  |
| Bagm trawls （＇lans．．．．．．．． | 4， 717,388 |  |  |  | $1.10,4$ |  |  | （5，204 |  |
| （rabs． |  | 870， 7196 |  |  |  |  | ．．．．．．．．．．．． |  |  |
| ＇ot | 4，517，3ms | 870，713 | 700，618 | 220，702 | 74，54．4 | 1，945，412 | 2.684 | \＄1， 2014 |  |
| Valu | 80x3，09n 84 | \＄28，434 43 | \＄7，006 18 | \％6，621 15 | 䊾，920） | 25，3，3\％888 | 228405 | \＄3，41170 | \＄467，405 47 |

－Value bascd on average price pald fishermen．

## FOOD AND SHELL FISH CANNED.

Fincal Year 1818.

| DISTRICTS | Number of 48.Pound Cases | Value |
| :---: | :---: | :---: |
| PUGET SOCND DISTRICT- |  |  |
| Chinook salmon. | 71,100 | \$640,710 00 |
| Dog salmon.. | 529,367 | 3,179,802 00 |
| Humpback salmon. | 437,7301/2 | 3,392,411 37 |
| Silver salmon...... | 201,60661/2 | 1,815,268 50 |
| Sockeye salmon: | 67,087 | 764,79180 |
| Steelhead salmon | 62 | 62000 |
| Clams and mussels | 3,788 | 26,516 00 |
| Clam nectar. | 619 | 3,74400 |
| Other food and shell fish. | 3,585 | 21,510 00 |
| Totals. | 1,315,795 | \$9,845,343 67 |
| COLLYMBLA RIVER DISTRICT |  |  |
| Chinook salmon-Spring | 106,398 | \$1,382,264 00 |
| Chinook salmon-Fall... | 27,740 | 273,924 00 |
| Dog salmon. | 39,279 | 235,67400 |
| Humpback salmon. | 2,117 | 14,819 00 |
| Silver salmon. | 34,927 | 349,27000 |
| Sockeye salmon. | 2,329 | 18,632 00 |
| Stanthead salmon | 7,148 | 77.48000 |
| Shad. | 4,017 | 24,10200 |
| Totals. | 217,885 | \$2,370,165 00 |
| GRAYS HARBOR DISTRICT-- |  |  |
| Chinook salmon | 5,186 | \$57,046 00 |
| Dog salmon.... | 30,193 | 150,96500 |
| Humpback salmon | 1,750 | 8,75000 |
| Silver salmon..... | 13,632 | 136,320 00 |
| Socknye salmon.. | 710 | 8,875 00 |
| Stoolhead salmon. | 11 | $11000$ |
| clams and mussels | 35,458 | 248,20600 |
| Clam nectar... | 153 | 01800 |
| Totals. | 87,093 | \$611,190 00 |
| WILJAIPA HARBOR DISTRICI- |  |  |
| Chinook salmon. | 1,152 | \$12,67200 |
| Dog salmon.... | 9,301 | 65,10700 |
| Humpback salmon. | 1,6i8 | 8,440 00 |
| Silver salmon. | 1,491 | 14,910 00 |
| Clams and musuels | 3,820 | 28,630 00 |
| Totals. | 17,452 | \$129,779 00 |
| AIL. DISTRICTS COMBINED- |  |  |
| Chinook salmon. | 205,596 | \$2,386,616 00 |
| Iog salinon. | 608,740 | 3,631,548 00 |
| Humpback salmon | 443,2851/2 | 3,424,420 37 |
| Silver salmon... | 251,746\% | 2,315,768 50 |
| Sorkeye salmon.. | 70,126 | 792,29880 |
| Steelhead salmon.. | 7,221 | 72,210 00 |
| Clams and mussels. | 43,066 | 303,37200 |
| Slam nectar. ${ }^{\text {Shad....... }}$ | +772 | 4,63200 |
| Shad................... Other food and shell fish | 4,017 | 24,10200 |
| Totals. | 1,638,155 | \$12,956,477 67 |

FOOD AND SHELL FISH，FHESH AND PRESERVED（OTHER THAN CANNED），AND VALIE．

|  | PUGET SOUND DASTRIOL |  | COLUMBIA RIVER DIS＇TRICT |  | GRAYS HARBORDIST RICT |  | WILLAPA HARBORDISTRICT |  | ALL DISTRIOTSCOMBINED． |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Number } \\ & \text { Pouthids } \end{aligned}$ | Value | Number I＇ounds | Value | Number Pounds | Value | Number Pounts | Value | Number Pounds | Value |
| FRESII－ |  |  |  |  |  |  |  |  |  |  |
| Chinook samon | 3，60， 6 21 |  |  | 14,103409 | $53,125$ | \＄10，401 | 70，20s | \＄7，070 0 |  |  |
|  | 2，774， |  |  | 14，（037）（10） | $\begin{array}{r} 53,175 \\ 876 \end{array}$ | 2，（fiss 80 |  |  | $\begin{array}{r} 3,0.2 \mathrm{~S}, 176 \\ 4: 00,509 \end{array}$ | $\begin{array}{r} 155,41854 \\ 30,11804 \end{array}$ |
| Sowkeyosalmon |  | 1：3，39100 | $4, n+4$ | $172{ }^{8}$ | 2，917 | 4：3 5 5 |  |  | 104， 171 | 20，301 44 |
| St c．ilhat sammon | 23：4，46 | 37， 819 19 21 | 510,344 | 61,241 ix | 110，$\times 14$ | 16，6位 10 | 10，183 | 1，527 | 810，，，78 | 116，913 27 |
| Sammon tront ．．． | 67， 63 | 9,2380 |  |  |  |  |  |  | 57，734 | 9,28808 |
| H．rring | 3心，¢ 2 | 4，932 40 |  |  |  |  |  |  | 323，827 | 4，932 40 |
| Shad |  |  | 22： 277 | 11，心8 50 | 2011 | 10 M |  |  | 2．x），971 | 11，49855 |
| sinslt | （nil）467 | $39,12 \times 8)$ | ＋73，6415 | 7，104 12 | ${ }^{(16)}$ | 20 （0） | 3，2\％0 | 1 12：00 | 1，177，725 | 40，314 ${ }^{64}$ |
| sturem | 1，心 | 2.76 | 67，4＊ | 8，0：530 | 4，649 |  | 396 | （3）50 | 73，792 | 0，322 10 |
| （lams and mussis． |  | 12，22．23 |  |  | 8，${ }^{\text {c／（k）}}$ |  | ${ }^{73,383}$ | 4，401 48 | 387，65 | 17，276 24 |
| （rabs ．．．．． | 5is，\％ux | 5i，sill（i） |  |  | 2，760 | 270 c | 615,035 | 60，593 80 | 1，1177，204 | 116，720 40 |
| Shrimp | － 73,180 |  |  |  | ¢6， 16.00 | （12 $\begin{array}{r}12 \\ 1,338 \\ 185\end{array}$ |  |  | 73,830 470,001 | $\begin{array}{r}7,379 \\ 28,983 \\ \hline 8\end{array}$ |
| Miseethanomis | $4+2,311$ | 20， 20 | 97 | 2． 22 | $\xrightarrow{2,0 \pm 3}$ | 1，3332 15 |  |  | 470，001 | 27， 23363 |
| Totals | 10，575， 916 | \＄032， 7460.3 | 2，043， 20.5 | \＄176，U4i3 07 | 5tic，117 | \％5， 61811 | T34，739 | \＄75，589， 23 | 14，266，627 | \＄1，240，314 06 |
| Kipymend | 420，091 | －6， 618 |  |  |  |  |  |  | 428，091 | 85,61820 |
| Mild curd | $5 \mathrm{~min}, 54$ | 246，8＜1 00 | 80，000 | 20，000 00 |  |  |  |  | 1，067，524 | 266， 88100 |
| Snoknd | 311，017 | （i0，203 40 |  |  |  |  |  |  | 301，017 | 00,20340 |
| Tota | 1，716，2032 | \＄362， 70260 | 277， 105 | $837,7 \times 3 \times$ |  |  |  |  | 1，093，737 | \＄430，442 0， |
| Gram Tot | 12，592，54 | 1，325，449 25 | 2，300， 3 （4i0 | \＄213， 462 | ：$\times 12,117$ | W5，612 11 | 784， 8 \％ 4 | \＄75，884 23 | 10，36， 364 | \＄1，670，756 11 |

## FISH BY-PRODUCTS.

Fiseal Year 1919.


## HALIBUT HANDLED BY DEALERS. <br> Fiscal Year 1818.



Halibut is taken mostly in Bering Sea and Alaskan waters and brought to Puget Bound to
be marketed.

## CODFISH HANDLED BY DEALERS.

Fiscal Year 1818.



This codfigh is taken from Bering Sea and Alaskan waters from the first of May to the arst of August of each year and brought to plants on Puget Sound, where it is prepared for market. The salted is packed in one-pound cartons.

# MMPROVEMENTS ON STATE OYSTER RESERVE. <br> Fincal Year 1819. 

5 7.8 Acres, Clifton Oyster Reserve, Mason County, graded and diked with concrete:

Number Licenses issued to take oysters from State Reserves, 13.
Flscal Year 1919

# OYSTFRS SOID FROM STATE RESERVES. <br> FHenel Year 1918. 

| DISTRICT AND RESERVE | County | NUMBER OF SACKS |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Seed | $\begin{aligned} & \text { Merchant- } \\ & \text { able } \end{aligned}$ | Totals |
| PCGET SOUND DISTRICTClifton Reserve Oakland Bay Regerve (Hammersley Inlet) | Mason Mason Mason | $3,492.6$818 | 4 | $\begin{gathered} 3,496.6 \\ 818 \\ 9 \end{gathered}$ |
|  |  |  |  |  |
| Port Orchard Reserve ..................... |  |  | 9 |  |
| Totals |  | 4,310.6 | 13 | 4,303.6 |
| WILLAPA HARBOR DISTRICTLong Island Reserve. | Pacific |  | 153 | 183 |
| Both Districts Combined |  | 4,310.6 | 196 | 4,506.6 |

OYSTER INDUSTRY.
Fiseal Year 1919.
Orwterm Marketed.


Average Value of Oynterm Per Snck.


Oynter Lands Owned.


Oyster Lande Producling.

|  | No. Acres |  | Value |  |
| :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DISTRICTNative Eastern | 306.5 $* 15$ | 321.5 | $\begin{array}{r}\$ 275,050 \\ 3,000 \\ \hline\end{array}$ | \$278,050 00 |
| Totals |  |  |  |  |
| WIILAPA HARBOR DISTRICTNative Eastern | 680 2,409 | 3,008 | $\$ 50,150$ <br> 133,600 <br> 100 | 183,750 00 |
| Totals. |  |  | $\begin{array}{r}\$ 325,200 \\ 136,600 \\ \hline\end{array}$ |  |
| BOTH DISTRICTS COMBINED- <br> Native <br> Eastern <br> Totals. | $\underset{2,423}{986.5}$ | 3,409.5 |  | \$461,800 00 |
|  |  |  |  |  |

*That the number of acres producing Eastern oysters is greater than the number of acres of Fastern oyster lands owned, is accounted for by reason of the fact that a portion of the oyster lands cultivated by private parties is leased from the state.

## VALC'E OF FISHERIES PRODICT:*

Fiscal Year 1 1918.
PRODUCT

[^2]

| OHINOOK SALMON | Number <br> Fomales Spawned | Number <br> Eggs <br> Taken | No. Eggs Reeelved from Other Hatcheries | No. Eggs <br> On Hand <br> March 31. <br> $1!19$ | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | $\begin{aligned} & \text { Number } \\ & \text { Eggy } \\ & \text { Shpred } \end{aligned}$ | No. Egrs On Hand March 31, 1020 | $\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hathed } \end{aligned}$ | $\begin{gathered} \text { No. Fry } \\ \text { On Hand } \\ \text { March } 31, \\ 1919 \end{gathered}$ | $\left\lvert\, \begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Lost } \end{gathered}\right.$ | $\begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Planted } \end{gathered}$ | $\begin{array}{\|c} \text { Number } \\ \text { Fry } \\ \text { Shipped } \end{array}$ | No. Fry <br> On Hand <br> March 81, <br> 1020 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ruget sound dist. Dungernes. |  | 720,125 |  |  |  | 57, (ax) |  |  |  |  |  |  |  |
| Green River | 1 1,540 | 6 , $0.511,100$ |  |  | 415,700 | -1, sespors) |  | ${ }^{5} 78794048$ |  | 18,197 | 578,100 |  | 1324 (157 |
| Girean River No. 2 | 40 | 163, 100 | 1,250,000 |  | $45.1 \times 4$ | , |  | 1,372,5010 |  | 13,700 | 1,358, 400 |  | 1,3ג, |
| Samish. |  |  |  |  | 52,(ax) |  |  | 1,047,440 |  | 7,400 | 1,040,000 |  |  |
| Oflice State Fish Com |  |  | 37, (190) |  | 1, (\%4) |  |  | 50,000 |  | 40 |  | 55,000 |  |
| Tota | 1,736 | 6,971,325 | 3,307,000 |  | 5x2,978 | 1,943,012 |  | 7.752,347 |  | 45, 1900 | 0,326,000 | 55,1000 | 1,324,0:7 |
| colcmain river Disic- <br> Chinook. | 194 | 1,101,500) | 1,000,000 |  | 19,000 |  |  | 2.080 .50 |  | 6,200 | 2,070,300 |  |  |
| Kaluma.. | 3,171 | 18.127,741 |  |  | 1,347,74 | 2,06:0,(\%M) |  | 14,800,0461 |  | 35.000 | 14,785,010 |  |  |
| Wind River | 7-3 | 4,203,530 |  |  | 240, \%kN |  |  | $3, \underline{4 \times 3,06(1)}$ |  | 7,84, | 3,405,206 |  |  |
| Tot | 3,943 | 23.432.750 | 1,(0)0,000 |  | 1,567, 250x | $2,140 \%$, (x) |  | 20,8(20, 50, |  | 49,000 | 20,816,506 |  |  |
| (IR.AYS HARBOR DIST:- <br> Chehatis. | 44 | 221,3;0 |  |  | 17,310 |  |  | 20, 0 , 3 (1) |  | 250 | 203,800 |  |  |
| Humbtulip | 33 | $142.10(0)$ |  |  | 20,3001 |  |  | 115,700 |  | 700 | 115,000 |  |  |
| Tota | 77 | 363,3,300 |  |  | 43,610 |  |  | 319,750 |  | 050 | 318,800 |  |  |
| WILLAPA HARBOR DISTS. <br> Nusel. | 1,055 | 4,472,200 |  |  | 427,700 | 1,900,00 |  | 2,14,510 |  | 16,800 | 2,127,600 |  |  |
| North River |  |  | 1,000,000 |  | 14,760 |  |  | 1,885, $3(4 \mathrm{H})$ |  | 0,800 | 1,875,500 |  |  |
| Willapa. | (10) | 2,917,050 |  |  | 452,030 | 1,000,000 |  | 1,46i5,000 |  | 9, 610 | 1,455,400 |  |  |
| Tota | 1,741 | 7,350,2:0 | 1,900,000 |  | 694,450 | 2,900,000 |  | 5,494,800 |  | 35,300 | 5,4ES, 500 |  |  |
| RECAPITETATION- |  | 6.971305 | 3,307,000 |  | 540.178 | 1,943,000 |  |  |  |  |  |  |  |
| Columbia River Dis | $3,4 \times 3$ | 23,432,750 | 1,000,000 |  | 1,567,250 | 2,000,000 |  | 20, 81020 |  | 49,170 | (1) | 55,000 | 1,324,0.57 |
| Grays ILarhor Dist | 77 | 3 383,350 |  |  | 43,610 |  |  | 319,750 |  | (0i0) | -313, 500 |  |  |
| Willapa llarbor Dist..... | 1,741 | 7,389, 250 | 1,000,000 |  | 894,450 | 2,900,000 |  | 5,494,800 |  | 36,300 | 5,450,500 |  |  |
| Grand Tot | 7,547 | 38,156,65 | 0,207,0(6) |  | 3,058,288 | 0,843,000 |  | 34,432,307 |  | 131,440 | 32,120,700 | 53, 600 | 1,324,657 |

* 20,000 gold to S. A. Feden, private hatchrey
and, wo shirged to eastern states in exthange for Eastern Brook trout egga.

| DOG SALMON | $\begin{aligned} & \text { Number } \\ & \text { Females } \\ & \text { Spawned } \end{aligned}$ | Number Eggs Taken | No. Eggs Received from Other Hatcherles | $\left.\begin{array}{\|c\|} \text { No. Eggs } \\ \text { On Hand } \\ \text { Mareh31, } \\ 1919 \end{array} \right\rvert\,$ | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Shipped } \end{gathered}$ | No. Eggs On Hand March 31, 1920 | $\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hatehed } \end{aligned}$ | No. Fry On Hand 1919 | $\begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Lost } \end{gathered}$ | $\begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Planted } \end{gathered}$ | $\left\|\begin{array}{c} \text { Number } \\ \text { Fry } \\ \text { Shipped } \end{array}\right\|$ | No. Fry On Hand March 31 1920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DIST - |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chambers Creek.......... | 4,401 | 11,143,000 |  | 2,828,000 | 332,000 | 15,000 | 7.654,000 |  | 1,885,000 |  | 6,624,000 |  | $1,181,000$ |
| Elwha ${ }_{\text {Green }}$ River................ | 1,031 248 | $2,120,000$ 734,800 |  |  | 239,000 92,500 |  |  | $1,881,000$ |  | 21,000 |  |  | $1,860,000$ |
| Green River No. |  |  | 476,000 |  | 92,500 6,100 |  |  | 642,300 |  | 1,400 | 641,200 |  | 467.408 |
| Nooksack... | 532 | 1,003,500 | 2,160,000 |  | 63,500 |  |  | 3,190,300 |  | 13,410 |  |  | 3,176,870 |
| M. F. Nooks | 175 | 882,000 | 865,000 |  | 65,270 |  | 351,730 | 880,000 |  | 1,700 |  |  | 828,500 |
| Puyallup Rive | 24 | 50,500 | 1,164,800 |  | 170,800 |  |  |  |  | 5,507 |  |  | 968,403 |
| Samish. | 615 | 1,895,100 | 3,780,000 |  | 16, 100 |  |  | 1,715,200 | 70, 2 | 13,413 | 772,700 |  | 1,704,374 |
| Skokomish | 000 | 1,716,000 | 1,000,000 |  | 39,500 |  |  | 2,676,500 |  | 8,735 | 1,173,025 |  | $4,504,173$ $1,493,840$ |
| Skykomish |  |  | 855,000 |  | 74,200 |  |  | 810,800 |  | 1,081 |  |  | $1,400,812$ 800,720 |
| Tahuya Eyeling Stat |  |  | 4,320,000 |  | 172,000 |  |  | 4,148,000 |  | 20,200 | 1,200,000 |  | 2,927,100 |
| Oflice State Fish Cor | 950 | 2,590,100 | 800,000 |  | 174,100 |  |  | 3,210,000 |  | 39,700 | 2,261,100 |  | 915,200 |
| Ould State Fish Con |  |  | ,00 |  | 1,000 |  |  | 14,000 |  | 600 | 13,400 |  |  |
| Totis | 8,800 | 21,734,300 | 17,205,800 | 2,828,000 | 1,738,370 | 15,000 | 8,005,730 | 52,069,000 | 2,610,287 | 136,464 | 13,686,325 |  | 20,856,498 |
| COLUMBIA RIVER DIST.Chinook. Wind River. | 112 | 272,500 | 2,160,000 |  | $\begin{gathered} 14,300 \\ 35,4000 \end{gathered}$ |  |  | $\begin{array}{r} 258,200 \\ 2,124,600 \end{array}$ |  | $\begin{gathered} 600 \\ 12,600 \end{gathered}$ | $\begin{array}{r} 257,600 \\ 2,112,000 \end{array}$ |  |  |
| Tot | 112 | 272,500 | 2,160,000 |  | 49,700 |  |  | 2,382,800 |  | 13,200 | 2,360,600 |  |  |
| GRAYS HARBOR DIST:Chehalis. | 10,501 | 30,768,800 |  |  | 3,623,600 | 20,400,800 |  |  |  |  |  |  | 5,923,414 |
| Chehalis No. ${ }^{\text {N }}$ |  |  | 6,000,000 |  | 251,000 |  |  | 5,749,000 |  | 11,005 | 2,000,000 |  | 8,737,005 |
| Humptulips...... | 2,816 | 8,528,000 |  |  | 708,000 | 4,020,000 |  | 2,900,000 |  | 20,000 | 2,880,000 |  |  |
| Tota | 13,437 | 30,296,800 | 6,000,000 |  | 4,582,600 | 25,410,800 | .......... | 15,303,400 |  | 31,901 | 5,610.000 |  | 9,661,409 |
| WILLAPA HARBOR DIST.Nasel. |  | 646,500 |  |  |  |  |  |  |  |  |  |  |  |
| Willap | 117 | 300,500 |  |  | 43,900 |  |  | 325,600 |  | 000 | 324,700 |  |  |
| Totals. | \$38 | 1,016,000 |  |  | 72,500 |  |  | 948,500 |  | 7,100 | 936,400 |  |  |


| DOG SALMON- Continued. | Number Females spawned | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Taken } \end{gathered}$ | No. Eggs Received from Other Hatcherles | No. Eggs On Hand March 31, 1919 | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Bhipped } \end{gathered}$ | No. Eggs On Hand March 31 , 1020 | Number Fry <br> Hatched | No. Fry On Hand March 31, 1919 | $\begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Lost } \end{gathered}$ | Number Fry Planted | $\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Shipped } \end{aligned}$ | No. Fry March 31 , 1820 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REOAPITULATION- |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Puget sound Dist. |  | 21,734,300 | 17,260, 800 | 2,828,000 | $1,738,870$ 49 | 15,000 | 8,005,730 | 32,060,000 | 2,610,287 | 130,464 | 13,686,325 |  | 20,856,408 |
| Grays Harbor Dist. | 13,437 | 39,296,800 | 6,000,000 |  | 4,582,600 | 25,410,800 |  | 15,503, 200 |  | 13,200 | 2,309,600 |  | ,661,409 |
| Whlapa Harbor Dist | 388 | 1,016,000 |  |  | 72,500 |  |  | 943,500 |  | 7,100 | -986,400 |  | 661,409 |
| Grand Totals | 22,547 | 62,319,600 | 25,425,800 | 2,828,000 | 6,443,170 | 25,425,800 | 8,005,730 | 50,608,700 | 2,610,287 | 188,755 | 22,602,325 |  | 30,517,907 |
| HUMPBACK SALMON |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PUGET SOUND DIST.- Dungeness.............. | 847 | 1,642,800 |  |  | 100,400 |  |  | 1,452,400 |  | 32,150 | 608,500 |  | 721,760 |
| Puyallup River | 318 | b82,250 |  |  | 13,420 |  |  | 568,930 |  |  | $\begin{array}{r}\text { 54, } \\ 5600 \\ \hline 1500\end{array}$ |  | ........ |
| Totals. | 1,106 | 2,285,050 |  |  | 208,970 |  |  | 2,076,080 |  | 38,830 | 1,315,500 |  | 721,750 |
| SILVER SALMON |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PUGET SOUND DIST.Chambers Oreek..... | 122 | 224,000 |  |  | 34,000 |  |  | 300,000 |  |  | 300,000 |  |  |
| Dungeness.: | 474 | 215,000 $1,549,500$ |  | 985,600 | 130,070 | *25,000 | 180,050 | 982,880 $1,382,700$ | 49,000 | 5,315 | 1,010,700 |  | 15,300 |
| Green River No. 2 | 439 | 1,202,200 |  |  | 135,350 | 20,00 | -013,350 | 1,352, 25400 | 177,671 | 1, 2,208 | $1,380,100$ 177200 |  |  |
| Nookrack | 009 | 1,000,000 | 339,300 | 774,100 | 38,200 |  | 219,800 | 2,815,400 | 298,420 | 4,227 | 2,106,000 |  | 1,002,003 |
| M. F. Nook | 354 | 967.000 |  | 670,250 | 22,530 | 339,300 | 827,470 | 437,950 | 187,630 | 200 | 468,400 |  | 106,700 |
| Pilchuck. | 406 | 1,006,000 |  |  | 217,600 |  |  | 578,400 |  | 1,979 | 605,700 |  | 270,721 |
| Puyallup River | 219 | 6688000 |  | 75,795 | 25,405 |  |  | 718,300 | 423,051 | 4,404 | 497,000 |  | 639,947 |
| Satuish. ${ }_{\text {Skokor }}$ | $\begin{array}{r}2,271 \\ \hline 1000\end{array}$ | $6,678,450$ 768,000 |  | 857,030 | 216,400 48,180 |  | $1,047,050$ 122,550 | 5,415,000 | 1,510, 210 | 7.009 | 3,118,100 |  | 8,800,041 |
| Skykomish | 1,005 | 2,940,000 |  | 582,000 | 112,350 |  | 578,550 | 2,831,300 | 2,301,205 | 2,045 8,480 | $1,047,200$ $3,081,500$ |  | 2,048,225 |
| Tahuya Eyelng station... | 4 | 7,600 |  |  | 4,900 |  |  | 2,700 |  | 700 | 2,000 |  |  |
| Totals | 6,870 | 18,400,650 | 339,300 | 3,444,775 | 1,035,875 | 364,300 | 8,877,020 | 16,972,630 | 5,206,207 | 33,795 | 13,795,200 |  | 8,439,842 |

* 25,000 sold to F. A. Beeler, prlvate hatchery.


## Output of Salmon From the State Hatcherien-Continued.

## Fincal Year 1919.

Output of Salmon From the State Hutcheriem-Continued.

| SILVER SALMON- Contimued. | $\begin{aligned} & \text { Number } \\ & \text { Funales } \\ & \text { Spawned } \end{aligned}$ | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Taken } \end{gathered}$ | No. $\mathrm{Eg} g \mathrm{~s}$ Received from Other Hatcheries | $\begin{array}{\|c\|} \text { No. Eggs } \\ \text { On Hand } \\ \text { March } 31, \\ 1919 \\ \hline \end{array}$ | Number Lost | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Shipped } \end{gathered}$ | No. Eggs On Hand March 31, 1920 | $\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hatehed } \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { No. Fry } \\ \text { On Hand } \\ \text { March } 31, \\ 1919 \end{gathered}\right.$ | $\underset{\substack{\text { Number } \\ \text { Fry } \\ \text { Lost }}}{ }$ | Number Fry Planted | $\left\|\begin{array}{c} \text { Number } \\ \text { Fry } \\ \text { Shipped } \end{array}\right\|$ | No. Fry On Hand March 31, 1920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lumbia kiver dist.- |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chinook................ | 97 | 269,500 |  |  | 7,500 |  |  | 262,000 |  | 1,300 | 260,700 |  |  |
| Pat"ros.Methow | 1 | 3,000 |  | 117,800 | 1,775 |  | 2,82, | 116,2(0) |  | 100 | 118,100 |  |  |
| Tilton River. | 3.8 | 1,112,600 |  |  | 29,866) |  | 62,740 | 1,020,000 |  | 4,005 | 710,000 |  | 305,995 |
| Totals | 480 | 1,385,100 |  | 117,800 | 39,135 |  | 65.505 | 1,398,200 |  | 5,405 | 1,086,800 |  | 305,995 |
| GRATS HARBOR DIST- <br>  <br> Humptulips. $\qquad$ | $\begin{array}{r} 2,111 \\ 225 \end{array}$ | $\begin{array}{r} 7,514,675 \\ 667,000 \end{array}$ |  | $\begin{aligned} & 2,401,630 \\ & 692,700 \end{aligned}$ | $\begin{aligned} & 725,24 \\ & 126.8 \times 0 \end{aligned}$ |  | 2,542,070 | $\begin{aligned} & 6,649,000 \\ & 1.232 .000 \end{aligned}$ | 6,181,358 <br> 1,435,600 | $\frac{0,487}{5,6800}$ | 7,930,200 2,662,900 |  | 3,307,671 |
| Totals | 2,339 | 8,181,675 |  | 3,094,339 | 852,044 |  | 2,542,070 | 7,881,900 | 6,616,988 | 8,057 | 10,503, 100 |  | 3,807,671 |
| IIAPA HARIBOR DIST vasel................................. | 146 | 451,700 | 60,000 | 198,185 | 26,895 |  | 279,590 | 1,013,400 | 60, 443 | 9,548 | 957,000 |  | 51,305 |
| Willapa. | 771 | 2,501,000 |  | 211,755 | 340,050 | 670,000 | 592,000 | 1,160,700 | 668,713 | 5,933 | 1,277,000 |  | 506,480 |
| Totals | 917 | 3,002,700 | 670,000 | 409,940 | 366,950 | 670,000 | 871,500 | 2,174,100 | 1,274,150 | 13,481 | 2,184,900 |  | 1,247,875 |
| REC.APITULATIONPurct Sound Dist |  | 18,466,650 | 330,300 | 3,444,775 | 1,035,875 | 364,300 | 3,877,920 | 16,972,630 | 5, 2 OR, 207 | 33,795 | 13,705,200 |  |  |
| Columbia River Dist | 489 | 1,3\%\%,1m |  | 117,8(8) | 39,135 |  | 65,505 | 1,308,200 |  | 5.405 | 1,usi, \%u0 |  | 305, 095 |
| Gray: Harbor Dist. | 2,339 | 8,181,675 |  | 3,094, 3,39 | 852,044 |  | 2,542,070 | 7,881,000 | 6,616, 519 | 8,1047 | 10,593,100 |  | 3,897,671 |
| Willapa Harbor Dist. | 917 | 3,002,700 | 670,000 | 409,040 | 366,950 | 670,000 | 851,590 | 2,174,100 | 1,244,150 | 15,481 | 2,184,900 |  | 1,247,875 |
| Grand Totals | 10,112 | 31,036,125 | 1,009,300 | 7,006,854 | 2,204,004 | 1,034,300 | 7,357,145 | 28,426,830 | 13,187,321 | 62,768 | 27,000,000 |  | 13,801,383 |




## Output of Silmon From the State Hateherien-Continuell.

Fincal Year 1919.
Output of Salmon From the State Hatcherien－Continued．

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| $\begin{aligned} & \text { 岕合总 } \\ & \frac{\Xi}{4} \end{aligned}$ |  | 융 8888888888888888 |
|  | $\begin{array}{ll\|l} \hline 8888 \\ \hline 08 & 8 \\ 0.80 & 8 \\ 50 & 8 \end{array}$ |  <br>  $\square$ |
|  |  |  |
|  |  |  <br>  |
|  |  | 令： |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| $\begin{aligned} & \text { STEFI.HEAD 8AT:MON- } \\ & \text { Continued. } \end{aligned}$ |  |  |

Output of Salmon From the State Hatcheries－Concluded．

|  |  | $\begin{aligned} & \text { 哭 } \\ & 8 \end{aligned}$ | 8名 <br> 옹옹 <br> －25 |  |  |  | 콩유웅荈发彩高 <br> 玉 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\vdots$ |  |  |
|  |  | $\left\lvert\, \begin{aligned} & \stackrel{g}{g} \\ & \underset{8}{8} \\ & \stackrel{y}{8} \end{aligned}\right.$ | 응운 <br>  © $815^{\circ}$ |  |  | $\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 16 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 6 \\ & \frac{0}{8} \\ & 8 \\ & 80 \\ & 8 \end{aligned}$ |
|  |  <br>  |  | $\begin{aligned} & \text { 或各 } \\ & \text { ning } \end{aligned}$ | $\begin{aligned} & n \\ & \frac{N}{2} \\ & \div \end{aligned}$ |  | $\left\lvert\, \begin{aligned} & 5 \\ & \frac{5}{5} \end{aligned}\right.$ |  | $\begin{aligned} & \text { 唥 } \\ & 8 \end{aligned}$ |
|  |  |  |  |  |  | $\left\|\begin{array}{l} \frac{8}{4} \\ \stackrel{8}{5} \\ - \end{array}\right\|$ |  | 令 |
| 佥號 |  <br>  <br> si दinioi o |  |  |  |  | $\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \stackrel{8}{8} \\ & \stackrel{2}{2} \end{aligned}$ |  | 8 8 8 8 |
|  | $\begin{aligned} & 58 \\ & 589 \\ & \text { sig } \end{aligned}$ | $\begin{aligned} & \left\lvert\, \frac{5}{5}\right. \\ & \frac{1}{3} \end{aligned}$ |  | $\left\|\begin{array}{c} \frac{8}{2} \\ \overrightarrow{8} \\ \frac{8}{8} \\ 01 \end{array}\right\|$ |  |  |  | $\begin{aligned} & 10 \\ & 6 \\ & 5 \\ & 5 \\ & 9 \\ & \hline \end{aligned}$ |
|  |  |  |  |  |  | $\left\|\begin{array}{c} 8 \\ 0 \\ 0 \\ 0 \\ 0.8 \\ 0 \\ 0 \end{array}\right\|$ |  | 黄 |
|  |  |  |  | $\left\|\begin{array}{c} 9 \\ 8 \\ 5 \\ 0 \\ 0 \\ 10 \end{array}\right\|$ |  |  |  | 㗊 |
|  | ：日会 | 要 |  | $\left\|\begin{array}{l} \text { 号 } \\ \stackrel{0}{\mathrm{~g}} \\ \text { on } \end{array}\right\|$ |  | $\left\|\begin{array}{l} 8 \\ 8_{0} \\ \text { 等 } \end{array}\right\|$ |  | ¢ <br> 8 <br> 8 <br> 0 <br> 0 |
|  |  | $\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 00 \end{aligned}$ | $\begin{gathered} 8_{0} \\ \mathbf{8}_{6} \\ \mathbf{o}^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{8} \\ & \hline 0 \\ & 0 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \mathbf{8} \\ & 0 \\ & 0 \\ & 0 \\ & \text { si } \end{aligned}$ |  | ｜c |
|  |  |  |  |  |  |  |  |  |
|  |  | $\frac{\text { 雨 }}{5}$ |  |  |  | $\stackrel{8}{8}$ |  | $\stackrel{\text { ¢ }}{\text { ¢ }}$ |
|  |  | $\begin{aligned} & \dot{x} \\ & \stackrel{x}{3} \\ & \stackrel{y}{2} \end{aligned}$ |  | 㡙 |  | 을 |  |  |

SCDMARY OF OLTPIT OF SALMON FHOM STATHE HATCHERIES.

|  |  | CHINOOK | DOG | HUMPBACK | SILVER | $\begin{aligned} & \text { STEEL- } \\ & \text { HEAD } \end{aligned}$ | TOTALS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | females spawned | 7,547 | 22,547 | 1,106 | 10,112 | 3,517 | 44,919 |
| fogs | Taken by state hatcheriss. On hand April 1, 1919......... | 38,156,085 | $\begin{array}{r} 62,319,600 \\ 2,828,000 \end{array}$ | 2,285,050 | $\begin{array}{r} 31,036,125 \\ 7,006,854 \end{array}$ | $\begin{array}{r} 13,618,550 \\ 791,591 \end{array}$ | $\begin{array}{r} 147,414,010 \\ 10,686,445 \end{array}$ |
|  | Total. | 38,156,685 | 65,147,000 | 2,285,050 | 38,102,979 | 14,408,141 | 158,100,455 |
|  | Lost. | 3,088,288 | 6,443,170 | 209,970 | 2,294,004 | 1,238,901 | 13,273,383 |
|  | Shipped to eastern states on exchange agreement.................... Furnished to University of Washington (experimental purposes)... | 550,000 10,000 |  |  |  |  | 16,000 |
|  | Furnished to county hatcheries for hatching and planting as follows: <br> King County <br> spokane County |  |  |  |  | 543,000 500,000 |  |
|  |  |  |  |  |  | 500,000 <br> 540,200 | 500,000 540,200 |
|  |  |  |  |  |  | 540,200 100,000 | 540,200 |
|  |  | 50,000 20,000 |  |  | 2,000 | 100,00 | 10,000 20,000 |
|  | On hand March 31, 1920.................................................. | 2,000 | 8,005,730 |  | 7,357,145 | 924,040 | 16,287,515 |
| FRT | Hatched | 34,432,397 | 50,698,700 | 2,076,080 | 28,426,830 | 10,561,400 | 128,195,407 |
|  | On hand April 1, 1919. |  | 2,610, 287 |  | 13,187,321 | 125,000 | 15,922,608 |
|  | Lost...... | 131,440 | 188,750 | 39,830 | 62,768 | 30,040 | 400,833 |
|  | Sold to Fred Clough (privato hatchery) |  |  |  |  | 80,000 | 30,000 |
|  | Furnished to counties (planted in licu of trout) | 55,600 |  |  |  | 1,700,700 | 1,756,300 |
|  |  | 32,920,700 | 22,602,325 | 1,315,600 | 27,060,000 | 8,87, ${ }_{4 \mathrm{I}, 000}$ | 93,370,185 |
|  | On hand March 31, 1920............................................... | 1,324,657 | 30,517,907 | 721,750 | 13,801,383 | 45,000 | 46,500,687 |

AVERAGE NUMBER GGGS TAKEN TO FEMALE.


[^3]OUTPUT OF TROUT FROM STATE HATCHERIES.

| HA'TCHERIES | Number Females Spawned | Number Egg8 Taken | No, Eggs Received from Other Hatch'r's | $\begin{gathered} \text { No. Egge } \\ \text { on Hand } \\ \text { March } 3 \text { I, } \\ 1919 \end{gathered}$ | Number Eggs Lost | $\begin{aligned} & \text { Number } \\ & \text { Eggs } \\ & \text { Shlpped } \end{aligned}$ | $\begin{gathered} \text { No. Eggs } \\ \text { on Hand } \\ \text { March } 31, \\ 1920 \end{gathered}$ | No. Fry Hatched | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { March } 31, \\ 1919 \end{gathered}$ | $\begin{aligned} & \text { No. Fry } \\ & \text { Lost } \end{aligned}$ | No. Fry Planted | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { March } 31 \text {, } \\ 1920 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REARDSLEE- <br> Takn Greseent Trout Matchory | 12 | 21,000 |  | 10,76if | 685 |  | 23,675 | 10.400 |  | 400 | 10,000 |  |
| HLAOK-SPOTTEI- <br> Samish Salmon Hatchery |  |  | 16,600 |  | 10,000 |  |  | 6,600 |  | ,500 |  |  |
| Spokane Tront Hatchery |  |  | - 16,000 |  | 1,500 |  |  | 15,100 |  | 200 | 14,900 |  |
| Totals |  |  | 28,200 |  | 11,500 |  |  | 21,700 |  | 1,700 | 20,000 |  |
| CRESCENTII <br> lake Crement Tront Itatrhury........ | \$1 | 97,000 |  | 6,890 | 41,500 |  | 33,000 | 28,300 | 25,880 | 430 | 32,500 | 16,250 |
| CUTTHROAT- <br> Chamhers Crwek Sabmoti Hatchecy. |  |  |  |  |  |  |  |  |  |  |  |  |
| Chamhers Crmek Samoti Hatchefy.... | 976 692 | 275,000 100,100 |  |  | 29,500 29,100 | 920,000 |  | 245,500 50,000 |  | 500 | 245,500 49.500 | .... |
| Take Creseent Trout Hatchre....... | 97 | 50,500 |  | 12,085 | 1,185 | 20,00 | 4,000 | 58,300 |  | 100 | 58,200 |  |
| (ircent River Satmon Matebery........ |  | ......... | 190,000 |  | 12,400 |  |  | 177.600 |  | 2,100 | 175,500 |  |
| Pateros-M-thow Salmon Hatehery. |  |  | 100,006 |  | 4,000 |  |  | 96,000 |  | 1,000 | 95,000 |  |
| Kpokane Tront Matchery. |  |  | 300,000 |  | 20,000 |  |  | 370,000 |  | 1,200 | 308,800 | ..... |
| Tilton River Tront Hatchery .......... | 31 | 18,000 |  |  | 900 |  |  | 17,100 |  | 800 | 16,800 | ........... |
| 'Twin Lakes Eyping Station............ | 1.775 | 1,300,300 |  |  | 120,980 | 11,169,320 |  |  |  |  |  |  |
| Walla Walla Tront Hatchery......... |  |  | 305,000 |  | 11,900 |  |  | 298, 100 |  | 4,800 | 288,300 | .......... |
| lako Whateon Trout Hatehery | 21 | 38,400 |  | 58,084 | 7,551 |  | 30,938 | 5S,000 |  | 5 200 | 57,800 |  |
| Wematuree Sammon Hatchery,........ |  |  | 969,820 |  | 6,620 |  |  | 909, 700 |  | 5,400 | 067,300 |  |
| Othee State Fish Commissioner...... |  |  | 10,050 |  | 500 |  |  | 9,500 |  |  | 9,500 | .......... |
| Fosta | 3,025 | 2,671,300 | 1,964,920 | 71,049 | 244,616 | 2,050,320 | 4,988 | 2,887,800 |  | 15,000 | 2,322,200 | $\ldots \ldots$. |

[^4]Output of Trout From Sinte Hatcherien-Continued.

| HATCHERIES | Number Females Sparned | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Taken } \end{gathered}$ | No. Eggs Received from Othrr Hatch'r's | $\begin{gathered} \text { No. Eggs } \\ \text { on Hand } \\ \text { March } 31, \\ 1919 \end{gathered}$ | $\begin{aligned} & \text { Number } \\ & \text { Eggs } \\ & \text { Lost } \end{aligned}$ | Number Eggs Shipped | $\begin{gathered} \text { No. Eggs } \\ \text { on Hand } \\ \text { Mareh } 31, \\ 1920 \end{gathered}$ | No. Fry Hatched | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { March31, } \\ 1919 \end{gathered}$ | No. Fry Lost | No. Fry Planted | No. Fry on Hand March $81, ~$ 1920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN BROOK- |  |  |  |  |  |  |  |  |  |  |  |  |
| Chanibers Creek Salmon Hatchery |  |  | *2,189,975 |  | 248,075 |  |  | 1,941,900 |  | 27,925 | 1,181,000 | 752,975 |
| Famous Springs Eyeing Station.. | 25 | 18,500 |  |  | 100 |  |  | 18,400 |  |  | 18,400 | ........... |
| Lost Lake Eyeing Station............. | 1,272 | 907,500 |  |  | 25,050 | 882,450 |  |  |  |  |  |  |
|  | 235 | 765,000 |  |  | 165,000 | 600,000 |  |  |  |  |  |  |
| Pateros Methow Salmon Hatchery.... |  |  | - 75,000 |  | 3,900 | .......... |  | 71,100 |  | 100 |  | 71,000 |
| Samish Salmon Hatchery |  |  | * 330,000 |  | 14,600 |  |  | 315,400 |  | 2,000 | 813,400 |  |
| Spokane Trout Hatchery................ |  |  | +1,307,450 |  | 145,450 |  |  | 1,162,000 | ... | 2,800 | 1,159,200 | ............ |
| Little Spokane Trout Hatchery |  |  | -600,000 |  | 61,000 |  |  | 539,000 | ... | 3,200 | 585,800 |  |
| Walla Walla Trout Hatchery......... |  |  | - 800,000 |  | 298,000 |  |  | 502,000 |  | 15,400 | 488,600 |  |
| Office State Fish Commissioner........ |  |  | - 750,000 |  |  | \$750,000 |  |  |  |  |  | . |
| Totals............................. | 1,532 | 1,691,000 | 6,052,425 |  | 961,175 | 2,232,450 |  | 4,549,800 |  | 51,420 | 3,674,400 | 828,976 |

[^5]Ontpat of Trout From State Hateherien－Continura．

| HATOHERIES | Number Femules Spawned | Number Eggs Taken | No．Eggs Recelved from Other Hatch＇r＇s | No．Egge on Hand March 31. 1019 | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | $\begin{aligned} & \text { Numbur } \\ & \text { Kggs } \\ & \text { Shlpped } \end{aligned}$ | No．Kggs on Hund March 81． 1920 | No，Fry Hatched | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { Marchan, } \\ 1919 \end{gathered}$ | No，Fry <br> Lost | No．Fry Planted | $\begin{gathered} \text { No. Fry } \\ \text { On Hand } \\ \text { Mareh } 81, \\ 1920 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BAINBOW－ |  |  |  |  |  |  |  |  |  |  |  |  |
| Chehalls Salmon Hatcher |  |  | 100，000 |  | 1，000 |  |  | 199，000 |  | 200 | 98，800 |  |
| Fishmka Lake Ryelng Sta |  | 580，000 |  |  | 60,000 19,100 | 520，000 |  |  |  |  |  |  |
| Fish Lake Eyeing Station．． Green River Salmon Hateher | 542 | 158，800 |  |  | 19，100 | 134，800 |  |  |  |  |  |  |
| Packwood Lake Eyeing St | 3，356 | 898，500 | 0 |  | 25，500 | 828，000 |  | 40,000 |  | ，200 | 40，000 |  |
| Samish Salmon Hatchery |  |  | 136，000 |  | 4，200 |  |  | 181，800 |  | 3，500 | 138，300 |  |
| Spokane Trout Hatchery |  |  | 284， 800 |  | 26，800 |  |  | 208，000 |  | 3，500 | 205，500 |  |
| Walla Walla Tront Hatch |  |  | 420，000 |  | 17，625 |  |  | 402，375 |  | 5，575 | 306，800 |  |
| Total | 4，680 | 1，627，400 | 1，482，800 |  | 182，225 | 1，482，800 |  | 1，445，175 |  | 16，975 | 1，428，200 | ．．．．．．．．．．t |
| SH．VER TROUT－ <br> Chambers Creek Salmon Hatchery， |  |  |  |  |  |  |  |  |  |  |  |  |
| Chehalls No． 2 Salmon Hstchery ．．．．．． |  |  | 450,000 |  | ［4，300 |  |  | 302，000 395,700 |  | 8，628 | 508，000 | 302，072 |
| Lake Crescent Trout Hatchery． |  |  | －840，000 |  | $3 \mathrm{H}, 400$ |  |  | 805，000 |  | 8，00 | 806，000 | 92，012 |
| Dungeness Salmon Hatchery．． |  |  | 150，000 |  | 5，066 |  | 144，085 | ¢0， | 77，070 | 770 | 76，300 |  |
| Green River Salmon Hatehery |  |  | 2，758，000 |  | 258，000 | 2，500，000 |  |  |  |  |  |  |
| Kalaina Salmon Hatchery．． |  |  | 877，000 |  | 45，000 |  |  | 832，000 |  | 2，300 | 829，700 |  |
| Pateros－Methow Salmon Hatchery | － |  | 1，000，000 |  | 25，700 |  |  | 974，800 | 750，420 | 1，080 | 749，800 | 978，280 |
| Samiah Salmon Hatchery． |  |  | 400，000 |  | 17，980 |  | 122，070 | 200,000 | （10， | 231 |  | 250，769 |
| Kkykomish Salmon Hatehery．．．．．．．．．． |  |  | ＋420，000 |  | 22，400 |  |  | 207，600 |  | 400 | 317，200 |  |
| Spoknme Trout Hatchery．． | －1．0．．．．．． |  |  | 97.800 | 800 |  |  | 97，000 |  | 300 | 906，700 | ．．．r．w．．． |
| Litile Spokane Trout Hatchery | 二乚，\％＊／．．． |  | 1，180，500 |  | 66，500 |  |  | 1，114，000 |  | 15，000 | 1，000，000 |  |
| Walia Walla Trout Hatchery．．．．．．．．．． |  |  | 900，000 |  | 58，000 |  |  | 1843，000 |  | 5,000 | 897，000 |  |
| Lake Washington Eyeing Station．．．．．． | 42，000 | 4，943，000 |  |  |  | 4，943，000 |  |  |  |  |  |  |
| T．ake Whateom Trout Hatchery．．．．．． | 25,562 288 | $6,579,500$ 112,400 |  | 460，650 | 589，550 | \＄3，014，000 | 2，982，000 | 460，600 | 1，700，000 | 9，400 | 2，151，300 | ．．．．．．．．．．． |
| Offer State Fish Commissioner | 238 | 112，400 | 2，180， |  | 12,400 99,400 | $\left\|\begin{array}{r} 100,000 \\ 52,027,000 \end{array}\right\|$ | W上．，．6．．． | 68，600 |  | 1，600 | 57，000 |  |
| Tota | 07，700 | 11，694，900 | 11，604，000 | 555，450 | 1，814，045 | 12，584，000 | 3，249，005 | 6，730，400 | 2，527，400 | 40，010 | 7，000，000 | 1，025，071 |

[^6]Output of Trout From State Hateheries-Concluded.

| HATCHERIES | Number Females Spawned | Number <br> Eggs <br> Taken | No. Eggs <br> Received from Otber <br> Hateh'r's | $\begin{array}{\|c} \text { No. Eggs } \\ \text { on Hand } \\ \text { March } 31, \\ 1919 \end{array}$ | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | $\begin{aligned} & \text { Number } \\ & \text { Eggs } \\ & \text { Shipped } \end{aligned}$ | $\begin{gathered} \text { No. Eggg } \\ \text { on Hand } \\ \text { Mareh } 31 \text {, } \\ 1020 \end{gathered}$ | No. Fry Hatched | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { Mareh31, } \\ 1919 \end{gathered}$ | $\begin{gathered} \text { No. Fry } \\ \text { Lost } \end{gathered}$ | No. Fry Planted | No. Fry On Hand March 31, 1920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AI. S SPECIES CONTINUED |  |  |  |  |  |  |  |  |  |  |  |  |
| Chamburs Cruek Salmon Hatche | 976 | 875,000 | 2,723,475 |  | 309,075 |  |  | 2,689,400 |  | 27,025 | 1,908,500 | 752,975 |
| Cheballs Salmon Hatchery. |  |  | 100,000 |  | 1,000 |  |  | 99,000 |  | 200 | 98,800 |  |
| Ch-halis Saimon Hatchery No. |  |  | 450,000 |  | 54,300 |  |  | 305,700 |  | 3,628 |  | 392,072 |
| Lake Ohelan Trout Hatchery.......... | 812 | 900, 100 |  |  | 29,100 | 100,000 |  | 50,000 |  | 500 | 49,500 |  |
| Iake Crescent Trout Hateher | 90 | 171,500 | 840,000 | 30,635 | 77,860 |  | 66,675 | 897,600 | 25,850 | 1,530 | 905,700 | 16,250 |
| Dumpka Lukn Eyeing Station | 752 | 580,000 |  |  | 60,000 | 520,000 |  |  |  |  |  |  |
| Dunguess Salmon Hatchery... |  |  | 150,000 | ...5...... | 5,065 |  | 144,935 |  | 77,070 | 770 | 76,300 |  |
| Famous Springs Eyeing Statio Fish Lakt Eyeing Station....... | 25 | 18,500 |  |  | 100 |  |  | 18,400 |  |  | 18,400 |  |
| Fish Like Eyding Station............. Green Kiver Salmon Hatchery....... | 542 | 153,200 |  |  | 19,100 | 134,800 |  |  |  |  |  |  |
| Green River Salmon Hatch Kalnma Salmon Hatchery. |  |  | 3,540,000 |  | 298,400 | 2,500,000 |  | 741,600 |  | 7,300 | 734,300 |  |
| Kalnma Salmon Hatchery |  |  | 877,000 |  | 45,000 |  |  | 882,000 |  | 2,300 | 829,700 |  |
| Iost Lake Eyeing Station, | 1,272 | 907,500 |  |  | 25,050 | 882,450 |  |  |  |  | (1) |  |
| Owhi Lake Eyeing Statlon...... | 235 | 765,000 |  |  | 165,000 | 600,000 |  |  |  |  |  | .......... |
| Parkwood Lake Eyeing Station...... | 3,386 | 808,500 |  |  | 25,500 | 828,000 |  | 40,000 |  |  | 40,000 |  |
| Paturos Methow Salmon Hatchery.... Samisi Salmon Hatchery........... |  |  | 1,175,000 |  | 33,600 |  |  | 1,141,400 | 750,420 | 2,790 | 844,800 | 1,044,230 |
| Samish Salmon Hatchery............... |  |  | 882,600 420,000 |  | 46,730 |  | 122,070 | 713,800 |  | 7,231 | 446,800 | -250,760 |
| Skykomish Salmon Hatche Spokane Trout Hatchery.. |  |  | 420,000 $1,048,910$ |  | 22,400 104,610 |  |  | 397,600 |  | - 400 | 397,200 |  |
| Litele Spokane Trout Hatcher |  |  | 1,780,500 | 9,8 | 127,500 |  |  | 1,852,100 | ........... | $\begin{array}{r}7,000 \\ \hline 8.000\end{array}$ | 1,845,100 |  |
| Tilton River Trout Hatchery. | 31 | 18,000 |  |  |  |  |  | $1,603,000$ 17,100 | …...... | 18,200 300 | $1,634,800$ 16,800 |  |
| Twin Lakes Eyeing Station. | 1,778 | 1,200,300 |  |  | 120,980 | 1,109,320 |  |  |  |  |  |  |
| Walla Walla Trout Hatchery |  |  | $2,125,000$ |  | 355,585 | 1,100,380 |  | 2,030,475 |  | 30,75 | 2,008,700 |  |
| Laky Washington Eyeing Station. | 42,000 | 4,943,000 |  |  |  | 4,943,000 |  |  |  |  |  |  |
| Luke Whatcom Trout Hatehery | 25,573 238 | $6,617,000$ 112,400 |  | 518.714 | 501,081 | 3,014,000 | 3,012,033 | 518,600 | 1,700,000 | 9,600 | 2,209,000 |  |
| Wenatches Salmon Hatchery | 238 | 112,400 | 960,320 |  | 12,400 | 100,000 |  |  | ........... |  |  |  |
| Oftice State Fish Commissioner |  |  | 2,945,000 |  | 29,900 | 2,777,000 |  | 68,100 |  | 5,400 1,600 | 66,500 |  |
| GRAND TOTAIS. | 77,000 | 17,745,000 | 21,226,805 | 647,149 | 2,756,796 | 18,888,570 | 3,346,613 | 15,127,576 | 2,553,376 | 127,419 | 15,088,200 | 2,405,216 |

SUMMARY OF OUTPUT OF TROUT FROM THE STATE HATCHERIES.

|  | Beardslee | Black Spotted | Orescentii | OutThroat | Eastern Brook | Rainbow | Silver | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number females spawned | 12 | ............ | 51 | 3,025 | 1,532 | 4,680 | 67,790 | 77,000 |
| Taken by State Hateheries | 24,000 |  | 97,000 | 2,671,300 | 1,691,000 | 1,627,400 | 11,634,000 | 17,745,000 |
| Recelved from V. S. Burcau of Fisheries. | , | 33,200 |  |  |  |  |  | 39,2\%0 |
| Recefved from Eastern States on exchange agreement, as follows: State of Connsetleut |  |  |  |  | 200,000 |  |  | 200,000 |
| State of Massachusetts. |  |  |  |  | 750,000 200,000 |  |  | 750,000 900,000 |
| Purchased by the State, as follows: |  |  |  |  |  |  |  | 0,000 |
| Mrookdale Tront Co., Duxbury, Mas |  |  |  |  | 706,000 |  |  | 796,000 |
| A. R. Graham \& Son, Berkley, Mass..... |  |  |  |  | 500,000 |  |  | 500,000 |
| Gloan Springs Trout Co., Paw Paw, Mieh. ${ }^{\text {Paradise Brook Tront Co., Henryville, Pa }}$ |  |  |  |  | 223,975 |  |  | 223,975 |
| Paradise Brook Tront Co., Henryville, Pa................... |  |  |  |  | 1,000,000 |  |  | 1,900,000 |
| Takut by King Cominty and turned over to the State for hatching |  |  |  |  |  |  | 1,160,000 | 1,160,000 |
| Totals | 24,000 | - 33,260 | 97,000 | 2,671,300 | 6,260,975 | 1,627,400 | 12,704,900 | 23,508,885 |
| On hand April 1, 1018 | 10,760 |  | 6,890 | 71,049 | ............. | . $1.0+56 . .$. | 658,450 | 647,149 |
| GRAND TOTALS | 84,760 | 39,260 | 108,800 | 2,742,349 | 6,260,975 | 1,627,400 | 13,353,350 | 24,155,084 |
| Lost ...... | 685 | 11,560 | 41,500 | 244,616 | 961,175 | 182,225 | 1,314,945 | 2,756,796 |
| Shuped to Enstern Status....................................... | .,.......... |  |  |  | ......, ..... |  | 1,300,000 | 1,300,0¢0 |
| Nbipped to county latchorles for hatehfag and planting, ns follows; |  |  |  |  |  |  |  |  |
| Verry County ........ <br> King Comats |  |  |  |  | 50,000 |  |  | 50,000 |
| Kiftitas County |  |  |  | 125,000 | 600,000 |  |  | 725,000 |
| Skinmana County . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  | - |  | ....... | ........... | ............ | 500,000 | 500,000 |
| Stevins County ...............c. . . . . . . . . . . . . . . . . . . . . . . . . . . . |  |  |  |  | 100,000 |  | 250,000 | 250,000 100,000 |
| On band Match 31, J920............................................. | 23,675 |  | 39,000 | 34,933 |  |  | 3,249,005 | 8,840,618 |
| FRY- |  |  |  |  |  |  |  |  |
| Hatched | 10,400 | 21,700 | 23,300 | 2,387,800 | 4,549,800 | 1,445, 175 | 6,780,400 | 15,127,1275 |
| Ont hatil April is 1919 |  |  | 25,880 |  |  |  | 2,527,490 | 2,553,370 |
| Most | 400 | 1,700 | 430 | 15,600 | 51,425 | 16,975 | 40,911 | 127,449 |
| Plantus …ac. | - 10,000 | 20,000 | 32,500 | 2,322,200 | 3,674,400 | 1,428,200 | 7,600,901 | 15,089,200 |
| Gitt haud Murch 31, 1090 |  |  | 16,250 |  | 823,975 | ..........' | 1,025,07] | 2,465,206 |

Fincal Year 1919.

(\%65 ' 18 yJuw ptruq 40
Hatehed FRY

| SPEOIES | Loss on Egge | $\begin{gathered} \mathbf{L}_{\mathbf{F}_{\mathrm{TY}}} \text { on } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: |
| Beardslee | 1.0\% | 8.8\% |
| Black spotted | 34.7\% | 7.8\% |
| Crescentif | $40 \%$ | 1.8\% |
| Eastern Brook | 15.3\% | 1.1\% |
| Rainbow | 11.1\% | 1.1\% |
| Silver | 9.8\% | 0.0\% |

AVERAGE NUMBER EGGS TAKEN TO FEMALE.
Fiscal Year 1818.
DISTRIBUTION OF TROUT FRY PLANTED FROM THE STATE HATCHERIESS

| COUNTIES AND WATERS | Beardslee | Black Spotted | Cres. centil | Cut. Throat | Eastern Brook | Ralnbow | Sllver | Total Trout | Chinook | Steelhead | Total Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WESTERN WASHINGTON DISTRIOT |  |  |  |  |  |  |  |  |  |  |  |  |
| Clallam county- <br> Lake Orescent <br> Lake Sutherland | 10,000 |  | 32,500 | 58,200 83,000 |  |  | 805,000 | 938,700 |  | 00,800 | 90,800 | 1,038,500 |
| CHARKE COUNTYCedar Creek |  |  |  | 28,000 |  |  |  |  |  |  |  |  |
| Washougal River Camas Lake ... |  |  |  |  |  | 30,000 | 475,000 | 633,000 |  |  |  | 633,000 |
| COWLITZ COUNTY Kalama River silver Lake |  |  |  |  |  | 28,500 | 200, 700 | 318,200 |  |  |  |  |
| GRAYS HARBOR COUNTYCloquallum River ......... |  |  |  | 7,000 |  | 34,000 |  |  |  |  |  |  |
| Hoquiam River. |  |  |  | , | .......... | 30,000 |  |  |  |  |  |  |
| Westers Dam.......................... |  |  |  | 7,000 |  | 5,000 5,000 |  |  |  |  |  |  |
| Mox Chehalis River................... |  |  |  | 7,000 |  |  |  |  |  |  |  |  |
| Whld Cat Creek |  |  |  | 7,000 |  |  |  |  |  |  |  |  |
| Rock Creek |  |  |  | 7,000 | 5,000 |  |  |  |  |  |  |  |
| Fast Hoquiam R |  |  |  | 7.000 |  |  |  |  |  |  |  |  |
| Porter Creek |  |  |  | 7,000 |  |  |  |  |  |  |  |  |
| Gorald Oreek |  |  |  | 7,000 |  |  |  |  |  |  |  |  |
| Delazine Creek |  |  |  | 7,000 |  |  |  |  |  |  |  |  |
| Zigler Oreek |  |  |  |  | 20,000 |  |  |  |  |  |  |  |
| Humptulips River ................................ |  |  |  |  | 15,000 |  |  |  |  |  |  | 194.000 |
| Wishkah River .. |  |  |  |  | 10,000 | ... | ..... | 193,000 | . |  | , ........ | 101,000 |
| $\underset{\text { Greenbank Lake }}{\text { ISLAND COUNTY- }}$ |  |  |  | 28,000 |  |  |  | 28,000 |  |  |  | 28,000 |
| JEFFERSON COUNTYt.ake Crocker |  |  |  |  |  |  | 38,150 |  |  |  |  |  |
| I.ake Hooker |  |  |  |  |  |  | 28, 150 |  |  |  |  |  |
| J.ittle Quilcene River....... Dosewallips River ......... |  |  |  | 18,500 |  | 19.000 |  | 113,800 |  |  |  | 113,s00 |

Distribution of Trout Fry Planted From the State Hatcherien-Continued.

Distribution of Trout Fry Planted From the State Hatcherien-Continued.

Dintribution of Trout Fry Planted From the State Hatcherien-Continued.
(Including Salmon Fry Planted in Fresh Watern in Lieu of Trout.)

| COUNTIES AND WATERS | Beardsler | Black Spotted | Cres. centil | CutThroat | Eastern Brook | Rainbow | Silver | Total Trout | Chinook | Steelhead | Total Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WESTERN WASHINGTON DIST, |  |  |  |  |  |  |  |  |  |  |  |  |
| THURSTON COUNTY- <br> Des Chates River ... |  |  |  | 23,00 |  | 48,000 |  |  |  |  |  |  |
| Summit Lake ....... |  |  |  |  |  | 48,000 | 100,000 |  |  |  |  |  |
| Clear Lake |  |  |  |  |  |  | 75,000 |  |  |  |  |  |
| Lawrence Lake ...................... |  |  |  |  |  |  | 25,000 |  |  |  |  |  |
| Black Lake ........................... |  |  |  |  | 46,000 | ......... | , | 817,000 |  |  |  | 317,000 |
| WAHKIAKUM OOUNTY- <br> Elkoman River |  |  |  |  |  | 24,000 | \%0,000 |  |  |  |  |  |
| Skamokawa Rlver . .................... |  |  |  |  |  |  | 35,000 | 80,000 |  |  |  | 89,000 |
| WHATCOM COUNTY- <br> Lake Whateom |  |  |  | 57,800 |  |  | 1,851,200 |  |  |  |  |  |
| Lake Padden ........................... | .......... | ......... | ......... | 57,00 | 70,000 |  | 1200,000 |  |  | +............. | . | ........ |
|  | ........... | ...... | .... ${ }^{\text {. }}$. . . . | .......... | \% |  | 100,000 | . | + +........ | ........... | .......... | .......... |
| North Fork Nooksack River........ | ....... |  |  | .......... | .......... | 10,000 |  |  | . ......... |  | .......... | . |
| Bagley Oreek .......................... |  |  | ....t.t... |  | +........... | 10,000 |  | ......... | .,........ | . . . . . . . . | . . . . . . . | * |
| Big Beaver Creek ...................... |  |  |  |  |  | 10,000 22,300 |  | .......... | ........... | ........... | ........... | , |
| Lost Lake .................................. | -........... | 5,100 | ............. |  | 10,000 | 22,300 |  |  |  |  | , , ............ | . |
| Silver Lake ............................ |  |  |  |  | 86,000 |  |  |  |  |  |  |  |
| Kendall Creek |  |  |  |  | 90,400 |  |  |  |  |  |  | .. |
| Dakota Oreek |  |  |  |  | 30,000 |  |  |  |  |  |  |  |
| Bertrand Oreek |  |  |  |  | 27,000 |  |  | 2,579,800 |  |  |  | 2,579,800 |
| Totals W. W. District........... | 10,000 | 5,100 | 82,500 | 768,300 | 1,474,400 | 895,900 | 4,818,400 | 7,929,600 | 55,600 | 806,300 | 361,900 | 8,291,500 |
| EASTERN WASHINGTON DISTRIOT |  |  |  |  |  |  |  |  |  |  |  |  |
| ADAMS OOUNTY- <br> Cow Oreek | ......... |  |  | 81,000 | 86,500 | 17,500 | 40,000 | 175,000 |  |  |  | 175,000 |
| ASOTIN COUNTY- <br> Asotin Oreek |  |  |  |  | 37,000 |  |  |  |  |  |  |  |
| Pintler Oreek ............................ |  |  |  |  | 20,000 | 37,000 | ............. |  |  |  | .......... | ......... |
| Ten Mile Oreek |  |  |  |  | 10,000 |  |  |  |  |  |  |  |
| George Oreek |  |  |  |  | 20,000 |  |  | 124,900 |  |  |  | 124,900 |

Dintribution of Trout Fry Planted From the State Hatcherien-Continued.

| COUNTIES AND WATERS | Beardslee | $\begin{aligned} & \text { Black } \\ & \text { Spotted } \end{aligned}$ | Cres. centil | Cut- Throat | Eastern Brook | Rninbow | Sllver | Total <br> Trout | Chlnook | Steelhead | Total Salmon | Grand <br> Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN WASHINGTON DIST. |  |  |  |  |  |  |  |  |  |  |  |  |
| CHELAN COUNTY- |  |  |  | 49,500 |  |  |  |  |  |  |  |  |
| Dumpka Lake . |  |  |  |  |  | ......... |  |  |  | 50,000 |  |  |
| First Oreek Entlat River |  |  |  |  |  |  | 40,000 |  |  | 100,000 100,000 |  |  |
| Squilchuek ... |  |  |  |  |  |  |  |  |  | 20,000 |  |  |
| Stennilt Oreek |  |  |  |  |  |  |  |  |  | 10,000 |  |  |
| Olockum Oreek |  |  |  |  |  |  |  |  |  | 10,000 |  |  |
| Ingle Oreek |  |  |  |  |  |  |  |  |  | 30,000 |  |  |
| Peehastin Oreek |  |  |  |  | 10,000 |  | 25,000 |  |  | $\begin{array}{r}70,000 \\ 109 \\ \hline\end{array}$ |  |  |
| Wenatchee River |  |  |  | 127,300 |  |  |  |  |  | 109,400 50,000 |  |  |
| Clear Lake .... |  |  |  | , |  |  |  |  |  | 5,000 |  |  |
| Chewawa River |  |  |  | 150,000 |  |  |  |  |  | 50,000 |  |  |
| Nathan Oreek Ralntow Creek |  |  |  | 150,000 |  |  | 40,000 |  |  | 50,000 20,000 |  |  |
| Wenatchee Lake. |  |  |  | 150,000 | 20,000 |  |  |  |  | 30,000 |  |  |
| Chewaukum Oreek |  |  |  |  |  | ....... |  | , |  | 30,000 |  |  |
| Obelan Lake .... |  |  |  | 100,000 | 30.000 |  |  |  |  |  |  |  |
| Sittle Wenatchee |  |  |  | 50,000 |  |  |  |  |  |  |  |  |
| Roaring Greek |  |  |  | 10,000 |  |  |  |  |  |  |  |  |
| Ohamp stick Oree |  |  |  |  |  |  | 15,000 |  |  |  |  |  |
| Flsh Lake .. <br> Hidden Lake |  | .......... | ..... |  |  |  | 19,500 |  |  |  |  |  |
| Coon Lake . |  |  |  |  | 10,000 |  |  | 1,046,300 |  |  | 794,400 | 1,840,700 |
| Columbia county- <br> North Fork Tonchet Rive |  |  |  |  |  |  |  |  |  |  |  |  |
| South Fork Touchet River. |  |  |  | 37,500 |  |  |  |  |  |  |  |  |
| Tucanon River |  |  |  |  |  |  |  |  |  |  |  |  |
| Touchet Rlver |  |  |  |  | 48,500 |  |  |  |  |  |  |  |
| Dutch Creek |  |  |  |  |  | .......... | 48,000 |  |  |  |  |  |
| Wernhards |  |  |  |  |  | ............ | 96,100 |  |  |  |  |  |
| Youngs ... |  |  |  |  |  |  | 48,100 | 402,300 |  |  |  | 498,500 |
| douglar county- |  |  |  |  |  |  |  |  |  |  |  |  |
| Fook Island Oreek |  |  |  | 20,700 |  | 17,500 |  |  |  |  |  |  |
| Dougins Oreek |  |  |  |  | 71,500 |  |  | 109,700 |  |  |  | 109,700 |

Distribution of Trout Fry Planted From the State Hatcherien-Continued.
(Including Salmon Fry Planted in Fresh Waters in Lieu of Trout.)

| COUNTIES AND WATERS | Beardslee | Black Spotted | Crescentii | Cut- <br> Throat | Eastern Brook | Rainbow | Silver | Total Trout | Chinook | Stselhead | Total Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN WASHINGTON DIST. |  |  |  |  |  |  |  |  |  |  |  |  |
| FERRY COUNTYSwan Lake |  |  |  | 6,000 |  | 17,500 |  |  |  |  |  |  |
| San Poll Lake |  |  | ....... | 12,800 |  | 17,500 |  |  |  |  |  | ............. |
| Hall Creek |  |  | ....... | ....... | 10,000 | .......... |  |  | , |  |  | ......... |
| Stenger Oreek |  |  |  |  | 10,000 |  |  |  |  |  |  | ........ |
| San Poil Oreek |  |  |  |  | 2S,400 |  |  |  |  |  |  | . ....... |
| Curlew Creek . . . . . . . . . . . . . . . . . . . . . . |  |  | ........ | .......... |  | . . | 22,500 |  |  |  |  | 124.700 |
| Twin Lake .......................... |  |  | - |  |  | .......... | 17,500 | 124,700 |  |  |  | 124,700 |
| GAREIELD COUNTY- <br> Desdmans Creek |  |  |  |  |  | 7,300 |  |  |  |  |  |  |
| Pataha Creek ......................... |  |  |  |  | 96,200 | 7,200 | 69,800 |  |  |  |  |  |
| Tucanon River . . . . . . . . . . . . . . . . . . |  |  |  |  |  | 51,510 |  | 292,000 |  |  |  | 232,000 |
| GRANT GOUNTY- <br> Crab Creek |  |  |  | 18,800 |  | 17,500 | 53,000 | 89,800 |  |  |  | 89,300 |
| KITTITAS COUNTY- <br> Tanun Oreek |  |  |  | 16,700 |  |  |  |  |  |  |  |  |
| Fogarty Slough |  |  |  | 16,.... | 36,800 | 37,800 | ............ |  | , |  |  |  |
| Wabash Creek |  |  |  | 40,000 |  |  |  |  |  |  |  | . ....... |
| Tilliers Slongh ..... |  |  |  |  | 16,000 |  |  |  |  |  |  |  |
| Water Plant Slough.................. Mouastosh Creek .................. |  |  |  | ............ | 16,000 |  |  |  |  |  |  |  |
| Mouastosh Creek . . . . . . . . . . . . . . . . . |  |  |  |  | 2S,500 |  |  | 191,800 | - |  |  | 191,800 |
| KLICKITAT COUNTY- <br> Ifittle Kilekitat River. |  |  |  | 56,700 | 48,500 |  |  |  |  |  |  |  |
| Trout Lake ............................ |  |  |  |  |  | 37,800 | 95,800 |  |  |  |  |  |
| Spring Creek |  |  |  |  | 48,800 |  |  |  |  |  |  |  |
| Northwestern Lake |  |  |  |  |  |  | 95,800 | 383,400 |  |  |  | 383,400 |
| LINCOLN COUNTY- |  |  |  |  |  |  |  |  |  |  |  |  |
| Crab Oreek ............................ |  |  |  | 61,000 | 52,500 | 35,000 |  |  |  |  |  |  |
| Wilson Oreek ............................ |  |  | . |  | 18,000 | ..... |  |  | ......... |  |  |  |
| Hawk Oreek ............................. |  |  |  | $\cdots$ | 25,000 | .... |  | 191,500 |  |  | ........ | 191,500 |

Distribution of Trout Fry Planted From the State Hateheries－Continued．

| 吅軹 |  |
| :---: | :---: |
| 莒念 |  |
|  |  |
| 答 |  |
| 或苞 | （1）！！！！！！！！！！！！气 |
| $\frac{b}{c}$ |  <br>  |
|  |  |
| 磁合 |  |
| है゙总 | 응 |
| 흐ㄴㅡㅡㄴ |  |
|  |  |
| 亳 |  |
| SyGlvil anv salidniod |  |

Distribution of Trout Fry Planted From the State Hatcheries-Continued.

| COUNTIES AND WATERS | Beardsiee | Black Spotted | Cres. centil | OutThroat | Eastern Brook | Rainbow | Silver | Total Trout | Chinook | Steelhead | Total Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN WASHINGTON DIST. |  |  |  |  |  |  |  |  |  |  |  |  |
| PEND OREILLE COUNTY- <br> Big Muddy Oreek |  |  |  |  |  |  | 56,700 |  |  |  |  |  |
| Lost Oreek ................. |  |  |  |  |  |  | 80,000 |  |  |  |  |  |
| Bead Lake |  |  |  |  |  |  |  |  |  | 100,000 |  |  |
| Browns Lake. |  |  |  | 47,000 |  |  |  |  |  |  |  |  |
| Half Moon Lak |  |  |  |  | 18,400 | 26,300 |  |  |  |  |  |  |
| Little Spokane River |  |  |  |  | 28,000 |  |  |  |  |  |  |  |
| Tacoma Creek ...... |  |  |  |  | 55,000 |  |  |  |  |  |  |  |
| La Clare Greek |  |  |  |  |  |  | 40,000 |  |  |  |  |  |
| Cedar Oreek ...... |  |  |  |  |  |  | 55,000 | 406,400 |  |  | 100,000 | 506,400 |
| SPOKANE COUNTYChapman Lake ... |  | 14,000 |  |  |  |  |  |  |  |  |  |  |
| Liberty Lake ....................... |  |  |  | 67,000 67,000 |  |  |  |  |  |  |  |  |
| Newman Lake Dragon Oreek |  |  |  | 67,000 |  | 39,200 |  |  |  |  |  |  |
| Long Lake... |  |  |  |  |  |  | 270,000 |  |  |  |  |  |
| Williams Lake |  |  |  | . |  |  | 122,000 | ........ |  |  |  |  |
| Above Nine Mlle Dam. ................ |  |  |  |  |  |  | 140,500 |  |  |  |  |  |
| Holding in feeding ponds............ |  |  |  |  | 815,400 |  |  | 1,536,000 |  |  |  | 1,586,000 |
| STEVENS COUNTY- |  |  |  |  |  |  |  |  |  |  |  |  |
| Little Pend Oreille Lak Chewelah Oreek |  |  |  | 18,800 18,700 |  | 17,500 17,500 |  |  |  |  |  |  |
| Waits Lake .......................... |  |  |  |  |  |  | 30,000 |  |  |  |  |  |
| Loon Lake |  |  | , |  |  |  | 80,000 |  |  |  |  | ......... |
| Deer Lake, Colvill River |  |  |  | ……..... |  | - | 30,000 |  |  |  |  |  |
| Lost by county .......... |  |  |  |  |  |  | 39,000 | 231,500 |  |  |  | 231,500 |
| WALLA WALLA COUNTY- |  |  |  | 53,400 | 48,800 | 48,800 | 272,300 |  |  |  |  |  |
| Dry Oreek .......................... |  |  |  | 27,000 | 18,600 |  | 15,000 |  |  |  |  |  |
| Copper Oreek ......................... |  |  |  |  | 30,000 | 24,000 |  | 537,200 |  |  |  | 587,000 |
| WHITMAN GOUNTY- Union Oreek........ |  |  |  |  |  |  |  |  |  |  |  |  |
| Overflow city water supply, Colfax. |  |  |  |  |  | 15,000 |  |  |  |  |  |  |
| Palouse River ........................ |  |  |  |  | 42,500 |  |  | 80,300 |  |  |  | 80,300 |

Distribation of Trout Fry Planted From the State Hateherien-Coneluded.
(Includling Salmon Fry Planted in Fresh Waters in Leu of Trout.)

| COUNTIES AND WATERS | Beardslen | Black Snotted | Cres. centil | CutThront | Eastern Brook | Ralnbow | Silver | Total Trout | Ohinook | Steelhead | Total | Grand Totala |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN WASHINGTON DIST. |  |  |  |  |  |  |  |  |  |  |  |  |
| YAKIMA COUNTY Upper Naches River |  |  |  | 56,700 |  | 87,800 |  |  |  |  |  |  |
| Moxee Slough ..... |  |  |  |  | 48,500 48,900 |  |  |  |  |  |  |  |
| Toppenish Oreek |  |  |  |  | 48,800 |  |  | 191,800 |  |  |  | 191,800 |
| Totals E. W. District |  | 14,900 | ........ | 1,508,900 | 2,200,000 | 602,300 | 2,782,500 | 7,153,600 | .......... | 1,324,400 | 1,894,400 | 8,568,000 |
| grand totals | 10,000 | 20,000 | 32,500 | 2,322,200 | 3,674,400 | 1,428,200, | 7,600,900 | 15,088,200 | 85,600 | 1,700,700 | 1,756,300 | 16,844,500 |

# TROUT AND STEELHEAD EGGS FURNISHED BY STATE TO COUNTIES. Fimeal Year 1818. 

| COUNTIES | TROUT |  |  |  | SALMON |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cut. <br> Throat | Eastern Brook | Silver | Total Trout | Steolhead | Grand Total |
| Ferry.. |  | 50,000 | ......... | 50,000 |  | 50,000 |
| King... | 125,000 | 600,000 | ......... | 725,000 | 543,200 | 1,268,200 |
| Kittitas. |  | .......... | 500,000 | 500,000 |  | 500,000 |
| Skamania | . . . . . . . | .......... | 250,000 | 250,000 |  | 250,000 |
| Spokane.. |  | . . . . . . . . |  |  | 500,000 | 500,000 |
| Stevens... |  | 100,000 |  | 100,000 | 540,000 | 640,000 |
| Totals. | 125,000 | 750,000 | 750,000 | 1,625,000 | 1,583,200 | 3,208,200 |

## TROUT EGGS PURCHASED AND HATCHED BY THE COLNTIES. Fiscal Year 1818.

(Orders placed by the State Fish Commissionor, for the countios, with Paradise Brook Trout Co., of Henryville, Pa., for Eastern Brook trout eggs.)

| COUNTIES | Number <br> Eastern Brook |
| :---: | :---: |
| Klng. Snohomish. Stevens.. | $\begin{array}{r} 1,500,000 \\ 500,000 \\ 100,000 \end{array}$ |
| Total. | 2,100,000 |

PERMITS GRANTED FOR THE PLANTING OF FICY FROM COUNTY HATCHERIES.


Total Wistern Washington District
Permitn Granted for the Planting of Fry From County Hateherien-Continued.

Permitn Granted for the Planting of Fry From County Hateherien-Continued.

| COUNTIES AND WATERS | TROUT |  |  |  |  |  | SALMON |  |  |  | BlackBassandOrappics | Grand Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BlackSpotted | Cut- <br> Throat | Eastern Brook | Rainbow | Silver | Total Trout | Chinook | Silver | Steelhead | Total Salmon |  |  |
| EASTERN WASHINGTON DIST. |  |  |  |  |  |  |  |  |  |  |  |  |
| SPORANE COUNTY-Continued. |  |  |  |  |  |  |  |  |  |  |  |  |
| Chapman Lake, Little Spokane River and tributaries.............. |  |  | 359,000 |  |  |  |  |  |  |  |  |  |
| Thompson and Kalez Creeks.......... |  | 144,000 |  |  |  |  |  |  |  |  |  |  |
| Blanchard Oreek and tributaries of Little Spokane River................ |  |  |  | 48,200 |  |  |  |  |  |  |  |  |
| Whliams lake ...................... |  |  |  |  |  | 565,200 | ., |  |  |  | 3,000 | ......... |
| Totals | 14,000 | 144,000 | 850,000 | 48,200 |  | 565,200 |  | 941,000 | 500,000 | 1,441,000 | ........... | 2,084,200 |
| STEVENS COUNTY- |  |  |  |  |  |  |  |  |  |  |  |  |
| Pey Creek.. |  |  | 75,000 25,000 |  |  |  |  |  |  |  |  |  |
| Sheep Creek.,................................. |  |  | 30,000 | ............ | , ....... |  | ........... |  | .......... |  |  | ......... |
| Colville Oreek............................ |  |  | 25,000 |  |  |  | .......... | ....... | .......... |  |  | ......... |
| Pend Oreille Lakes. |  | .......... | 150,000 | ........... |  |  | ......... |  | .......... |  |  |  |
| Swamp Creek. . . . . . . . . . . . . . . . . . . . . . . . . . |  | - | 25,000 50,000 |  |  |  |  |  | ......... |  |  | ............. |
| Mill Creek............................. Pend Oreille River............... | -............ | .............. | 50,000 50,000 |  |  |  | ............. |  |  |  |  | .......... |
| Chewelah Creek........................ |  |  | 5,000 |  |  |  |  |  |  |  |  | .......... |
| Fast Chewelah Oreek, |  |  | 40,000 | .......... |  |  | ......... |  |  |  |  |  |
| Little Chewelah Oreek | ........ |  | 40,000 | .......... |  |  | ......... |  |  |  |  | ............ |
| Cottonwood Creek....................... | . |  | 20,000 30,000 | . |  |  | , +......... |  | .......... |  |  | ...... |
| Joon Lake.................................... | .......t* | ............ | 30,000 25,000 | ......... |  |  | . |  |  |  |  | . |
| Thompson Oreek........................ |  |  | 20,000 |  |  |  |  |  | .......... |  |  | , |
| Spruce Lakes.. |  |  | 25,000 |  |  |  | .......... |  | ,......... | , |  |  |
| Little Sheep Creek |  |  | 15,000 |  |  |  | ........ |  | . ......... |  |  | .......... |
| Big Sheep Oreek. |  |  | 30,000 |  |  |  | ..... |  |  | , , , . |  | .......... |
| Gold Creok.. |  |  | 5,000 |  |  |  |  |  |  |  |  | .......... |
| Drep Creek........... |  |  | 50,000 |  |  |  |  |  |  |  |  | ......... |
| South fork Depp Creek |  |  | 10,000 |  |  |  |  |  |  |  |  |  |
| Upper Colville River.. Lower Colville River. |  |  | 25,000 |  |  |  |  |  |  |  |  |  |
| lower Colville River. |  |  | 35,000 |  |  |  |  |  |  |  |  |  |

Permits Granted for the Planting of Fry From County Hatcherien-Coneluded.

| COUNTIES , IND WATERS | TROUT |  |  |  |  |  | SALMON |  |  |  | $\begin{array}{\|c} \text { Black } \\ \text { Bass } \\ \text { and } \\ \text { Crapples } \end{array}$ | Grand <br> Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Black. Spotted | Cut. Throat | Eastern Brook | Rainbow | Silver | Total Trout | Chinook | Silver | Steelhea | Total Salmon |  |  |
| KISTERN WASHINGTON DIST. |  |  |  |  |  |  |  |  |  |  |  |  |
| STEVENS COUNTT-Continued. |  |  |  |  |  |  |  |  |  |  |  |  |
| Dunlap Creek. <br> Huckleberry Cronk........................... |  |  | 30,000 10,000 | ............. |  | ............ | ............. | , | .............. | .............. | ............. | ............ |
| Deer Creek......... |  |  | 20,000 |  |  | . ......... | . ......... | ......... |  |  |  | .......... |
| Bear Creek.. |  |  | 10,000 10 |  |  | . | ............ | . |  | , +1.+.... | , | . |
| Pepone Lake |  |  | 10,000 15,000 |  |  |  |  |  |  |  |  | ......... |
| Wait's Lake. |  |  |  |  |  |  |  | . ......... | 80,000 |  |  | ........... |
| Loon Lake. <br> Deer Lake.. |  |  |  |  |  |  |  | $\cdots$ | 80,000 80,000 | .... |  | .......... |
| Deer Lake.. <br> Pend Orelle Lakes. |  |  |  |  |  |  |  | . | 80,000 80,000 | .......... | .......... | ......... |
| Bluck Lake........ |  |  |  |  |  |  |  |  | 20,000 |  |  |  |
| Totals. |  |  | 900,000 |  |  | 200,000 | ... | ........... | 340,000 | 340,000 | .......... | 1,240,000 |
| - Y.IKIMA COUNTY- |  |  |  |  |  |  |  |  |  |  |  |  |
| Satus Creek. |  |  |  | 100,000 |  |  |  |  |  |  |  |  |
| Simpo Oreek. . . . . . . . . . . . . . . . . . . . . |  |  |  | 40,000 |  | ......... | . ......... | . ......... |  |  | .......... | .......... |
| Wenas River, ......................... |  |  |  | 70,000 |  |  |  |  |  |  |  | - |
| Courcha River. . . . . . . . . . . . . . . . . . . . . . . |  |  |  | 200,000 |  | . 4 | . | . | . $\cdot$....... |  | .......... | - |
| Naches River......... . . . . . . . . . . . . Autanum River. .................. |  |  |  | 830,000 | ...... | + | - | . | . .......... |  | - | .......... |
| Autanum River. . . . . . . . . . . . . . . . . . Bumping Lak |  |  |  | 400,000 |  |  |  | . |  |  | .......... | .......... |
|  |  | . $\cdot$....... | . ${ }^{\text {a }}$. | 0, 0 | +........ |  |  | . |  |  |  |  |
| Totals |  |  |  | 1,750,000 |  | 1,750,000 | . $1 . .1 . . . .$. |  | .......... |  |  | 1,750,000 |
| Total Eastern Washington District. . | 36,000 | 159,000 | 2,668,000 | 1,798,200 | 263,000 | 4,924,200 |  | 941,000 | 840,000 | 1,781,000 | 78,000 | 6,783,200 |
| Grand Totals............. | 61,000 | 334,000 | 2,776,64S | 2,198,200 | 1,713,000 | 7,012,848 | 8,000 | 941,000 | $\overline{1,414,120}$ | 2,363,120 | 78,000 | 9,453,968 |

- Yakima County Game Commission has no hatchery of its own. Fry rear ed in private hatcheries.
PERMITS GRANTED FOR THE PLANTING OF FRY FROM OTHER THAN STATE AND COUNTY HATCHERIES.

| COUNTIES AND WATERS | TROUT |  |  |  |  | SALMON | BASS | $\begin{aligned} & \text { Grand } \\ & \text { Total } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BlackSpotted | $\begin{aligned} & \text { Cut } \\ & \text { Throat } \end{aligned}$ | Eastern Brook | Rainbow | Total Trout | Steelhead |  |  |
| WESTERN WASHINGTON DISTRICT |  |  |  |  |  |  |  |  |
| COWLITZ COUNTY- Coal Creek......... |  |  |  | 10,000 | 10,000 |  |  | 10.000 |
| GRAYS HARBOR COUNTY- <br> Wislikah River. $\qquad$ | 5,000 |  |  |  |  |  |  |  |
| Wyinan Creek,................................. Mumptulis River......................... | 15,000 |  |  |  | 25,000 | , |  | 25,000 |
|  |  |  |  |  |  |  |  |  |
|  | 6s,950 |  |  |  | 233,950 | ........ | 241,202 | 475,152 |
| LEWIS COUNTY- <br> Mill Cruek No, $2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$. | 5,000 |  |  |  | 5,000 |  |  | 5,000 |
| PIEREE COUNTY- <br> Spanaway Crew | 16,000 |  |  |  |  |  |  |  |
| Mnek Oroek <br> Clover Cresk. | 9,500 0,500 0, |  |  |  |  |  |  |  |
|  | 9,500 19,000 |  |  |  | 54,000 |  |  | - 54,000 |
| SK.IMANLA COUNTY- <br> Irwan Creek. <br> 6,000 |  |  |  |  |  |  |  |  |
| Rock Creek | , |  |  | 5,000 |  |  |  |  |
| Nelson Creek Malion ifter............................ |  |  |  |  |  |  |  |  |
| Washougal River................................. |  |  |  | 6,000 | 27,000 |  |  | 27,000 |
| SNOHOMISH COUNTY- |  |  |  |  |  |  |  |  |
| Bonlder Creek................................... |  |  |  | 4,000 |  |  |  |  |
| Squier Creek |  |  |  | 4,000 6,500 |  |  |  |  |
| t.ake Roestger. | 500 |  |  |  | 18,000 |  |  | 18,006 |
| Totals | 160,450 |  | 165,000 | 47,500 | 372,950 |  | 241,202 | 614,152 |

Permitn Granted for the Planting of Fry From Other Than State and County Hatcheries-Continued.

Permitn Granted for the Planting of Fry From Other Than State and County Hateherien-Concluded.


## SLMMARY OF FRY PLANTED. <br> Fiscal Year 1919.

| SALMON- |  | 97,514,605 |
| :---: | :---: | :---: |
| Chinook | 32,884,300 |  |
| Dog | 22,002,325 |  |
| Humpback | 1,315,500 |  |
| Stiveelhead | 28,601,000 |  |
| Steelbead | 12,011,480 |  |
| TROÚT- |  |  |
| Beardslee | 10,000 | 24,154,248 |
| Black Spotted | 402,900 |  |
| Crescentii | 32,500 |  |
| Cut-Throat | 2,841,200 |  |
| Eastern Brook | 7,209,848 |  |
| Rainbow | 4,349,900 |  |
| Silver . | 9,313,900 |  |
| MISCELLANEOUS- |  |  |
| Black Bass and Orapples | 819,202 | 319,202 |
| Total. |  | 121,088,065 |

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS.

| Date of Arrest | OFFFENDER | CHARGE | Disposition of Case | Penaity Imposed | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1919 |  | Clallam County |  |  |  |
| Nov. 28 | D. Bourgette . | Gafing salmon ............................................... | Gullty | $\$ 1000$ |  |
| Nov. 28 | H. McNutt .... | Gafing salmon ..................................................... | Gulity | 1000 | $\$ 2000$ |
| 1919 |  | OLARKE OOUNTY |  |  |  |
| Apr. 28 | James Goddard | Having in possession fish caught during closed season.. | Gully | \$500 |  |
| Apr. 28 | Steve Stainger | Having in possession fish caught during closed geason............ | Gullty | 10000 |  |
| ${ }^{\text {Apr. }}$ Apr. 28 | Wrne Brokiln | Having in possession fish caught during closed seapons............ Having in possession fish caught during closed eeason........ | Guilty | 100 2500 |  |
| Apr. 28 | A. Larson | Having in possession fish caught during closed seasoa. | Gulity | ${ }_{25}^{2500}$ |  |
| Sopt. 2 | Frank Reed | Flishing without license........................... | Gulity | 7500 | 37500 |
| 1919 |  | COWLITZ COUNTY |  |  |  |
| Sept. 8 | Roger Risley | Fishing during closed season. | Dismisged |  |  |
| Sopt. 8 | Roger Risley | Fishing pound net during closed season............ ............ | Dismisged |  |  |
| Sept. 10 | John Ohonen | Fishing during closed season................................... | Gullty | \$12500 |  |
| Sept. 10 | Ed. Sax ..... | Flishing during closed season........................................ |  | 12500 |  |
| Oct.  <br> Oct. 8 | Judd Murray | Fishing pound net during elosed season............................................................. | Dismissed | 120 |  |
|  |  | GRAYS HARBOR COUNTY |  | 2 | NJ |
| Oet. 29 | Charles Stenson | Fishing without license. | Gullty |  |  |
| Oct. 29 | John Mikelson | Fishing without license. | Gulity | 81000 |  |
| Nov. 1 | Lyn Leedham .. | Fishing without license........................................... | Dismiss?d |  |  |
| 1920 |  |  |  |  |  |
| Feb. 15 | Lee Snilth | Shooting food fish | Gully | 2500 |  |
| ${ }_{\text {June }} 1019$ |  |  |  |  |  |
| June 2 | C. H. Richey ........ | Digging clams without license | Guilty | 1000 | 4500 |
| 1019 |  |  |  |  |  |
| Nov. 18 | Victor B. Hansen | Taking and seliling crabs under size............................. | Guilty |  |  |
| July 27 | Booth Fisheries Co. | Fishing during closed season........................ |  |  |  |
| Apr. <br> Apr. <br> 8 | Mike Huget |  | Guilty | 150 7500 050 |  |
| Apr. |  |  |  |  | 48350 |

Arrests Made for Violations of the Food Fish Laws-Continued.

Arreatm Made for Violationm of the Food Finh Laww-Continued.

| Date of Arrest | OFFENDER | OHARGE | Disposition of Case | $\begin{aligned} & \text { Penaltig } \\ & \text { Impowed } \end{aligned}$ | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1919 |  | PACIFIC COUNTY (Concluded) |  |  |  |
| July 21 | Axel Coreland | Opersting as scow buyer without license second offense | Dismissed |  |  |
| July 24 | Jos. Toivonen | Operating as scow buyer without license................. | Law held unconstitutional. |  |  |
| July 30 | Bonvino Martino | Alien fishing without incense............................ | Guflty held unconsti............ | 2500 |  |
| Aug. 8 | Bonvino Martino | Alien fishing without license. | Gulty | 2500 |  |
| Aug. 8 | Joe Favoloro | Alien fishing without license | (iullty | 5000 |  |
| Aug. 15 <br> Aug. 24 | T. Walters | Flahing in closed stream. |  | \$7500 |  |
| Aug. 24 | Arthur Kayra | Alfen flahing and no incense | Guismigsed |  |  |
| Aug. 24 | Victor Ahola | Allien fishing | Guilty ......................... | 5000 |  |
| Aug. 27 | Mike Vitalich | Fishing in closed stream | Gulity | 7500 |  |
| Aug. 27 | John Marincovich | Fishing in closed stream | Guilty | 7500 |  |
| Aug. 27 | Tony D. Marincovieh | Fishing in closed stream. ${ }_{\text {Fighing }}$ with | Guilty | 7500 |  |
| Sept. Sept. 2 | C. E. Broughton... Andrew Roberts | Firhing with gill net over legal | Gullty | 5000 2000 |  |
| Sept. 2 | Lunard Anderson | Fishing gill net out of season. | Guilty | 2000 |  |
| Sept. 2 | M. Sjolender | Fishing gill net out of season. | Guilty |  |  |
| Sept. 2 | O. Sjolender | Fishing gill net out of geason | Guilty | 2500 |  |
| ${ }_{\text {Dec. }}^{\text {Nov. }} 16$ | Fred Thompson <br> I. A. Johnson. | Fishing without license....... Possessing salmon In closnd somer | Gullty | 5000 |  |
| Dec. 81 | I. A. Johnson. | Possessing salmon in closid so | Guilty ...................... | 9750 |  |
| $\begin{gathered} 1920 \\ \operatorname{Jan} .18 \end{gathered}$ | Sam Bramdorf | Snagging salmon |  |  |  |
| Mar. 3 | Bert Andrews | Possession of clams for sale in closed season | Guilt | 500 1000 |  |
| Mar. 8 | O. G. Fisher | Dealing in clams at wholesale without license |  |  |  |
| Mar. 8 | Ed. Perry | Dealing in clams at wholesale without license | Not gulity |  |  |
| Mar. 11 | Walter Williame | Fishing during closed season. | Gullty | 1000 |  |
| Mar. 12 | Arthur Jernstrom Millard Ford | Fishing during closed season. Fishing during closed season. | Gulity | 1000 |  |
| Mar. 11 | Millard Ford | Fishing during closed season <br> PIERCE COUNTY | Gullty | 1000 | 1,04250 |
| $\stackrel{1919}{\mathrm{Apr}^{25}}$ | National Fish Co. | Having short salmon for sale. |  |  |  |
| Apr. 25 | Anton Kordich | Selling short salmon. | Forfelted bail | 5000 |  |
| Apr. 27 | D. Constanti | Operating as wholesaler without licens | Case dismisged |  |  |
| Nov. 18 Nov. 18 | C. H. Moriarty | Gaming salmon Garing salmon | Guilty | 1000 |  |
| Nov. 18 | J. S. Green...... | Gafing salmon with light | Guilty | 1000 10 |  |

Arrente Made for Violations of the Food Finh Laws-Continued.

| Date of Arrest | OFFENDER | CHARGE | Disposition of Case | Penalty Imposed | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | PIEROE OOUNTY (Concluded) |  |  |  |
| Nov. 19 | T. G. Sinith. | Gaffing salmon with light. | Gullty | 1000 |  |
| Nov. 19 | R. G. Lake. | Gaffing salmon with light | Guilty | 1000 |  |
| Nov. 19 | A. Shepersky | Gaffing salmon with light. ......................................... | Guilty | 1000 |  |
| Dec. ${ }^{\text {Nor }}$ | A. H. Frirs Ballanty | Gaffing salnon With light......... | Guilty |  |  |
| Dec. 4 | Frank Isley ........ | Oasting sawdust in water of State | Guilty |  |  |
| $\stackrel{1920}{\text { J8n. }}$ |  | Fishing within one mile of Chambers Oreek. |  | 5000 |  |
| Jan. 9 | Nick Oostellan | Fishing within one mile of Chambers Creek | Guilty | 5000 |  |
| Jan. 9 | J. Jelusich | Fishing within one mile of Chambers Creek. | Guilty | 5000 |  |
| Jan. ${ }^{\text {a }}$ | Joseph Myich | Fishing within one mile of Chambers Oreek | Guilty | 5000 |  |
| Jan, ${ }^{\text {Jan. }} 18$ |  | Fishing within one mile of Chambers Oreek...................... |  | imposed |  |
| Jan. 16 | Anton Naterlin ................. | Fallure to make November, 1919, report. <br> SAN JUAN OOUNTY | Dismissed |  | 33000 |
| Aug. 15 | Mick Novak | Fishing during weekly closed season | Gullty-Sentence suspended |  |  |
| Aug. 15 | Tony Novak | Fishing during weekly closed season | Guilty | \$250 00 |  |
| Aug. 15 | Tony Glileh | Fishing during weekly closed season............................. |  | 50 50 50 00 |  |
| Aug. 15 Aug. 15 | Alexander Radieh Pete Jasich | Fishing during weekly elosed season. Fishing during weekly elosed season. |  | 50 50 500 |  |
| Aug. 15 | John Stanbuck | Fishing during weekly closed season. | Guilty | 5000 |  |
| Aug. 15 | Nick Mosich | Fishing during weekly closed season. | Guilty | 5000 |  |
| Sept. 15 | Geo. Jasich | Fishing during weekly closed season | Guilty | 5000 |  |
| Sopt. 4 | American Packing Co. | Fishing purse geine during closed season | Guilty | 2500 |  |
| Sept. 4 | American Packing Co. | Fishing purse seine during closed season SKAGIT COUNTY | Dismissed |  | 80000 |
| ${ }_{\text {Oct. }}^{1919} 11$ | John Jacobson | Fishing near mouth of river | Guilty | \$50 00 |  |
| Oct. 11 | Ole Reitan .......................... | Fishing near mouth of river. | Guilty | 5000 |  |
| Nov. 17 | Nels Nelson | Taking and selling crabs under sizz | Gulty | 2500 |  |
| Nov. 17 Nov. 17 | Anton Barach | Taking and seling crabs under size | Guilt | 2500 |  |
| Nov. 17 | Wm. Eaton | Taking and seling crabs under size | Guilty Gulity $\ldots$......................... |  |  |
| Nov. 17 | E. Rose | Taking and selling crabs under size | Guilty | 2500 |  |
| Nov. 17 | Thos. Steele | Taking and selling crabs under size. | Gullty ...................... | 2500 |  |

Arrestm Made for Violstions of the Food Fimh Lavm-Continued.

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1)ate of Arrest \& OFFENDER \& CHARGE \& Disposition of Cuss \& \begin{tabular}{l}
Penalty \\
Imposed
\end{tabular} \& Totals \\
\hline 1919 \& \& SKAGIT COUNTY (Concluded) \& \& \& \\
\hline Nov. 17 \& Dick Lewls ........................ \& Taking and selling crabs under size. \& Giutlty \& 2500 \& \\
\hline Nov. 17 \& T. Lundckavan ................... \& Taking and selling crabs under size. \& finllty \& 2500
2500 \& \\
\hline Nov. 17 \& N. D. Anderson .................. \& Taking and selling crabs uxder size. \& Giluty \& 2509
2509 \& \\
\hline Nov. 17 \& Marco Barcot . . . . . . . . . . . . . . . . \& Taking sud selling crabs under size. \& Gutity \& 25
2500 \& \\
\hline Nov. 17 \& John Mirosivich .................. \& Tating and selling crabs under size. \& Gullty \& 2500 \& 3750 \\
\hline 1919 \& \& SKAMANIA COUNTY \& \& \& \\
\hline Nov. 12 \& C. T. Smith \& Fishing during closed season with pound net \& Giuilty \& \$12500 \& 12.500 \\
\hline 1919 \& \& 8NOHOMISH COUNTY \& \& \& \\
\hline Oct. 12 \& R. 13. Stuarns \& Gaffing salmon ........ \& Gulty \& \& \\
\hline May 12 \& Albert Ellason \& Fishing with nets in closed streain \& Gullty \& \[
\begin{array}{r}
1050 \\
1000
\end{array}
\] \& 2050 \\
\hline 1018 \& \& WAHKIAKUM OOUNTY \& \& \& \\
\hline May 22 \& John Raistakka \& Fajlure to make March 31, 1918, report \& Dismismed \& \& \\
\hline May 22 \& Henry Makl ... \& Failure to make March 31, 1918, report. \& Disinismea \& \& \\
\hline May 22 \& John Kynski . \& Failure to make March 31, 1918, report. \& Dismissed \& \& \\
\hline May 22
May 22 \& O. C. Miers. . . . . . . . . . . . . . . . . . . . . \& Failure to make March 31,
Fajlure to make March 31, 1918 , report. \& Dismismed \& \& \\
\hline May 22
May 22 \& O. C. Miers..........................
Wm. \& Fajure to make March 31, 1918, report.
Failure to make March 81, 1918, report. \& Diamiased \& \& \\
\hline May 22 \& Robert Butler . ..................... \& Fallure to make March 31, 1918, report. \& Dismissed \& \$5000 \& \\
\hline May 2 \& L. S. Lush........................... \& Fallure to make March 81, 1918, report. \& frullty \& 50
50
50 \& \\
\hline May 28 \& Claus Gilbertson................... \& Failure to make report................. \& Gullty \& \(\stackrel{30}{ } 500\) \& \\
\hline 1010 \& \& \& \& \& \\
\hline Aug. \({ }^{\text {a }}\) \& Fridolt Sairanen ................. \& Operating as scow buyer without license. \& \& \& \\
\hline Sept. 5 \& J. T. Nas8a......................... \& Fishing during closed season............... \& Ginilty ................................ \& 80
80
000 \& \\
\hline Sppt. 4 \& John Lindquist .................. \& Flohing pound net 17 during closed season. \& Guilty ……...................... \& \({ }^{60} 00\) \& \\
\hline Sept.
Sept.
4 \& John Lindquist Osterman \& \& Fisming pound net 16 during closed season.
Fishing pound net 3812 in closed season.... \& Guilty \({ }_{\text {Guilty }}\)......................... \& 9000 \& \\
\hline Srpt. 4 \& Osterman \& Benson................ \& Flishing pound net 3811 in closed season. \& Gulty (........................ \& 90
9000
900 \& - \\
\hline sent. 4 \& Ole C. Nelson....................... \& Fishing in closed season with pound net 2120. \& Guilty (.................................. \& 9000
9000 \& \\
\hline Scpt. 4 \& Ole 0 . Nelson...................... \& Flighing in closed season with pound net 2121 \& Gullty ........................... \& 9000
9000 \& \\
\hline Sept.
Sept.

4 \& Hjalmer Johnson ................. \& Fishing pound net 2870 in closed season.... \& Giulty \& 9000 \& <br>
\hline Sept. 4 \& Hjalmer Johnson
Mary E. Burke. \& Fighing pound net 2871 in closed season.
Flshing pound net 8 in closed season.... \& (intity
(iuilty \& ${ }_{90} 90$ \& <br>

\hline Sept. 4 \& Mary E. Burkc................... \& Flishing pound net 9 in closed scason. \& | Guilty |
| :--- |
| Guility |
| ................................. | \& \[

$$
\begin{aligned}
& 0000 \\
& 0000
\end{aligned}
$$
\] \& <br>

\hline
\end{tabular}

Arresta Mfale for Violations of the Food Fish Lawn-Concluded.

NUMBER AND VALUE OF CANNERIES AND FACTORIES OPERATED, AND THEIR FISHING APPLIANCES, AND CAPITAL INVESTED.
Fincal Year 1910.

|  | $\begin{aligned} & \text { PUGET SOUND } \\ & \text { DISTRIOT } \end{aligned}$ |  | $\begin{aligned} & \text { COLUMBIA RIVER } \\ & \text { DISTRIOT } \end{aligned}$ |  | $\underset{\text { GISTRICT }}{\substack{\text { GRAYS HARMOR }}}$ |  | WHLLAPA HARBOR DISTRICT |  | ALL DISTRICTS COMBINED |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\text { ver }}{\text { Num }}$ | Value | $\underset{\text { bur }}{\text { Num- }}$ | Value | $\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$ | Value | $\underset{\text { Nes }}{\text { Num- }}$ | Value | $\underset{\text { Ber }}{\text { Num- }}$ | Value |
| Canneries, salmon (bulldings and machinery). | 39 | \$2,874,15\% 46 | 9 | 8291,795 82 | 12 | \$157,074 56 | , | 853,000 00 | 62 | \$8,306,027 84 |
| Canneries, other than salmon.................. | 5 | v2, 70,500 00 |  |  |  | 19,250 00 | 4 | 14,000 00 | 18 | 113,350 00 |
| Factorics, fish by-products................... | 5 | 210,091 34 |  |  |  |  |  |  |  | 210,001 34 |
| packing plants, fuel houses, residences for labor, real estate. | 24 | 1,225,643 65 | 32 | 30,228 48 | 4 | 25,283 75 | 1 | 8,000 00 | 61 | 1,292,155 58 |
| Automobiles, trucks or other land conveyances | 10 | 6,745 00 | 2 | 1,106 00 | 3 | 2,700 00 | 2 | 1,400 00 |  | 11,045 00 |
| Steamboats ... | 1 | 115,700 00 |  |  |  |  |  |  | 9 | 315,700 00 |
| Lauthes . | 32 | 131,058 | 12 | 36.40000 | - | 19,450 00 | 2 | 2,000 00 | 55 | 189,508 05 |
| Scows . | 234 | 150,71476 | 7 | 3,219 67 | 10 | 3,44300 |  |  | 251 | 157,377 68 |
| Cannery tenders | 80 | 257,420 78 | 5 | 12,800 00 | ${ }_{18}^{8}$ | 11,510 25 |  |  | 88 | 281,780 pR |
|  | 34 | 250,624 07 | 64 | 21,763 35 | 18 | 6,754 21 |  |  | 116 | 279,141 63 |
| Fish buyers' boats, Pik drivers or pulice. | 6 | 12,050 00 |  |  |  |  |  |  | ${ }^{6}$ | 12,050 00 |
| Pike drivers or pullers.......................... Pound net locations operated............. | 18 | 20,017 30 | 17 | 1,100 <br> 17.000 |  |  | 1 |  | ${ }^{21}$ | 101,11780 |
| Pound net locations operated................. Pound net locations not operated.......... | 88 86 | $1,347,565$ 600,97710 | 17 4 | 17,000 00 | 6 | 8,000 00 | 8 | 4,000 00 | 119 60 | $\begin{array}{r}1,376,505 \\ 600,94 \\ \hline 970\end{array}$ |
| Stationary or scow flsh wheels.................. |  |  | 10 | 25,720 00 |  |  |  |  | 10 | 600,97710 25,720 |
| Nets and seines. |  | 2,000 00 | 153 | 85,21600 | 32 | 2,500 00 |  |  | 187 | 89,71600 |
| Net racks ............ | 20 | 2,000 00 | 80 | 6,310 00 | 5 | 75180 |  |  | 105 | 9,065180 |
| Miscellaneous equipment |  | 98,835 15 |  |  |  | 2,000 00 |  |  |  | - 100,835 15 |
| Total Invested in Plant and Equipment. |  | 87,407,700 75 |  | \$462,653 52 |  | \$258,717 57 |  | \$84,000 00 | $\ldots$ | \$8,273,071 81 |
| Oprating expenses |  | ,580,151 67 |  | 1,081,86\% 50 |  | 500,540 28 |  | 71,630 44 |  | 11,292,180 80 |
| Grand Total Capltal Invested |  | 17,056,552 42 |  | 81,494,591 0 2 | ....... | 8858,257 \$ |  | 8155,630 44 |  | 810,505,261,73 |

NLMBER AND EARNINGS OF LABORERS EMPLOYED IN OPERATHON OF CANNERIES, FACTORIES,

## AND THEIR APPLIANCES.

Fiscal Year 1919.

OUTPUT OF THE PRIVATE FISH HATCHERIES.

Fiscal Year 1919.

## STATISITCS

FOR<br>FISCAL YEAR 1920

April 1, 1920, to March 31, 1921

# FISHERIES DEPARTMENT <br> STATE OF WASHINGTON 

Appropriations, Receipts and Disbursements; Output of Salmon and Trout Hatcheries and Costs; Licenses Issued;

Take and Value of Food Fishes; and Other
Information Regarding the Food Fishing Industry.
APPROPRIATION AND EXPENDITURES OF FISHERIES FUND．

| F U N D | $\begin{aligned} & \text { Appropriation } \\ & \text { for } \\ & \mathbf{T w o ~ Y e a r s ~} \end{aligned}$ | $\begin{aligned} & \text { Expended } \\ & \text { Fiscal Year } \\ & 1919 \end{aligned}$ | $\begin{aligned} & \text { Expended } \\ & \text { FLsean Year } \\ & 1920 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Salary of Fish Oommissioner，of inspectors and employes；traveling expenses of Commissioner，inspectors and employes；rent and incidentals；construction，repair and maintenance of salmon batcheries；con－ struction of new hatcheries；patrol service；improvements，replacements；destruction of seals；printing， and for the other necessary expenses of the office of the Fish Commissioner． $\qquad$ | \＄243，100 00 | \＄108，200 78 | \＄134，898 22 |

ITEMIZATION Of expenditures of fisheries find．

|  | $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ $\vdots$ |
| :---: | :---: |
|  | 嵒： |
|  |  |
|  | \％is：｜c｜en |
|  |  |
|  |  |
| 竒覀易 |  |
|  |  |
| － |  |
| 媘 |  |
|  |  |

APPROPRIATIONS AND EXPENDITURES OF GAME FUND. Fincal Year 1820.

| F U N D | Appropriation for Two Years | $\begin{aligned} & \text { Expended } \\ & \text { Fiscal Year } \\ & 1919 \end{aligned}$ | $\begin{aligned} & \text { Expended } \\ & \text { Fiscal Year } \\ & 1020 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| For the Office of the State Game Warden. Salary and traveling expenses of State Game Warden, and salary and traveling expenses of two special deputy stato game wardens, under the state game warden, maintenance of state trout hatcheries, dew hatchery construction, equipment, maintenance and stocking of state game farm at the Walla Walla penitentiary, new construction at the state game farm, salaries of employes, rent and incidentals, and printing of the state game warden and purchase of game blrds and animals | \$55,600 00 | \$42,370 74 | 842,629 \% |
| For the Office of the Chief Deputy Game Warden. Salary of chiof deputy state game warden and traveling ex penses, salary and traveling expenses of two special deputy state game wardens under the chiof deputy state game warden, salarles of employes, rent, incldentals and printing of the chief deputy state game warden | 12,770 00 | 6,125 13 | 6,644 87 |
| Totals | 397,70000 | \$48,405 87 | 840,27413 |

ITEMIZATION OF EXPENDITLRES OF GAME FLND.


* Includes cost of distributlon of fry and of purchase of eggs in eastern states, and transportation therefrom.

RECEIPTS OF THE FISHERIES DEPARTMENT.

Receipts of the Fisherien Department－Concluded．

YEARLY COMPARATIVE TAHLE OF RECEIPTS．

| $\begin{aligned} & \text { 若荡 } \\ & \text { 出它 } \end{aligned}$ |  | 송 \％F <br>  |
| :---: | :---: | :---: |
| GNAH GAXESA YGLSXO | ¢ <br> $\stackrel{3}{*}$ |  <br>  <br>  |
|  |  |  |
|  |  |  <br>  <br>  |
|  | 总 |  |
|  | $\begin{aligned} & \text { ®ె0 } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$ | \％\＆\％ <br>  <br>  |
|  |  |  |
|  | 容号 | \＆ <br> 蓫荅：： |
|  |  |  |
|  | \％ \％ \＃ H |  <br>  $4 \%=\infty 0 \times 1$ <br>  |
|  | $\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{0}{0} \\ & \stackrel{y}{d} \\ & \underset{H}{H} \end{aligned}$ |  <br>  <br>  |
|  |  |  |

LICENSES 18SUED.


YEARLY COMPARATIVE TABLE OF LICENSES ISSUED.

Yearly Comparative Table of Licenmes Immued-Continued.

Yearly Comparative 'Inble of Licenses Inmued-Continued.

| COLUMBIA RIVER DISTRICTContinued. | 1903 | 1808 | 1907 | 1808 | 1009 | 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 | 1920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DEALERS AND MISO. LICENSES - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Buyer's ................ |  |  |  |  |  |  |  |  |  |  |  | 8 | 6 | 9 | 8 | 13 |
| Scow buyer's . . . . . . . . . . . . . . . . . . . . . | 26 | 19 | 18 | 7 | 3 | 5 | 3 | 3 | 12 | 14 | 3 | 1 | 5 | 3 | 11 | 2 |
| Retail dealer ......................... | 108 | 80 | 79 | 88 | 141 | 209 | 216 | 212 | 225 | 243 | 260 | 230 | 237 | 185 | 191 | 208 |
| Wholesale dealer |  |  | .... . . |  |  |  |  |  |  |  | 8 | 15 | 21 | 17 | 18 | 18 |
| Broker . . . . . . . . . . . . . . . . . . . . . . |  |  |  |  |  |  |  |  |  |  | 2 | 3 | i. |  |  |  |
| Halibut wholesale dealer or broker.. |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 2 | 3 | 2 |
| By-product, manufacturing ......... |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| Private hatchery .................... |  |  |  |  |  |  |  |  |  |  | 1 | 3 | 5 | 3 | 5 | 8 |
| Private hatchery product dealer..... |  |  |  |  |  |  |  |  |  |  |  |  | 3 | 1 | 1 | 3 |
| Hotel sarving private h'chery product |  |  |  |  |  |  |  |  |  |  |  |  | 3 | 5 | 4 | 4 |
| Permit to collect birds................ |  |  |  |  |  |  |  |  |  |  | 2 | 8 | 3 | ... | ...... | ....... |
| Totals | 134 | 99 | 95 | 105 | 144 | 214 | 219 | 215 | 237 | 257 | 276 | 258 | 284 | 225 | 241 | 259 |
| MISCELLANEOUS REOEIPTS |  |  |  |  |  |  |  |  |  | 2 |  |  | 4 | 7 | 3 | 7 |
| CANNEKY LIOENSES | 9 | 8 | 7 | 6 | 6 | f | 6 | 6 | 6 | 8 | 12 | 7 | 9 | 10 | 0 | 9 |
| REOAPITULATION- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 970 | 1,247 | 1,143 | 1,376 | 1,257 | 1,078 | 1,216 | 1,332 | 1,104 | 1,150 | 1,337 | 1,417 | 1,642 | 1,513 | 1,593 | 1,517 |
| Dealers and miscellaneous lieenses... | 134 | 99 | 95 | 105 | 144 | 214 | 218 | 215 | 237 | 257 | 276 | 258 | 284 | 225 | 241 | 250 |
| Miscellancous receipts ................. |  |  |  |  |  |  |  |  |  | 2 |  |  | 4 | 7 | 3 | 7 |
| Totals. | 1,104 | 1,346 | 1,238 | 1,481 | 1,401 | 1,292 | 1,435 | 1,547 | 1,341 | 1,409 | 1,613 | 1,675 | 1,930 | 1,745 | 1,837 | 1,783 |
| Cannery licenses ...................... | 9 | 8 | 7 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 12 | 7 | 9 | 10 | 9 | 9 |
| Grand Totals | 1,113 | 1,354 | 1,245 | 1,487 | 1,407 | 1,298 | 1,441 | 1,553 | 1,347 | 1,417 | 1,625 | 1,682 | 1,239 | 1,755 | 1,846 | 1,782 |

Yeariy Comparative Table of Licensen Imsued-Continued.

| GRAYS HARBOR DISTRICT | 1905 | 1906 | 1807 | 1908 | 1000 | 1010 | 1911 | 1912 | 1013 | 1914 | 1915 | 1016 | 1917 | 1918 | 1919 | 1920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing licenses- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Pound net | 16 | 20 | 21 | 17 | 18 | 21 | 32 | 42 | 38 | 32 | 31 | 38 | 53 | 52 | 48 | 49 |
| S.t net $\ldots$............................ | 7 | 114 | 100 | 100 | 69 | 110 | 240 | 302 | 255 | 249 | 138 | 141 | 278 | 316 | 349 | 290 |
| Gill net .............................. | 68 | 63 | 54 | 38 | 10 | 79 | 111 | 72 | ${ }^{65}$ | 117 | 80 | 118 | 105 | 94 | 117 | 45 |
| Drag seine ......................... |  |  |  |  | 1 |  | 4 | 7 | 13 | 12 | 4 |  | 8 | 2 | 1 |  |
| Purse seine |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| Sot line ... |  |  |  |  |  |  |  |  |  |  | 1 | ...... |  |  |  |  |
| Hook and line..................... |  |  |  |  |  |  |  |  |  |  |  |  | 13 | 25 | 72 | 29 |
| Clams and mussels.................. |  |  |  | ...... |  |  |  |  |  |  | 618 | 347 | 284 | 304 | 476 | 418 |
| Clams for bait.... |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Crabs .............................. |  |  |  | ....... |  | , | . | . |  | . | 38 | 8 | 13 | 10 | 5 | 15 |
| Totals. | 159 | 197 | 175 | 153 | 98 | 210 | 387 | 423 | 372 | 410 | 908 | 045 | 749 | 803 | 1,068 | 851 |
| DEALIERS AND MISC. LICENSESBuyer's |  |  |  |  |  |  |  |  |  |  |  | 2 | 1 | 2 | 4 | 5 |
| Scow buyer's |  |  |  |  | 3 |  |  |  | 7 |  |  |  |  |  |  |  |
| Retail dealer Who.................... | 1 | 7 | 6 | 5 | 7 | 14 | 18 | 12 | 37 | 39 | ${ }_{8}^{28}$ | 38 | 31 | 42 | 48 | 50 |
|  |  |  |  |  |  |  |  |  |  |  |  | 11 | 11 |  | 14 |  |
|  | - |  |  | , | - |  | , | , | . | , |  |  |  |  |  |  |
| Totals. | 1 | 7 | 0 | 6 | 10 | 16 | 19 | 15 | 44 | 43 | 36 | 51 | 44 | 53 | 68 | 69 |
| HISOELLANEOUS RECEIPTS |  |  |  |  |  |  |  |  |  |  |  |  | 10 | 4 | 83 | 43 |
| CANNERY LICENSES | 2 | 2 | 1 | 1 | 1 | 3 | 5 | 6 | 8 | 7 | 8 | 19 | 21 | 21 | 20 | 14 |
| REOAPITULATION- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dealers and miscellaneous licenses... | 1 | 19 | 9 | 15 | 10 | 216 | 387 19 | 15 | 34 44 | 110 43 | ${ }^{208}$ | 645 | 749 44 | ${ }_{53} 803$ | 1,069 | 851 69 |
| Miscellaneous receipts ............... |  |  |  |  |  |  |  |  |  |  |  |  | 10 |  | 83 | 43 |
| Totals | 160 | 204 | 184 | 159 | 108 | 226 | 406 | 438 | 116 | 453 | 944 | 600 | 803 | 860 | 1,217 | 963 |
| Cannery licenses | 2 | 2 | 1 | 1 | 1 | 3 | 5 | 6 | 8 | 7 | 8 | 19 | 21 | 21 | 20 | 14 |
| Grand Totals | 162 | 206 | 185 | 160 | 109 | 229 | 411 | 444 | 424 | 400 | 952 | 715 | 824 | 881 | 1,237 | 977 |



Yearly Comparative Table of Licensen Imued-Concluded.

| ALL DISTRIOTS COMBINED- | 1905 | 1100 | 1907 | 1005 | 1009 | 1010 | 1911 | 1012 | 1913 | 1914 | 1815 | 1918 | 1917 | 1918 | 1918 | 1920 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *MISCELLANEOUS RECEIPTS |  |  |  |  |  |  |  |  |  | 2 |  |  | 13 | 24 | 151 | 61 |
| CANNERY LICENSES | 37 | 25 | 24 |  | 31 | 24 | 35 | 87 | 48 | 39 | 67 | 69 | 87 | 77 | 81 | 52 |
| REOAPITULATION- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2,0181 | 2,982 | $\begin{array}{r}\text { 2,978 } \\ \hline 332\end{array}$ | 3,445 380 | ${ }^{3,105}$ | 3,238 | 4,043 $\mathbf{5 2 0}$ | 4,131 | $\underset{597}{3,682}$ | 3,741 682 2 | 5,083 | 4,630 | 6,799 802 19 | $\begin{array}{r}5,808 \\ 1,216 \\ \hline 24\end{array}$ | 6,638 1,389 151 | 5,202 1,146 61 |
| Totals. | 2,764 | 3,254 | 3,310 | 3,825 | 3,512 | 3,747 | 4,563 | 4,637 | 4,279 | 4,425 | 5,971 | 5,403 | 7,290 | 7,048 | 8,118 | 6,400 |
| Cannery licenses | 37 | 25 | 24 | 19 | 81 | 24 | 35 | 37 | 48 | 39 | 67 | 69 | 87 | 77 | 81 | 52 |
| Grand Totals | 2,801 | 3,279 | 3,334 | 3,844 | 3,543 | 3,771 | 4,598 | 4,674 | 4,327 | 4,464 | 6,038 | 5,472 | 7,377 | 7,125 | 8,190 | 6,521 |

*This item represents receipts which were issued in lieu of licenses, upon payment of license fecs, to parsons who had operatedthe previous year without securing licenses as required by daw.
CATCH OF SALMON AND VALUE.*

| DISTRICTS, AND GEAR WITH WHICH TAKEN | Number Chinook Salmon | Number Dog or Chum Salmon | Number Humpback Salmon | Number Silver Salmon | Number Sockeye Salmon | Number Steelhead Salmon | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DISTRICT- |  |  |  |  |  |  |  |
| Pound nets ................................................... | 217,240 | 111,438 | 18,753 | 247,651 | 595,304 | 9,837 |  |
| Set nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 7,953 | 5,658 | 83 | 39,634 | 464 | 5,475 | 59,217 |
| Drag soines | -123 | 19,534 | 157 | 70,920 | 3,241 | 2,560 | 118,899 |
| Purse seines | 17,715 | 541,213 | 4,943 | 158,467 | 53,083 | 14 | 775,435 |
| Reef nets | 60 | 143 | 13 | 2,361 | 318 |  | 2,890 |
| Hooks and lines | 6,348 | 16 | 667 | 48,102 | 208 | 226 | 55,567 |
| Totals. | 271,926 | 683,070 | 10,566 | 509,505 | 652,613 | 18,119 | 2,214,799 |
| Value. | \$1052,622 40 | \$110,687 25 | \$1,950 60 | 8199,326 75 | \$391,567 80 | \$21,742 80 | \$1,386,853 00 |
| COLUMBIA RIVER DISTRICT- |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Second class pound net........................................................................................ | 17,051 6,018 | 5,940 | ............. | 8,508 | 967 | 6,989 | 39,405 |
| Seow fish wheels...... | 6,018 5,175 | ......... | ............. | 8, | 13,259 | 5,419 1,468 | 24,689 |
| Set nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 3,141 | 495 | ... | 389 | 1,286 | 1,403 | 11,809 |
| Gill nets ... | 154,544 | 5,283 | . | 6,562 | 2,153 | 16,237 | 185,029 |
| Drag seines | 18,296 | 1,750 | .............. | 4,772 | 2,559 | 10,493 | 37,870 |
| Purse seines ... | 39,683 | 1,127 | ........... | 4,045 | 26 | 1,725 | 46,556 |
| Hooks and lines. | 51,554 | 217 | .............. | 36,524 | 82 | 185 | - 88,512 |
| Totals. | 350,398 | 42,791 |  | 81,297 | 96,426 | 61,871 | 565,778 |
| Value. | \$ $\$ 772,90562$ | \$6,418 65 |  | \$29,50\% 96 | \$14,534 30 | \$65,689 90 | \$080,046 42 |

-Value based on average price paid fishermen.

IEARLY COMPARATIVE TABLE OF SALMON CATGH, SEGREGATED AS TO GEAR AND SPECLES.

| DISTRICTS, AND GEAR WITH WHIOH TAKEN | Number <br> Chinook Salmon | Number Dog or Chum Saimon | $\begin{aligned} & \text { Number } \\ & \text { Humpback } \\ & \text { Salmon } \end{aligned}$ | Number Silver Salmon | Number Sockeye Salmon | Number Steelhead Salmon | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DISTRICT- |  |  |  |  |  |  |  |
| 1913 |  |  |  |  |  |  |  |
| Pound nets Gill nets | 212,507 | 159,473 | 11,353,700 | 731,329 | 11,549,000 | 17,137 | 24,023,824 |
|  | 77,537 | 445,394 | 4,554,001 | 493,786 | 10,049,295 | 26,148 | 15,646,151 |
| Purse seines .................................................... |  |  |  |  |  |  |  |
| Totals................................................. | 290,044 | 604,857 | 15,207,710 | 1,225,115 | 21,508,964 | 43,25 | 39,000,975 |
| 1914 |  |  |  |  |  |  |  |
| Pound nets Gill nets | 225,397 | 254,154 | 25,888 | 479,155 | 2,107,308 | 25,833 | 3,116,825 |
| Set nets ${ }^{\text {drag }}$ sodios | 201,552 | 1,431,983 | 49,603 | 1,020,151 | 1,344,004 | 38,785 | 4,036,109 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 7,202,933 |
| 1915 |  |  |  |  |  |  |  |
| Pound nets | 24,011 | 130,180 | 2,907,463 | 525,356 | 583,729 | 17,510 | 4,458,249 |
| Gill nets. | 24,334 | 93,151 | 35,983 | 127,327 | 18,913 | 4,302 | 304,577 |
| Set nets ${ }^{\text {Drag ssines }}$ | 6,900 2,910 | 21,495 20,541 | 38,030 2,271 | 63,784 6,099 | 2,476 58 | 6,885 58 | 138,639 31,937 |
| Purse selnes | 22,634 | 1,566,805 | 4,361,203 | 3, 2,750 | 197,569 | 10,130 | 6,541,181 |
| Hooks and lines. | 18 |  |  |  |  |  | 18 |
| Reef nets ....... | 192 124 | 827 | 23,238 | 3,070 510 | 1,640 |  | 28,967 2,214 |
| Drag bag nets.. | 124 | 1,005 | 55 | 510 | , | , | 2,214 |
| Totals...................................... | 301,192 | 1,884,144 | 7,368,713 | 1,108,896 | 804,355 | 38,452 | 11,505,789 |

Yearly Comparative Table of Salmon Catch, Segregated as to Gear and Spectex-Continued.

| DISTRICTS, AND GEAR WITH WHIOH TAKEN | Number Ohinook Salmon | Number Dog or Chum Salmon | Number Humpback Salmon | Number 8nver Salmon | Number Sockeye Salmon | Number Bteelhead Salmon | Totala |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLGET SOUND DISTRICT-Continued. |  |  |  |  |  |  |  |
| 1916 |  |  |  |  |  |  |  |
| Pound nets | 244,011 | 180,181 | 9,294 | 525,356 | 583,729 | 17,511 | 1,500,082 |
| Gill nets ... | 24,334 6,970 | 93,151 21,496 | 1,591 478 | 127,327 | 18,913 | 4,870 | 270,188 |
| Set nets ... | 6,970 2,911 | 21,496 20,541 | 478 | (13,785 | 2,476 | 5,886 | 101,091 |
| Drag seines | 2,911 22,635 | 1,568,595 | ${ }_{56} 33$ | 6,009 | 58 | ${ }_{58}$ | 20,700 |
| Purse seines ... | 22,635 | 1,566,805 | 56,702 | 332,750 | 197,570 | 10,130 | 2,238,682 |
| Reef nets .... | 182 125 | 888 1,055 |  | 3,071 510 | 1,641 |  | 5,782 |
| Drag bag nets |  | 1,055 |  | 510 |  |  | 1,690 |
| Totsle. | 301,178 | 1,884,147 | 68,098 | 1,100,898 | 804,387 | 38,45 | 4,205,163 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Gill nets | 77,581 | 84,818 | 134,470 | 90,082 | 113.669 | 3,133 | 509,763 |
| Set nets | 13,622 | 16,098 | 9,417 | 44,476 | 236 | 10,191 | 94,090 |
| Drag soines | 4,181 | 27,973 | 4,538 | 12,650 | 938 | 10 | 50,297 |
| Purse seines | 38,155 | 832,022 | 8,711,055 | 232,703 | 1,989,191 | 2,184 | 11,806,210 |
| Hooks mnd lines. | 21,792 49 | 580 820 | 1,388 57 | 5s,080 |  | 42 | 82,828 |
| Reef nets . | 49 | 820 | 57,978 | 6,611 | 7,558 |  | 73,016 |
| Totals. | 440,864 | 1,095,015 | 13,345,280 | 036,242 | 4,061,933 | 28,183 | 20,807,467 |
| 1018 |  | . |  |  |  |  |  |
| Pound nets | 351,459 | 178,782 | 60,181 | 703,173 | 405,910 | 11,058 | 1,826,463 |
| Set nets | 15,121 | 28,446 | 554 | 97,796 | 154 | 8,316 | 148,387 |
| Gill gets ... | 38,946 | 03,638 | 1,518 | 178,810 | 17,652 | 2,453 | 333,017 |
| Drag soines | 864 | 59,788 | ${ }^{23}$ | 24,681 | 77 |  | 85,n33 |
| Purse seines | 14,781 | 790,833 | 3,097 | 513,973 | 45,073 | 11,015 | 1,388,672 |
| Reef nets ........ | 1,615 | 914 | 12,448 | 12,634 | 2,036 |  | 29,547 |
| Hooks and lines. | 24,457 | 120 | 28 | 106,406 | 529 | 8 | 131,548 |
| Drag bag nets... | 3 | 2,050 |  | 52 |  |  | 2,105 |
| Totals. | 477,246 | 1,156,571 | 77,849 | 1,637,526 | 561,431 | 34,650 | 3,945,272 |

Yearly Comparative Table of Salmon Catch, $S$ egregated an to Gear and Specien-Continued.

Yearly Comparative Table of Salmon Cateh, S egregated as to Gear and Speclen-Continued.

Yearly Comparative Table of Salmon Catch, Segregated an to Ciear and Species-Continued.

| dIStricts, AND GEAR WLTH Whioh taken | Number Chinook Salmon | Number Dog or Chum Salmon Sol | $\begin{gathered} \text { Number } \\ \text { Humpbaek } \\ \text { Salmon } \end{gathered}$ | Number silyer Salmon | Number Sockeye Salmon | $\begin{aligned} & \text { Number } \\ & \text { Steelhead } \\ & \text { Sulmon } \end{aligned}$ | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COLUMBIA RIVER DISTRICT-Continued. |  |  |  |  |  |  |  |
| $\frac{1917}{\text { First class pou }}$ |  |  | 61 | 33,068 | 3,378 | 23,804 | 130,490 |
| Socond class pound net | -38,412 | 19,148 | 37 | 46,927 | 2,237 | 17,623 | 144,384 |
| Stationary fish wheels.. | 11,688 |  |  |  | 34,524 | 8,565 | 54,757 |
| Soow fish wheels. | 7,609 |  |  |  | 10,359 | ${ }^{800}$ | 18,888 |
| Gill nets | 461,810 | 37,260 | 1,029 | 24,12 | 11,442 | 69,607 | 605,320 |
| Set nets | 7.015 | 4,468 | 465 | 19.50 | 3,800 | 7,379 | 23,702 |
| Drag sejnes | 20,009 | 1,503 |  | 19,565 3.608 3 | ${ }_{9}^{2,8511}$ | 14,800 | ${ }_{60}^{62,388}$ |
| Purse seines Hooks and lines. | 11, 5188 | 246 20 | 34,034 | 3,608 14,851 | ${ }^{9,454}$ | ${ }_{183}^{677}$ | 60,232 42,442 |
| Hooks and lines. Bag nets ....... | 136,479 79 |  |  |  |  |  | 42, 79 |
| Totals........................................ | 680,462 | ${ }^{\prime} 70,005$ | 36,226 | 142,700 | 78,381 | 143,688 | 1,151,522 |
|  |  |  |  |  |  |  |  |
| First class pound net, | 80,22815,680 | $\begin{aligned} & \mathrm{s}, 991 \\ & 3,196 \end{aligned}$ | 172 | $\begin{aligned} & 74,146 \\ & 22,057 \end{aligned}$ | 11,582 6,189 | 40,847 13,155 | 215,766 60,266 |
| Second class pound net Stationary fish wheels.. |  |  |  |  | 50,55242,231 |  | 71,24746,878 |
| Scow fish wheels. | 6,690 2,965 | 1,628 | ……........ | 11 |  | 1,671 |  |
| Sot nets. | 2,965 4,682 |  | 6,518 | 1,800 | 42,231 21,195 | 7,782 | 43,605 |
| Gill nets | 217,422 | 32,702 | 3,080 | 51,783 | 106,823 | 49,603 | 461,50362,684 |
| Drag seines | 21,384 | 700 | 227385 | 8,083 | 13,500 | 19,821 |  |
| Purse seines | 43,278 |  |  | 62,753 | $\begin{array}{r} 157 \\ 1,149 \end{array}$ | $\begin{aligned} & 100 \\ & 101 \end{aligned}$ |  |
| Hooks and lines. | 58,369 126 | 20 | 385 |  |  |  | $\begin{array}{r} 129,463 \\ { }_{253} \end{array}$ |
| Totals. | 450,783 | 46,827 | 10,382 | 243,970 | 262,777 | 141,064 | 1,156,403 |
|  |  |  |  |  |  |  |  |

Yearly Comparative Table of Salmon Catch, Segregated an to Gear and Specten-Continued.


Yearly Compurative Table of Salmon Cutch, Segreguted as to Genr mind Spectem-Continued.

| DISTRICOT, AND GEAR WITH WHICH TAKEN | Number Chinook Salmon | No. Dog or Ohum Salmon | Number <br> Humpback Salmon | Number Silver Salmon | Number Sockgye Salmon | Number Steelhead Salmon | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GRAYS HARBOR DISTRICT- |  |  |  |  |  |  |  |
| 1918 |  |  |  |  |  |  |  |
| Pound nets Gill nets ... | 5,601 | 19,447 |  | 53,942 |  | 288 | $79,279$ |
| Set nets | 79,046 | 53,092 | 38,844 | 35,315 | 263,198 | 86,494 | 555,980 |
| Totals. | 84,647 | 72,339 | 38,844 | 89,257 | 208,198 | 88,782 | 635,267 |
| 1914 |  |  |  |  |  |  |  |
| Pound nets | 27,878 | 24,972 | 347 | 48,824 | 639 | 8,858 | 101,518 |
| Gll nets |  |  | 8 |  |  |  |  |
| Set nets .. Drag selnes | 16,865 | 107,752 | 83 | 151,615 | 80,814 | 18,131 | 375,262 |
| Totals. | 34,7431 | 132,724 | 432 | 200,439 | 81,453 | 28,989 | 476,780 |
| 1915 |  |  |  |  |  |  |  |
| Pound nets | 23.471 | 37,728 |  | 41,666 | 82 | 1,018 | 101,965 |
| Gill nets | 12,669 | 32,763 | 73 | 17,963 | 21 | 985 | 64,474 |
| Set nots | 7,072 | 15,983 |  | 14,777 | 28 | 1,992 | 39,852 |
| Drag selnes | 6731 | 17 |  | 2,309 |  |  | 2,999 |
| Totals. | 43,885 | S4,49] | 73 | 76,715 | 131 | 3,995 | 209,290 |
| 1916 |  |  |  |  | 82 | 1,018 |  |
| Pound nets | 23,471 | 32,763 | 1,038 360 | 17,962 | 22 | 1,98. | 64,761 |
| Sot nets | 7,071 | 15,982 |  | 14,776 | 28 | 1,98: | 39,849 |
| Drag sefnes | 672 | 17 |  | 2,309 |  |  | 2,998 |
| Totals | 43,884 | 84,490 | 1,388 | 76,713 | 132 | 3,99 | 210,001 |
| 1917 |  |  |  |  |  |  |  |
| Pound nets | 16,636 | $\begin{array}{r} 15,709 \\ 8.498 \end{array}$ |  | 35,186 |  | 2,227 | $\begin{aligned} & 69,751 \\ & 41,925 \end{aligned}$ |
| Gill nets | 18,894 | 8,428 19,048 |  | 14,071 | 120 3 | $\begin{array}{r}\text { 8222 } \\ \hline \mathbf{4 2 6 8}\end{array}$ | $\begin{aligned} & 41,925 \\ & 75,286 \end{aligned}$ |
| Set nets. | 13,491 | 19;048 | 8 | 39,088 1,899 | 3 | 3,668 | $\begin{array}{r} 75,286 \\ 2,348 \end{array}$ |
| Totals | 49,460 | 43,178 | 8 | 90,224 | 123 | 6,317 | 189,310 |
| 1918 |  |  |  |  |  |  |  |
| Pound nets | 2,307: | 2,80n |  | 9,212 |  | 7 | 14,391 |
| Set nets | 7,866 | 11,992 | 161 | 54,630 | 326 | 3,354 | 78,129 |
| Gill nots | 18,903 | 12,782 |  | 70,595 | 825 | 515 | 108,620 |
| Hooks and lines.. | 510 | 111 |  | 5,695 |  |  | 6,316 |
| Totals. | 29,386 | 27,750 | 161 | 140,132 | 1,151 | 3,876 | 202,456 |
| 1919 |  |  |  |  |  |  |  |
| Pound nets | 8,606 | 605, 809 |  | $\underline{23,205}$ |  | 1,088 | 98,948 |
| Set nets | 9,178 | 65,386 | 4,205 | 35,199 | 662 | 5,105 | 119,735 |
| Gill nets | 6,780 | 52,839 |  | 37,059 |  | 414 | 97,092 |
| Drag selnes | 5 |  |  |  |  |  | ${ }^{5}$ |
| Hooks and lines. | 2,317 |  |  |  |  |  | 2,517 |
| Totals. | 26,946 | 184,124 | 4,205 | 95,553 | 662 | 6,007 | 318,097 |
| 1920 |  |  |  |  |  |  |  |
| Pound nets | 13,034 | 13,887 |  | 35,526 |  | 1,067 | 63,514 |
| Set nets. | 4,318 | 2,889 | 150 | 19,607 | 30 | 3,413 | 30.490 |
| Glll nets. | 9,732 | 1,052 |  | 19,011 | 1,005 | 419 | 32,120 |
| Hooks and lines. | 667 |  |  | 119 |  |  | 786 |
| Totals. | 27,751 | 18, 720 | 150 | 74,353 | 1,035 | 4,899 | 126,910 |

Yearly Comparative Table of Salmon Cateh, Spmremited an to Gipar nnal specten-Continued.

| DISTRICT, AND GEAR WITH WHICH TAKEN | Number Chinook Balmon | No. Dog or Chum Saluion | Number Humpback Salmon | Number Silver Salmon | Number Sockeye Salmon | Number Steelhead Salmon | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WILLAPA HARBOR DISTRICT- |  |  |  |  |  |  |  |
| Pound nets | 1,923 | 20,44. |  | 13,347 |  |  | 37,715 |
| Pound nets |  |  | .......... |  | ........... |  |  |
| Set nets | 3,802 | 42.243 |  |  |  | 6,449 | 64,031 |
| Totals. | 5,725 | 64,645 |  | 24,884 | .......... | 6,449 | 101,740 |
| $\begin{gathered} 1914 \\ \text { Pound nets } \end{gathered}$ | 8,501 | 16,330 | 68 | 21,716 | 1,278 | 890 | 48,847 |
| Gill nets |  |  |  |  |  |  |  |
| Sot nets | 11,527. | 45.998 |  | 44,272 |  | 189 | 101.866 |
| Totals. | 20,0\% | 62,334 | 66 | 60,988 | 1,278 | 1,079 | 150,833 |
| 1015 |  |  |  |  |  |  |  |
| Pound nets | 16,8316,513 | $\begin{array}{r} 46,440 \\ 4,750 \\ 14,930 \end{array}$ | 531 | $\begin{array}{r} 27,102 \\ 4,030 \\ 6,459 \end{array}$ | $415$ | 191 | 91,095 |
| Gfill nets .. |  |  |  |  |  | 103 | 16,296 |
| Set nets | 4,912 |  |  |  |  | 388 | 27,112 |
| Totala | 28,256 | (6,129 | 531 | 38,491 | 415 | 68 | 134,503 |
| 1916 |  |  |  |  |  |  |  |
| Pound nets | 16,832 | 46, 440 | 302 | 27,102 | .......... | 191 | 90,027 |
| Gill nets | 6,512 | $\begin{gathered} 4,750! \\ 14,96 m \end{gathered}$ |  | $\begin{aligned} & 4,981 \\ & 6,460 \end{aligned}$ |  | $102$ | $\begin{aligned} & 16,295 \\ & 28,980 \end{aligned}$ |
| Set nets ................. | 4,911 |  | 1,966 |  | 416 | $388$ |  |
| Totals. | 25,255 | (0, 12: | 2,298 | 38,493 | 416 | 681 | 186,202 |
| $\overbrace{\text { Pound nets }}^{1917}$ |  | 37,076 |  | 24,568 |  | 1,041 |  |
| gill nets | $10,352$ | 13,232 | . 42 | 8,451 |  | 17 |  |
| Set nets | $\begin{array}{r} 4,088 \\ 21 \end{array}$ | 31,457 |  | 8,968 | 85 | 826 |  |
| Hooks and lines....... |  |  |  | 381 | ........... |  |  |
| Totals. | 25,496 | 81.705 | 42 | 42,368 | 85 | 2,037 | 151,793 |
| Set nets | $1,315$ | 16,361 |  | 22,418. | 94 | 580 |  |
| Gill nets | $\begin{array}{r} 6,064 \\ 74 \end{array}$ | 5,080 | .............. | 17,027 | ${ }^{3}$. | 569 48 | $\begin{array}{r} 88,217 \\ 580 \end{array}$ |
| Hooks and lines. |  |  |  |  |  |  |  |
| Totals. | 15,657 | 43,507 |  | 82,185 | 97 | 626 | 142,072 |
| 1919 | $\begin{array}{r} 6,694 \\ 3,45 \pi \\ 42,142 \\ 5 \\ 1 \end{array}$ |  |  |  |  |  |  |
| Pound nets |  | $\begin{aligned} & 96,038 \\ & 38,311 \\ & 99,07 \times \end{aligned}$ | ..........30 | $\begin{array}{r} 21,778 \\ 9,046 \\ 12,900 \end{array}$ | 526 | $\begin{array}{r} 53 \\ 1,338 \\ 241 \end{array}$ | $\begin{array}{r} 125,986 \\ 62,170 \\ 84,391 \end{array}$ |
| Set nets |  |  |  |  |  |  |  |
| Gill nets |  |  |  |  |  |  |  |
| Drag seines ..... |  |  |  |  |  |  |  |
| Hooks and lines. |  |  |  | 57 |  |  | 58 |
| Totals | 52,295 | 164,327 | 20 | 43,776 | 520 | 1,664 | 202,810 |
| $\begin{gathered} 1920 \\ \text { Pound nets } \end{gathered}$ | 6.351 | 10.544 | 5.979 |  |  | 621 | $\begin{array}{r} 22,855 \\ 3,491 \end{array}$ |
| Set nets.. | 1,5\%6 | $\begin{aligned} & 3: 5 \\ & 163 \end{aligned}$ |  | $\begin{array}{r} 048 \\ \hline \end{array}$ |  |  |  |
| Gill nets |  |  |  | 1,47? |  | 114 | 4,31 |
| Purse seines. | 110.138 | ......... |  | 5.166 |  | 3,799 | $119,107$ |
| Hooks and lines.. | 744 |  |  |  |  |  |  |  |
| Totals. | 121,300 | 11,042 |  | 13,572 | 3 | 4,545 | 150,462 |

Yearly Comparative Table of Salmon Cateh, Segregated as to Gear and Species-Continued.


Yearly Comparative Trable of Salmon Catch, Segregated nu to fienr and Specles-Concluded.

| YEAR AND GEAR | Number Chinook Salmon | No. Dog or Ohum Salmon | Number <br> Humpback <br> Salmon | Number Silver Salmon | Number Sockeye Salmon | Number Steelhead Salmon | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALL DISTRICTS COMBINED (Continued)- |  |  |  |  |  |  |  |
| $1919$ | 361,282 | 380,687 | 2,081,961 | 823,117 | $\begin{array}{r} 462,161 \\ 18,206 \end{array}$ | 55,964 | $\begin{array}{r} 4,165,172 \\ 35,111 \end{array}$ |
| Fish wheels | 13,992 |  |  |  |  | 2,913 |  |
| Set nets | 26,084 | 136,950 |  | 117,201 | 4,029 | $18,463$ | 312,393 |
| Gill nets | 258,530 | 217,56680,592 | 38,325 | 202,239 | 16,224 | 29,784 | 762,668154,781 |
| Drag selnes | 25,175 |  | 32 | 25,241 | 19,40428,993 | 14,0873,029 |  |
| Purse seines | 89,069 | $1,112,404$3,404 | 2,513,521 | 443,876 |  |  | 4,445,892 |
| Reef nets | 962 |  | -2, 2,042 | 9,639 | r 3,210 | + 50 | $\begin{array}{r} 46,307 \\ 160,132 \end{array}$ |
| Hooks and lines. | 76,581 | 3,404 47 | ........ | 80,422$\ldots . . .$. | 1,872 |  |  |
| Drag bag nets. | ......... | 171 |  |  |  | 412 | 171 |
| Totals. | 851,675 | 1,932,121 | 4,673,345 | 1,701,735 | 799,099 | 124,652 | 10,082,627 |
| 1920 |  | 169,833.$\ldots \ldots$. |  |  |  |  |  |
| Pound nets | 308,662 |  | 13,753 | 320,881 | 597, 255 | 34,237 | $\begin{array}{r} 1,444,601 \\ 38,494 \end{array}$ |
| Fish wheels | 11,193. |  |  | 60,669 | $\begin{array}{r} 18,419 \\ 1,780 \end{array}$ | 6,88212,536 |  |
| Set nets | 16,998 | 9,370 | - 183 |  |  |  | 101,536 |
| Gill nets | 189,239 | $\begin{array}{r} 26,883 \\ 6,823 \end{array}$ | 157 | $\begin{array}{r} 98,266 \\ 7,142 \end{array}$ | $\begin{aligned} & 6,399 \\ & 2,559 \end{aligned}$ | 19,335 |  |
| Drag selnes. | 18,419 |  |  |  |  |  | 340,279 45,438 |
| Purse selnes | 167,486 | $\begin{array}{r} 542,340 \\ 143 \end{array}$ | \|r|r $\begin{array}{r}\text { 4,943 } \\ 13 \\ 667\end{array}$ | $\begin{array}{r} 161,877 \\ 2,351 \\ 84,751 \end{array}$ | 53,112813240 | $\begin{gathered} 5,538 \\ -411 \end{gathered}$ | $\begin{array}{r} 941,096 \\ 2,890 \\ 145,615 \end{array}$ |
| Reef nets | 60 |  |  |  |  |  |  |
| Hooks and lines. | 59,513 | 233 |  |  |  |  |  |
| Totals. | 771,370 | 755,625 | 18,716 | 741,727 | 680,077 | 89,484 | 3,057,940 |

CATCH OF SHELL AND FOOD FISH (OTHER THAN SALMON) AND VALUE. Fiseal Year 1920.

Catch of Shell and Food Fish (Other Than Salmon) and Value-Concluded.

| DISTRIOT, AND GEAR WITH WHICH TAKEN | Pounds of Clams and Mussele | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Orab } \end{gathered}$ | $\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Herring } \end{aligned}$ | $\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Shad } \end{gathered}$ | $\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Shrimp } \end{aligned}$ | $\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { smelt } \end{gathered}$ | $\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Sturgeon } \end{aligned}$ | Pounds of Clam for Bait | Total Value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GRAYS HARBOR DISTRICT- <br> Pound nets |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Gill nets. |  |  |  |  |  |  | 10 |  |  |
| Clams | 3,040,758 |  |  |  |  |  |  | 7827 |  |
|  | ............ | 52,563 |  |  |  |  |  |  |  |
| Tota | 3,040,758 | 52,563 |  |  |  |  | 215 | 7,887 |  |
| Vatue | \$76,018 95 | 85,475 31 |  |  |  |  | 850025 | 811740 | \$82,41791 |
| WHIALPA HARBOR DISTRICT(iill nets |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| Purse sefnes .............. |  |  |  |  |  |  | $\stackrel{38}{18}$ |  |  |
| Clams . | 826,773 |  |  |  |  |  |  | 97,633 |  |
|  | . | 343,176 |  |  |  |  |  |  |  |
| Totals | 826,773 | 343,176 |  | ............ |  | .1-.......... | 256 | 90,683 |  |
| Value | \$20,600 32 | \$35,747 50 |  | ............ |  |  | 800060 | \$1,494 49 | \$958,871 31 |
| ALL DISTRICTS COMBINED- |  |  |  |  |  |  |  |  |  |
| $\xrightarrow[\text { Pond }]{\text { Fish whets }}$.................. |  |  | 500 |  |  |  |  |  |  |
| Fish wheels Set nets |  |  |  | 13,001 |  |  | 59 |  |  |
| Gill nets... |  |  |  |  |  |  | ${ }_{1} 94$ |  |  |
| Drag seines Purse seines |  |  |  |  |  | 205,279 | 1,277 414 | .............. |  |
| Purse seines Hook and lines |  |  | 3,000 | 705 |  | 7,632 | 388 |  |  |
| Bag nets........... |  |  |  |  |  |  | 77 |  |  |
| Smelt drag bag n Brush weirs |  |  | 205, 85. |  |  | $\begin{array}{r} 1,050,588 \\ 386,880 \end{array}$ |  |  |  |
|  |  |  | 74,605 |  |  |  | . | ............ |  |
| Crahs ........................ | 4,359,302 |  |  | , | 82,947 |  |  |  |  |
|  |  | 1,023,470 |  |  |  |  |  | 107,460 |  |
|  |  |  |  |  |  |  | 边 | . |  |
| Totals.......................... | 4,359,302 | 1,023,470 | 512,868 | 68,688 | 82,947 | 1,747,298 | 2,610 | 107,460 | .......t..... |
|  | \$108,982 54 | \$106,611 45 | \$7,805 73 | \$2,00064 | \$12,442 05 | \$80,057 16 | \$7,114 75 | \$1,611 89 | \$286,686 21 |

## F゙GOD AND SHELL FISH CANTHD.

Placal Year 1820.

|  | Siumber of 4ㄷ․ 16 . Casea | . F alue |
| :---: | :---: | :---: |
|  |  |  |
| Chinook salmon. | 27,482 | (274,520 00 |
| INSg or Chume malmen | 47,531 | 179,386 25 |
| Hurnplack saluon. | 4,921 | 93,620 80 |
| Nilvar falmo: . ..... | 25.321 | $164,58650$ |
| Sockryo malmon... | 62,751 | $1,211,09430$ |
| Sterelhead mabmon.. | $\stackrel{28}{ }$ | $16800$ |
| Cams and numetis | $3,524$ | $26,78240$ |
| flam noctar. . |  | 30800 |
| Tatals. | 172,012 | \$1,550,746 25 |
| COLCMBIA HIVFR DISTRICT- |  |  |
| Chinook Ealmon-Spring... | 135,258 | \$2,073,870 00 |
| Chinook salmon-Fall. | $\underline{2}, 061$ | 24,31980 |
| Iogs or Chimin maimon | 4,911 | 15,715 20 |
| Silvor salmon. | 7,388 | 51,78600 |
| Sockpye salmon | 1,977 | 20,75200 |
| Ntcelhead salinom | 4,977 | 59,724 00 |
| Shani. | 4,343 | 15,634 80 |
| Totals. | 163,245 | \$2,261,801 80 |
| GRAYK HARBOR DISTHICT-- |  |  |
| Chinook kalinon............... |  | \%10,338 0n |
| Jog or Chim salmon...... | $361 / 2$ | $8480$ |
| Sllver balmon | 412\% | $2,88750$ |
| Rockeye salmon..... | $235^{\circ}$ | 4,23000 |
| Ciams and mussels. | 33,138 | $314,81100$ |
| Olam nectar. | 466 | 93200 |
| Crab....... |  | 43200 |
| Totals. | 35,1511/2 | \$335,715 30 |
| WILIAPA HARBOH DISTHICT- |  |  |
| Chinook salmon. | 62 | 383700 |
| Clams and musecls | 5,599 | $53,00850$ |
| Clam nectar. | 402 | 92400 |
| Totals. | 6,113 | \$54,858 50 |
| AIAL DISTRICTA COMBINED- |  |  |
| Chinook nalinon................. | 168,7241/2 | \$2,384,184 80 |
| Dog or Ohum aalmon | 52,7681/2 | 196,168 25 |
| Humpback salmon | 4,921 | 23,620 80 |
| Silver salmon...... | 33,1311/2 | 219,260 00 |
| Bockeye salmon. | 64,283 | 1,236,076 30 |
| Steclhead salmon | 5,005 | 59,802 00 |
| Clams and mussels. | 42,251 | 304,688 90 |
| Clam nectar. | 1,082 | 2,164 00 |
| Crab... | 12 | ${ }_{15} 43200$ |
| Shad. | 4,343 | 15,634 80 |
| Totals...................................................... | . 378,3211/2 | 84,851,11985 |

YEARIY COMPARATIVE TABLE OF FOOD AND SHELL FISH CANNED.

Yearly Comparative Table of Food nnd Shell Fimh Canned-Contluued.

| $\begin{aligned} & \text { COLUMBIA RIVER } \\ & \text { DISTRIOT } \end{aligned}$ | NUMBER FORTY-EIGHT POUND CASES |  |  |  |  |  |  | NUMBER FORTY ELIGHT POUND CASES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Chinook | Dog | Humpback | Sllver | Sockeye | Steelhead | Totals | $\begin{gathered} \text { Clams } \\ \text { and } \\ \text { Mussels } \end{gathered}$ | Clam Nectar | Orabs | Shad | Other <br> Food and <br> Shell Fish | Totals <br> Grand |
|  | 167,050 |  |  |  |  |  | 167,050 |  |  |  |  |  |  |
| 1896 (Spring) | 371,391 |  |  |  | 16,985 | 40,799 | 429,175 |  |  |  |  |  |  |
| 1898. (Fall). | 7,102 |  |  | 44,008 |  | 8,700 | 59,810 |  |  |  |  |  |  |
| $1898 . . . . . .$. | 78,450 |  |  | 8,750 | 15,645 | 8.680 | 111,525 |  |  |  |  |  |  |
| 1899. | 91,560 |  |  | 17,210 19,480 | 9,020 7,720 | 8,470 8,380 | 119,600 127,120 |  |  |  |  |  |  |
| 1902. | 77,910 | 10,233 |  | 4,435 | 4,235 | ........ | 96,913 |  |  |  |  |  |  |
| 1903. | 76,800 | 10,000 |  | 4,400 | 4,140 |  | -95,440 |  |  |  |  |  |  |
| 1904. | 130,688 <br> 120,598 | 18,508 |  | 28,390 | 4,227 |  | 179,813 |  |  |  |  |  |  |
| $1903 .$ | 120,598 103,272 | 18,283 19,414 |  | 18,071 25,262 | 914 316 |  | 157,908 148,264 |  |  |  |  |  | 157,866 148,264 |
| 1907 | 87, 962 | 18,175 |  | 36,469 | 364 |  | 142,270 |  |  |  |  |  | 142,270 |
| 1908 | 83,522 | 12,811 |  | 17,077 | 680 |  | 114,090 |  |  |  |  |  | 114,090 |
| 1909 | 55,374 | 6,903 |  | 21,160 | 11,577 | 5,188 | 100,292 |  |  |  |  |  | 100,292 |
| 1910 | (i8, 466 | 16,573 |  | 32,081 | 2,478 |  | 119,598 |  |  |  |  |  | 119,598 |
| 1911 | 108,881 81,255 | 22,294 18,654 |  | 41,258 23,883 | 1,298 |  | 176,544 <br> 131,338 |  |  |  |  |  | 174,546 131,338 |
| 1912. 1913. | 81,250 77,848 | 18,654 18,092 |  | 23,883 22,507 | 1,250 | $\xrightarrow{\mathbf{6}, 298}$ | 131,338 124,334 |  |  |  |  |  | 131,338 124,834 |
| 1914. | 96,898 | 27,048 |  | 20,072 | 11,226 | 3,953 | 168,797 |  |  |  |  |  | 168,797 |
| 1915 (8 months) | 146,491 | ${ }^{25,083}$ |  | 10,602 | 2,240 | 10,953 | 195, 369 |  |  |  | 2,170 | ........... | 197, 830 |
| 1916. | $156,2621 / 2$ | 37,404 |  | 20.074 | 1,3451/2 | 11,3181/2 | 226,4041/2 |  |  |  | ${ }_{85}^{846}$ |  | 227, 2501/2 |
| 1917 (4 months) | 22,820 146,140 | 8,608 14,539 | 56 | 6,714 15,989 | 2,801 | (3,030 | 41,259 185,522 |  |  |  | 1,707 | 200 | 41,584 187,429 |
| 1918. | 145,511 | 12,173 |  | 35,746 | 10,450 | 8 8,699 | 221,579 |  |  |  | 3,174 |  | 224,753 |
| 1919. | 138,088 | 39,279 | 2,117 | 34,027 | 2,329 | 7,148 | 213,869 |  |  |  | 4,017 |  | 217,885 |
| 1920 | 140,319 | 4,911 |  | 7,304 | 1,227 | 4,877 | 158,902 |  |  |  | 4,343 |  | 163,245 |

Yenrly Comparative Table of Food and Shell Fish Canned-Continued.

Yearly Comparative Table of Food and Shell Fish Canned-Continued.

Yenrly Comparative Table of Food and Shell Finh Canned－Concluded．

|  |  |  H6⿷匚⿳ |
| :---: | :---: | :---: |
|  |  |  |
|  | 菏 |  |
|  | 黑 |  |
|  |  |  |
|  |  |  <br>  |
|  |  |  <br>  |
|  | $\begin{aligned} & \text { 宅品 } \\ & 0 \end{aligned}$ |  |
|  |  |  <br>  |
|  |  |  <br>  |
|  | 若 |  |
|  | 号 |  <br>  |
|  | $\begin{aligned} & \text { 莒 } \\ & \stackrel{C}{6} \end{aligned}$ |  <br>  |
|  |  |  |

FOOD AND SHELL FISH, FRESH AND PRESERVED (OTHER THAN CANNED) AND VALUE. Fiscal Year 1920.

|  | $\begin{aligned} & \text { PUGET SOUND } \\ & \text { DISTRIOT } \end{aligned}$ |  | $\begin{aligned} & \text { OOLUMBIA RIVER } \\ & \text { DISTRIÓT } \end{aligned}$ |  | GRAYS HARBOR DISTRIOT |  | WILLAPA HARBORDISTRIOT |  | ALL DISTRIOTE COMBINED |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number Pounds | Value | $\begin{aligned} & \text { Number } \\ & \text { Pounds } \end{aligned}$ | Value | Number Pounds | Value | Number Pounds | Value | Number Pounds | Value |
| FRESH- |  |  |  |  |  |  |  |  |  |  |
| Chinook salm | $2,44,347$ | \$391,005 52 | 206,152 | $844,42280$ | $339,006$ | $\begin{array}{r} \$ 50,850 \\ 3,016 \\ 30 \end{array}$ | 53,601 | \$8,040 15 | $3,133,106$ | $\$ 494,40937$ |
| Dog satmou | 2,30, 08.82 | ${ }^{449,51682} 804$ |  |  |  |  |  |  | 26,822 | 80466 |
| Sllyer salmon | 1,573,760 | 158,552 28 | 164,541 | 9,872 46 | 549,410 | 32,964 60 | 17,475 | 2,097 00 | 2,305,105 | 233,780 44 |
| Sockeye salmon | 81,531 | 9,783 72 |  |  |  |  |  |  | 81,531 | 9,783 72 |
| Steelhead salmon | 149,867 | 23,978 72 | 222,605 | 26.77200 | 37,128 | 4,453 30 | 2,047 | 31761 | ${ }^{412,247}$ | 55,44133 |
| Salmon trout | 135, 237 | 37,797 2,028 80 |  |  |  |  |  |  | 138,257 | 3,028 85 |
| Shad | 279 | 1534 | 6,955 | 24342 |  |  |  |  | 7,24 | 25876 |
| Smelt | 552,506 | 33,155 76 | 491,175 | 9,623 50 | 1,250 | 2500 |  |  | 1,045,021 | 43,004 26 |
| Sturgeon | 1,598 | 28764 | 55,801 | 7,812 14 | 3,358 | 47012 | ${ }_{1127}{ }^{2}$ | 7378 | 61,24 |  |
| Clams and mussels | 545,054 | 19,076 88 |  |  | 10,071 70,504 | 40284 5.64082 | 111,795 | 4,47180 | 0066,920 $1,057,93$ | 23,951 53 |
| Orabs <br> Shrimp | $\begin{array}{r} 802,514 \\ 75,541 \\ \hline \end{array}$ | 68,20740 4,532 46 | 19,553 | 1,564 24 | 70,504 | 5,640 82 | 765,362 | 61,288 96 | $1,057,933$ 75,541 | $\begin{array}{r}134,640 \\ 4,532 \\ \hline 16\end{array}$ |
| Miscellaneous | 42,319 | 22,115 95 | 20,000 | 1,200 00 | 2,403 | 14958 | 18 | 108 | 464,830 | 23,406 61 |
| Totals | 9,433,607 | B1,249,249 61 | 1,401,217 | \$105,384 21 | 1,113,778 | \$07,975 46 | 051,425 | 876,230 41 | 12,900,027 | 31,528,889 00 |
| PRESERVED- |  |  |  |  |  |  |  |  |  |  |
| ${ }_{\text {Frozen }}$ | $1,701,413$ 623,331 |  | 289,298 | \$26,036 46 |  |  | 6,315 | 61335 |  |  |
| Kippered Mifld cured | $\begin{aligned} & 623,331 \\ & 783,252 \end{aligned}$ | $\begin{aligned} & 140,219 \\ & 187,980 \\ & 48 \end{aligned}$ |  |  | 1,02C | 2550 |  |  | $\begin{aligned} & 624,351 \\ & 783,252 \end{aligned}$ | 140,50447 187,98048 |
| Salted | 17,805 | 4,451 25 | 175,079 | 43,679 75 | 90,384 | 24,846 00 |  |  | 292,268 | 72,977 00 |
| Smoked | 242,684 | 60,671 00 |  |  |  |  |  |  | 242,684 | 60,671 00 |
| Totals............................ | 3,368,485 | \$529,465 24 | 464,573 | \$69,716 21 | 100,404 | 325,10100 | 6,815 | 613 | 3,940,077 | \$624,805 80 |
| GRAND TOTALS | 12,802,002 | 31,778,714 85 | 1,805,500 | \$175,100 42 | 1,214,182 | \$123,076 46 | 958,240 | \$76,843 76 | 16,840,104 | 82,153,785 40 |

## FISH RY-PRODUCTS.

Fincal Year 1820.

| OUTPUT | Quantity | Value |
| :---: | :---: | :---: |
| Oil | 21,850 gals. | \$7,671 25 |
| Fertilizer | 59 tons | 4,900 00 |
| Fish meal | 203 tons | 25,171 00 |
| Total Value |  | \$37,742 25 |
| APPROXIMATE AVERAGE PRIOE- |  |  |
| 0 Ol | .. ${ }^{\text {\% }}$ | 35 per gal. |
| Fertilizer | . 83 | 0 per ton |
| Fish meal | . 85 | 00 per ton |

## HALIHUT HANDLED RY DEAISERS. <br> Fincal Year 1020.

| Approximate average price ....................................................... . 172 per pound |  |
| :---: | :---: |
|  |  |

## Fimcal Year 1920.



| Plat | LOCATION | County | Acres |
| :---: | :---: | :---: | :---: |
|  | Bay Oenter Reserves Nos. 1-2............................. | Paciflc. | 254.590 |
| 1381/8 | Cases Inlet Reserves Nos. 1-2-3........................ | Mason.. | 178.860 |
| 138 | Clifton Reserves-1 to 0, 22.2 west and 1, 22-1 west... | Mason. | 523.194 |
| 137 | Dewatto l3ay Reserve No. 2............................ | Mason. | 62.408 |
| 80 | Dog Fish Bay Reserve-Poulsbo Tract No. 1.......... | Kitsap.................... | 68.920 |
| 89 | Dog Fish May Reserve-West of Keyport Tracts 1-2. | Kitsap...... | 81.490 |
| 102 | Fld Inlet Reserve........................................ | Thurston.. | 46.980 |
| 1381/2 | Hamahama Reserve No. 1........................... | Mason. | 44.058 |
| ...... | Hammersky Inlet Reserve-Reserves A.B, Old <br> Reserve 1-2-3-4 | Mason................... | 246.912 |
| 139 | Hammersley Inlet Reserve-Reserve No. 5............ | Maron. | 5.760 |
| 133 | Lillwaup Bay Reserve-Nos. 1-2.......................... | Mason................... | 40.004 |
|  | Long Island Slough Reserve............................... | Paciflc................... | 578.832 |
|  | Long Island Rescrve Ext.. | Pacific.................. | 5,990.255 |
|  | Nemah Resorve | Pacifle...................... | 2,553.662 |
| 98 | Oak Passage Reserve No. 1.............................. | Mason.................... . | 23.132 |
| 59\% | Ostrich l3ay Reserve........................................ | Kitsap................... | 150.690 |
| 88 | Ostrich Hay Reserve-Tracts 1-2.. | Kitsap................... | 60.754 |
| 88 | Ostrich Bay Reserve-Tracts 1-2.9....................... | Kitsap................... | 37.683 |
| 87 | Port Discovery Bay Reserve............................ | Jefferson................ | 133.740 |
| 87 | Port Orchard Reserve-Tracts 1-2...................... | Kitsap................... | 122.500 |
| 132 | Reserve East of Tahuyeh Bay-No. 7. | Mason.................. | 14.530 |
| 138 | Reserve opposite Chinom Point No. 2.................. | Mason.................. | 21.046 |
| 134 | Skykomish River Reserve-No. 1 ........................ | Mason.................... | 22.680 |
| 135 | Tahuyeh Bay Reserve-No. 1............................. | Mason................... | 31.689 |
| 99 | Totten Inlet Reserve- 10 lots. | Thurston................ | 711.983 |
|  | Totten Inlet Reserve Nos. 1-2................................... | Thurston-Mason...... | 24.093 |
|  | Totten Inlet Reserve "Pot Hole".............................. | Mason...................... | 9.015 |
| 135 | Union Clty Reserve-No. 2............................................. | Mason.......................... | 179.130 |
|  | Whlapa River Reserve...................................... | Paciftc...................... | 476.500 |
|  | Total............................................... |  | 12,688.011 |

Number Licenses lssued to Take Oysters From State Reserves.............................................. 16

Fiscal Year 1920

OYSTERG SOLD FROM STATE KESERVES.

| DISTRICT | NUMBER OF SAOK8 |  |  |
| :---: | :---: | :---: | :---: |
|  | Seed | Merchant'ble | Total |
| Puget Sound District... | 2,857 91 | 11389 | 2,97180 |

## OYSTEER INDUSTHY.

FMeal Year 1820.
(Compiled from reports recelved from 23 companies or individuals in Puget Sound District, and 5 in Willapa Harbor District.)


AVERAGE VALUE OF OYSTERS PER SACK.

|  | Puget Sound District | Willapa Harbor District |
| :---: | :---: | :---: |
| Native | $\$ 1170$ | 8628 |
| Eastern | 1022 | 1062 |

OYSTER LANDS.


Valuations not obtainable on all of above lands. From the Puget Sound District four reports show a valuation of $\$ 141,500.00$ on a total of 970 acres owned (an average valua of \$145.s7 per acro) and of this number 31 acres were under cultivation and valued at $875,000.00$ (an average $v$ alue of $\mathbf{8 2 , 4 1 9 . 3 5}$ per acre).

## VALUE OF FISHERIES PRODICT.* Fiscal Year 1820.



[^7]YEARLY COMPARATIVE PABLE OF VALUE OF FISHELIES PRODLCT.

|  | Food and Shell Fish Canned | Food and Shell Fish Handled Fresh | Food and Shel Fish Preserved (Other Thann Canned)* | $\underset{\text { By-products }}{\text { Fish }}$ | Halibut | Codfish | Oysters | Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1905. | 36,614,391 80 | \$3,438,209 00 |  | \$4,594 00 |  |  | \$234,169 00 | 10,361,363 80 |
| 1906 | 3,457,275 50 | 3,472,009 00 |  | 19,885 00 |  |  | 292,409 00 | 7,242,478 50 |
|  | $3,580,109$ <br> $3,484,560$ <br> 0 | $2,976,809$ $2,716,890$ |  | 19,885 16,540 00 |  |  | 300,817 307,700 | 6,877,62] 50 $6,525,690$ |
| 1909 | 9,196,858 40 | $3,714,60370$ |  | 41,750 00 |  |  | 511,00000 | $13,534,01010$ |
| 1910 | 4,225,52200. | 2,708,330 00 |  | 21,770 00 |  |  | 668,500 00 | 7,622,122 00 |
| 1911 | 9,297,585 40 | 3,511,177 77 |  | 97,68500 |  |  | 567,350 00 | 13,474,078 17 |
| 1912. | 3,943,016 47 | 3,611,950 30 |  | 79,00000 |  |  | 330,38000 | 7,964,346 77 |
|  | $\underset{6,193,257}{13,21} 5$ | 1,007,782 757 | \$688,718 ${ }^{2428}$ | 82,72100 74 |  |  | 316,66050 | 15,215,674 73 |
| 1915 (8 months). | 6,812,934 70 | 492,09343 | 242,38144 |  |  |  | 900,609 <br> 334,641 <br> 3 | $8,168,26446$ <br> $7,807,145$ <br> 17 |
| 1916.............. | 5,451,414 60 | 1,502,880 72 | 40,77490 | 118,775 00 |  |  | 238,675 29 | 7,402,520 51 |
| 1917 (4 months). | 17,496,512 55 | 145,869 <br> 78824 <br> 24 <br> 17 | 25,500 595 518,090 75 | 2......... |  |  | $2 \times . . .7{ }^{\text {a }}$ | 1,667,882 74 |
| 1918. | 8,370,124 45 | 1,093, 19034 | ${ }_{829,004} 82$ | 196,109 85 | \$ ${ }_{2,698,743} 74$ | \$498,521 59 | 2517,982 81 | 22,604,688 ${ }^{13,854,767} 10$ |
| 1919 | 12,856,477 67 | 1,240,314 06 | 430,442 05 | 181,622 46 | 2,804,944 73 | 308,362 50 | 329,185 79 | 18,201,329 28 |
| 1920 | 4,531,119 85 | 1,528,839 69 | 624,898 80 | 37,742 25 | 2,781,962 23 | 359,061 93 | 256,859 67 | 10,119,981 42 |

*For the years 1905 to 1912 , inclusive, the fish preserved (other than eanned) is included in the amount of fish handled fresh.


STA'SE SALMON HATCHELIFN.
Comparison Between Fry Capacity of Hateherien In 1913 und 1820.

| SALMON HATCHERIES | FRY CAPACITY IN 1913 |  |  | FRY CAPACITY IN 1990 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hatcheries | Ponds | Totals | Hatcherjes | Ponds | Totals |
| PUGET SOUND |  |  |  |  |  |  |
| DISTRIC「- |  |  |  |  |  |  |
| Chambers Creck |  |  |  | 0.720 .000 | 5,000,000 | 11,720,000 |
| Dungeness | 1,500,000 | 1,000,000 | 2,800,000 | 1, W0, 010 | 1,000,000 | 2,800,000 |
| Fiwha |  |  |  | 1,920,000 |  | 1,920,000 |
| Green River | 4,320,000 | 500,000 | 4, 220,000 : | 5,280,000 | 500,000 | 5,780,000 |
| Green River No. 2........... | 4,400,000 |  | 4,4(k).006) | 4,416,600 |  | 4,400,000 |
| Nooksack ................... | 4,480,000 |  | 4,480,000! | 4,480.000 | 1,000,000 | 5,480.000 |
| Midile Fork Nooksack..... | motom. |  | , M0.00\% | 2,720,000 |  | 2,720,000 |
| Sisqually | 3,000, 0000 |  | 3,000,000 |  |  | + |
| Pilchuck |  |  |  | 3,040,000 |  | 3,040,000 |
| Puyrinup |  |  |  | 3.2060000 |  | 3,200,009 |
|  | 4. 200,160 ! | 1,000,000 | 5, 240.000i | 14.160,000 | 3,000,000 | 17,100,400 |
| Skagit River | 1,440.6M) | - | 1,440, $\mathrm{MaNO}_{1}$ |  |  |  |
| Skokomish |  |  | 4, 29(1f). (x)k! | 4. 200 , mmo |  | 4,900,001 |
| Skykomish (Startup) | siot, injo. |  | 8is),000 |  |  | $6,720,000$ |
| Snohomish. <br> Stillaguamish | 4 , ¢f | 1,500,000 | $6.140, \mathrm{fino}$ | 4,640,000! | 1,500,000 | 6,140,000 |
|  | (10, O\%) | .......... | (9)0,000 | . - ...... |  |  |
| Stillaguamish <br> Tahuya |  |  |  | 1,560,000 |  | 1,560,000 |
| Totals | [5, $5 \times 0,000$ | 4,000.090 | 39,000,00) | 64,840.006 | 12,000,000 | 76,840,000 |
| COLUMBIA RIVER |  |  |  |  |  |  |
| Chinook . | $2,340.000$ | 1,00tr.000 | 3,340,0019 | 7. $4.40,010$ | 2,000,000 | 9,440,000 |
| Kalama | 6.400, 61000 | $2,4(1), 0,10$ | $8, \mathbf{W N}$.(H) | 14.20.0\%01 | 2,400,000 | 16,960,001) |
| Lewis River |  |  | 1,600.000 | 1.610,06m |  | 1,600,000 |
| Pateros-Mnthow | $\underline{-200,000 .}$ |  | 2,000,000: | 2,560,000 | 4,000,000 | 6, $5 \times 10,000$ |
| Spolane ${ }_{\text {Wenatches }}$ |  |  |  | 2, (1)0, 1000 |  | 2,000,000 |
|  |  |  |  | 1, (tyn ,000 |  | 1,920,006 |
| Wind River | 4,960,000 |  | 4,900,000 | 4,96in, 000 |  | 4,900,000 |
| Totals | 17, 200.400 | 3,405i,000 | 20,900,0010 | $3-0,040,000$ | 8.400,000 | 43,440, 000 |
| GRAYS HARBOR |  |  |  |  |  |  |
| Chehalis | 2,720,000 |  | 2,720,000 | 23.580, 0100 |  | 23, 840,000 |
| Chehalis No. |  |  |  | 6,730,100 |  | 6,720.00) |
| Humptulips |  |  |  | 7, $\mathbf{4 0 , 0 1 0}$ |  | 7,840,000 |
| Totals. | 2,790,000 |  | 2,720,000 | 38.4000 .005 |  | $38.400,000$ |
| WILLAPA HARBOR DISTRICT- |  |  |  |  |  |  |
| Nasel River |  |  |  | $3.200 .00 C$ | 200,000 | 3,400,000 |
| North River |  |  |  | 2.720 .00 C | 500,000 | 3, 3 , M, OM |
| Willapa | 3,120,000 |  | 3,120,000 | 3,120,00¢ |  | 3,120,000 |
| Willapa No. |  |  |  | 2, $2 \times 10,000$ |  | 2,5100.000 |
| Totals. | 3,120,000 |  | 3,120,000 | 11,600,000 | 700,000 | 12,300,000 |
| Grand Totals.......' | 39,300,000 | 7,400,000: | 66,700,000 | 149, 530,000 | 21,100,000 | 170,980,000 |

[^8]Incrase in fry capacity of State Salmon Hatcherles from 1913 to 1920.

Puget Sound District............... 82 per cent
Colnmbia River District........... 108 per cent
Viruys Harbor District..........., 311 per cent Willapa Harbor District........... 294 per cent

STATE THOUT HATCHERIES.
Comparimon Between Fry Capacity of Hatcherfem in 1913 and 1820.

| TROUT HATOHERLES | FRY OAPAOITY DN 1018 |  |  | FRY CAPACITY DN 1920 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hatcheries | Ponds | Totals | Hatcheries | Ponds | Totals |
| Lake Chelan | 1,600,000 |  |  | 1,800,000 |  | 1,600,000 |
| Lake Crescent |  |  |  | 2,400,000 |  | 2,400,000 |
| Lake Whatcom |  |  |  | $5,500.000$ | 500,000 | 6,000,000 |
| Lewis River ... | 80,000 |  |  |  |  | 800,000 |
| Little Spokane | 200,000 |  |  | 2,000,000 |  | 2,000,000 |
| Tilton River | 900,000 |  |  | 2,400,000 $\mathbf{2 , 3 0 0 , 0 0 0}$ | 100,000 | $2,500,000$ $\mathbf{2 , 3 0 0 , 0 0 0}$ |
| Tot | 3,500,000 |  |  | 17,000,000 | 600,000 | 17,600,000 |

[^9]
## OUTPLT OF SALMON FROM THE STATE HATCHERIES.

| CHINOOK | $\left\|\begin{array}{c} \text { No, } \\ \text { Females } \\ \text { Spa'ned } \end{array}\right\|$ | No. Eggs Taken | No. Eggs Recelved from Other Hatcherfes | No. Eggs On Hand April 1 1920 | No, Eggs Lost | No. Eggs Shipped | No. Eggs On Hand March 1921 | No. Fry Hatched | $\left\|\begin{array}{c} \text { No. Fry } \\ \text { On Hand } \\ \text { Aprili } \\ 1900 \end{array}\right\|$ | $\begin{gathered} \text { No, } \\ \text { Fry } \\ \text { Fost } \end{gathered}$ | No. Fry Planted | No, Fry Shipped | No. Fry On Hand March 81 , 1921 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DIST.- Dungeness.......... | 151 | [077,300 |  |  | 55,040 |  |  | 551,360 |  |  |  |  |  |
| Elwha..................... | 42 | 137,000 |  |  | 3,000 |  |  | 131,000 |  | 1,000 | 188,000 |  |  |
| Green River | 354 | 1,827,200 |  |  | 200, 8 (in |  |  | 1,617,250 | 1,324,65: | 7,001 | 2,034,246 |  |  |
| Green River No. 2 | 16 | 60,100 |  |  | 6,500 |  |  | 53,000 |  | 600 | 53,000 |  |  |
| skykomish....... | 13. | 59,500 |  |  | 2,000 |  |  | 57,500 |  | 355 | 57,115 |  |  |
| Tota | 570 | 2,091,100 |  |  | 277,300 | ......... |  | 2,413,710 | 1,324,057 | 21,053 | 2,716,414 | ....)-4 | ,...,, , |
| COLGMBIA RIVER DIST.- Chinook................... | 332 | 1. 227,500 | 624,250 |  | 88,000 |  |  | 2,368,750 |  | 16,000 | 2,352,750 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Totais | 458 | 2,450,900 | 624,250 |  | 91,150 | 624,250 | +thert | 2,368,750 |  | 16,000 | 2,352,750 |  |  |
| GRAYS HARBOR DIST.- | 208 | 1,794,030 |  |  | 242,677 | 175,000 |  | 1,376,353 |  | 3,3se | 1,372,971 |  |  |
| Chehalis No. 2, ........... |  |  | 175,000 |  | 7,500 |  |  | ${ }_{387}^{107,500}$ |  | 580 | 166,920 |  |  |
| Humptulips............... | 167 | 657,309 |  |  | 267,510 |  |  |  |  | 742 | 388,948 |  |  |
| Totals. | 565 | 2,451,230 | 175,000 |  | 517.657 | 175,000 |  | 1,983,543 |  | 4,704 | 1,228,879 |  |  |
| WILLAPA HARBOR DIST.- North River. |  | 17.000 |  |  | 200 |  |  | 16,800 |  | 90 | 16,504 |  |  |
| Whllapa. | (6) | 306,000 |  |  | 26,200 |  |  | 279,800 |  | 1,900 | 277,900 |  |  |
| Totals | 31 | 323,000 |  |  | 26,400 | ......... | .......... | 296,600 |  | 1,996 | 294,604 |  |  |
| RECAPITULATIONPuget Sound District. | 576 |  |  |  | 277,390 |  |  |  | 1,324,657 | 21,953 |  |  |  |
| Columbia River Distriet.. | 453 | 2,459,900 | 624,250 |  | 91,150 | 624,250 |  | 2,588,750 |  | 16,000 | 2,352,750 |  |  |
| Grays Harbor District... | 565 | 2,451,230 | 175,000 |  | 517,687 | 175,000 |  | 1,033,543 |  | 4,704 | 1,928, 39 |  |  |
| Whllapa Harbor District.. | 74 | 323,000 |  |  | 26,400 |  |  | 296,600 |  | 1,976 | 294,604 |  |  |
| Grand Totaln. | 1,008 | 7,925,230 | 790,250 |  | 912,627 | 799,250 |  | 7,012,603 | 1,324,057 | 44,653 | 8,292,607 |  |  |

Gutput of Sninaon From the State Hatcherlem-Continued.

| IOOf | No. <br> Fomales Spa'ned | $\underset{\text { Taken }}{\text { No. Eggs }}$ | No. Egg Reccive. from Oth Hatcheris | o. Eggs I Hand ${ }_{1920} 1$ pril | $\left\lvert\, \begin{gathered} \text { No. Eggs } \\ \text { Lost } \end{gathered}\right.$ | No. Eggs Shipped | No. Eggs On Hand March 31, 1921 | No. Fiy Hatched | $\left\{\begin{array}{c} \text { No. Fry } \\ \text { On Hand } \\ \text { Aprill } \\ \text { 1920 } \end{array}\right.$ | $\begin{aligned} & \text { No. } \\ & \text { Fry } \\ & \text { Lost } \end{aligned}$ | No. Fry Planted | No. Fry Shipped | No. Fry On Hand 1921 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGFT SOCND DIST.- |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chambers Craek | 1.261 | 2,941,825 | 1,500,000 | 7,654,000 | 433,880 |  | 281,745 | 11,300,200 | 1,181,000 | 24,150 | 11,934,600 |  | 602,450 46259 |
| Dungenoss. |  |  | 500,004 |  | 117,045 |  |  | 484,955 |  | 22,396 |  |  |  |
| Elwha. | 1,883 | 3,997,000 |  |  | 217,000 | 2,500,000 |  | 1,280,000 | 1,800,000 | 8,000 | 1,857,000 |  | 1,275,000 |
| Green Rivar Gren River | 1,069 | 3,492,700 | 3,157,000 |  | 186,471 14,450 | *1,010,000 |  | 2,296,229 |  | 10,064 | $\begin{aligned} & 1,350,000 \\ & 1,510,700 \end{aligned}$ |  | 2,014,375 |
| Wreok River | 2,001 | 5,272,900 | 3,15\% |  | 972,900 | 1,887,000 |  | $3,142,000$ | 3,176,820 | 10,565 | 6,179,325 |  | 2,014,375 |
| Middie Fork Nooksack | 62 | 1,704,000 | 1,897,000 | 351,730 | 133,730 |  | 218,000 | 3,501,000 | 828,300 | 55,530 | 1,925,770 |  | 2,438,000 |
| Pilchuck. | 85 | 196,500 | 2,000,000 |  | 46,800 |  |  | 2,149,700 | -988,493 | 6,193 | 3,132,000 |  |  |
| Puyallup Rive | 313 | 778,750 | 1,200,000 |  | 100,720 |  |  | 1,878,030 | 1,704,374 | 19,224 | 2,100,100 |  | 1,469,050 |
| Samish. | 76.3 | 2,068,300 | 7,000,000 |  | 217,600 |  |  | 8,850,700 | 4,504,173 | 32,340 | 10,701,300 |  | 2,621,233 |
| Skokomish | 2,320 | 5,774,000 | 1,144,000 |  | 131,000 | 1,020,000 |  | 5,767,000 | 1,493,840 | 25,215 | 5,983,300 |  | 1,242,32. |
| Skykomish | 78 | 214,500 | 3,120,000 |  | 233,065 |  |  | 3,101,435 | 809,720 | 12,515 | 1,833,700 |  | 2,064,940 |
| Tahuya Eyning Statio | 1,443 | 3,099,000 | 1,020,000 |  | 290,900 88,000 | 1,144,000 |  | $4,349,100$ $8,787,000$ | $2,927,100$ 915,200 | 30,420 39,650 | 6,067,000 |  | $1,178,780$ 300,600 |
| Iake Orescent Trout H. |  |  | 500,000 |  | 5,600 |  |  | 494,000 |  | 400 | 494,000 |  |  |
| Totals | 11,850 | 30,439,475 | 27,668,000 | 8,005,730 | 2,487,161 | 7,561,000 | 499,745 | 55,565,209 | 20,856,49s | 382,145 | 59,434,745 |  | 16,604,907 |
| COLCMBIA RIVER DIST.Chinook |  |  | 4,000,000 |  | 08,500 |  |  | 3,901,500 |  | 9,300 | 3,82, 200 |  |  |
| Kalama |  |  | 13,000,000 |  | 205,000 |  |  | 12,795,000 |  | 22,320 | 12,772,680 |  |  |
| Pateros Mrat |  |  | 1,000,000 |  | ${ }^{61,000}$ |  |  | 939,000 |  | 550 | 988,450 |  |  |
| Wenatchee. |  |  | 500,000 |  | 10,275 |  |  | 489,725 |  | 2,390 |  |  | 487,335 |
| Wind River |  |  | 4,000,000 |  | 133,600 |  |  | 3,866,400 |  | 68,650 | 3,797,750 |  |  |
| Totals. |  | .......... | 22,500,000 |  | 508,875 |  |  | 21,991,625 |  | 103,210 | 21,401,080 |  | 487,335 |
| GRAYS HARBOR DIST- - |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chehalis. <br> Chehalis No. 2 | 16,175 | 51,076,000 | 5,468,800 |  | $\begin{array}{r} 2,223,395 \\ 230,800 \end{array}$ | 39,085,800 |  | $\begin{aligned} & 9,766,803 \\ & 5,238,000 \end{aligned}$ | $\mathbf{5 , 9 2 3 , 4 1 4} \mathbf{3 , 7 3 7 , 9 9 5}$ | 2,795 | $\begin{array}{r} 15,687,424 \\ 8,866,025 \end{array}$ |  |  |
| Humptulips................ | 5,348 | 14,493,030 |  |  | 1,448,530 | 10,000,000 |  | 3,044,500 |  | 3,500 | 3,041,000 |  |  |
| Totals........? | 21,523 | 65,569,030 | 5,488,800 |  | 3,802,725 | 49,085,800 |  | 18,049,305 | 9,601,409 | 16,205 | 27,604,449 |  |  |

* 10,000 Shippad to University of Washington.

| Output of Salmon From the State Hatcherlew-Continued. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DOG-Coneluded | No, Frmales Sin'med | No. Fggs Taken | $\begin{gathered} \text { No. Eggs } \\ \text { Rocelved } \\ \text { from Other } \\ \text { Hateheris. } \end{gathered}$ | $\begin{aligned} & \text { No. Eggs } \\ & \text { On Hand } \\ & \text { Aprill } \\ & \text { 1920 } \end{aligned}$ | No. Eggs | $\begin{aligned} & \text { No. Eggs } \\ & \text { Shipped } \end{aligned}$ | No. Eggs On Hand March 31, 1921 | $\begin{aligned} & \text { No. Fry } \\ & \text { Hatched } \end{aligned}$ | $\begin{gathered} \text { No. Fry } \\ \text { On Hand } \\ \text { Aprill 1, } \\ 1920 \end{gathered}$ | $\begin{aligned} & \text { No. } \\ & \text { Fry } \\ & \text { Lost } \end{aligned}$ | No. Fry Planted | $\begin{aligned} & \text { No. Fry } \\ & \text { Shipped } \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { No. Fry } \\ \text { On Hand } \\ \text { March 31, } \\ 1921 \end{gathered}\right.$ |
| WILLAPA HARHOK DIST.- <br> Nasel River <br> North Rivet <br> willapa. $\qquad$ $\qquad$ | 1.731 11 | $\begin{array}{r} 5,271,500 \\ 35,000 \\ 42,000 \end{array} .$ | 1,500,000 $1,060,000$ |  | $\begin{array}{r} 52,285 \\ 6,362 \\ 2,000 \\ 31,700 \end{array}$ | 1,500,000 |  | $\begin{array}{r} 3,248,215 \\ 1,529,638 \\ 40,000 \\ 903,500 \end{array}$ |  | $\begin{array}{r}18,450 \\ 3,185 \\ 30,370 \\ \hline\end{array}$ | $\begin{array}{r}3,140,000 \\ 1,525,453 \\ 40,000 \\ 008,380 \\ \hline\end{array}$ |  | 60,735 |
| Totals | 1.504 | 5,346,510 | 2,500,000 |  | 563,347 | 1,500,000 |  | 5,785,158 |  | 81,625 | 5,613,783 |  | \$0,735 |
| RECAPITULATIONPuget Sound District. Columbia River Distriet | 11.850 | 30,439,475 | $\begin{aligned} & 27,068,000 \\ & 22,500,000 \end{aligned}$ | 8,005,730 | $\begin{array}{r} 2,457,161 \\ 509,375 \end{array}$ | 7,561,000 | 490,745 | $\begin{aligned} & 55,565,290 \\ & 91,901,625 \end{aligned}$ | 20,556,498 | $\begin{aligned} & 302,145 \\ & 103, .910 \end{aligned}$ | $\begin{aligned} & 50,434,745 \\ & 21,401,080 \end{aligned}$ |  | $\begin{array}{r} 16,604,077 \\ 457,335 \end{array}$ |
| Gruy Harbor District... Willapa Harbor District.. | 21.502 1,800 | $\left\|\begin{array}{r} 15,500,030 \\ 5,1.45,500 \end{array}\right\|$ | 5,468,800 $2,500,000$ |  | $\begin{array}{r} 3,902,795 \\ 563,347 \end{array}$ | $\begin{array}{r} 49,085,800 \\ 1,500,009 \end{array}$ |  | $\begin{array}{r} 18,049,305 \\ 5,755,153 \end{array}$ | 9,661,409 | $\begin{aligned} & 16,265 \\ & 81,685 \end{aligned}$ | $27,604,449$ $5,613,783$ |  | 80,735 |
| Grand Totals. | 25,173 | 191, 357 , 005 | 58,136,800 | 8.005,730 | 7,461,008 | 55, 146,800 | 490,745 | 101,301,382 | 30,517,907 | 553,255 | 114,144,057 |  | 17,181,977 |
| HUMPBACK |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PUGET SOUND DIST:- Dangeness.............. |  |  |  |  |  |  |  |  | 721,750 | 3,150 | 718,600 |  |  |

Output of Snimon From the State Hatcherien-Continued.

| SILVER | No. Fimalek Spa'fed | No, Eggs Taken | No. Eggs Recelved from Other Hatcheries | $\begin{gathered} \text { No. Eggs } \\ \text { On Hand } \\ \text { April 1, } \\ 1920 \end{gathered}$ | $\begin{gathered} \text { No, Eggs } \\ \text { Lost } \end{gathered}$ | No. Eggs Shipped | No, Egge On Hand March 31, 1921 | No. Fry Hatched | $\left\lvert\, \begin{gathered} \text { No. Fry } \\ \text { On Hand } \\ \text { April } 1, \\ 1920 \end{gathered}\right.$ | $\begin{aligned} & \text { No. } \\ & \text { Fry } \\ & \text { Lost } \end{aligned}$ | No. Fry <br> Planted | No. Fry <br> Shipped | No. Fry On Hand March 31, 1821 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DIST,Chambers Oreek. .... | 909) | 578,500 |  |  | 124,920 |  |  | 48,580 |  | 5,050 | 366,100 |  | 57,430 |
| Dungeness.......... | 298 | 1,009,900 |  | 180,050 | 178,605 |  | 793,655 | 210,600 | 15,35 | 4,365 | 185, 200 |  | 36,000 |
| Elwha..... | 78 | 143,000 |  |  | 3,000 |  |  | 140,000 |  |  | 75,000 |  | 65,000 |
| Green River | 1,406 | 4,691,100 | SIS1,000 |  | 573,588 | 11,029,000 | 26,512 | 4,050,000 |  | 16,480 | 2,500,000 | ......... | 1,533,520 |
| Green River No. 2., | 783 | $2.091,650$ |  | 902,350 | 226,050 |  | 387,350 | 2,320,600 | 252,985 | 13,436 | $1,144,164$ | ....t.... | 1,475,985 |
| Nooksack.................. | 2,569 | $5,015,700$ |  | 219,800 | :557,800 | 1,125,000 | 494,000 | 6,25s,700 | 1,002,603 | 29,618 | $4,220,600$ | .......... | 3,011,175 |
| Middle Fork Nooknnck.... | 5 LD | 1,371,000 | 1,125,000 | 827,470 | 141.970 | ......... | 1,002,000 | 2,379,500 | 106,750 | 37,200 | 1,222,000 | +...+.... | 1,227,000 |
| Pilchuck. | 237 | 572,300 |  | .......... | 50,050 |  |  | 522,250 | 270,721 | 2,921 | 745,000 |  | 45,050 |
| Juyallup River. . . . . . . . | 378 | 1,087,250 |  |  | 33.050 |  |  | 1,056,2100 | -639,947 | 9,460 | 1,217,900 |  | 468,787 |
| Samleb.- | 3,667 | 10,827,500 |  | 1,047,050 | 466,550 | :150,00) | 7,165,200 | 4,112,800 | 3,809,041 | 7,978 | 4,960, 400 |  | 2,944,433 |
| Skokoinlsh. . . . . . . . . . . . . | 340 | 874,000 |  | 122,850 | 88,050 | 510,000 | 146,500 | 202,300 | - 294,075 | 1,030 | 485,600 |  | 10),720 |
| Skykomish. . .r.2........ | 846 | 2,458,500 |  | 578,850 | 174,515. |  | 810,035 | 2,052,300 | 2,048,225 | 4,000 | 3,074,600 | . + +...... | $1,021,925$ |
| Tahuya Eyeing Station.. | , | 9,500 | 510.000 |  | 11,850 |  |  | 507,650 |  | 3,625 | 446,700 |  | $57,325$ |
| Total | 11.140 | 324,919,900 | 2,616,000 | 8,877,920 | 2,360,088 | 2,807,000 | 10,825,252 | 24,421,480 | 8,439,842 | 135,278 | 20,672,664 |  | 12,053,380 |
| COLUMBIA RIVER DIST:- <br> Chinook | 36 | 81,500 |  |  | 1,300 |  |  | 80,200 |  | 1,300 | 68,000 |  | 10,900 |
| Prteros-Methow........... | 322 | 298.000 |  | 2,825 | 26,425 |  | 301,700 | 9,700 $3.289,925$ |  |  | 2,700 $2,567,500$ |  |  |
| Tilton River Trout H.. | 501 | 1.752,000 | 1,500,000 | 62,740 | 44,815 |  |  | 3,269,925 | 305,905 | 6,055 | 2,567,500 |  | 1,022,325 |
| Tot | 741 | 2,181,500 | 1,500,000 | 65,565 | 72,510 | ............ | 301,700 | 3,372,825 | 305,995 | 7,395 | 2,688,200 |  | 1,033,225 |
| GRAY8 HARBOR DIST,Chehalis. | 4,082 | 17,718,340 |  | 2,542,070 | 1,705,205 |  | 1,214,405 | 16,040,800 | 3,597,671 | 5,603 | 12,857,200 |  | 7,075,5i2 |
| Obehalis No |  | 124,000 |  | - | 1.198,455 |  |  | 3,183,000 | , .......... | 425 | 118,000 |  |  |
| Humptulips | 2,400 | 6,531,700 |  |  | 1.428,485 | 1,500,000 | 470,215 | 3,183,000 |  | 3,645 | 159,000 |  | 2,970,355 |
| To | 7.421 | 23.774 .040 |  | 2,542,070 | 3,138,710 | 1,500,000 | 2,984,620 | 19,292,750 | 3,807,671 | 9,769 | 13,134,755 |  | 10,045,927 |
| WILLAPA HARBOR DIST-- <br> Nasel River. | 315 | [000, 100 |  | 279,590 | 128.315 |  | 149,775 | 910,900 | 651,305 | 3,515 | 927,700 |  | 631,080 |
| North River |  | 251,550 |  |  | 20,257 |  |  | 231,293 |  | 845 | 230.448 |  |  |
| Willapa. | 1,270 | 4.428,000 |  | 592,000 | 301,903 |  | 610,500 | 4,009,500 | 596,450 | 17,480 | 2,842,500 |  | 1,836,000 |
| Willapa No. 2.......e..... | roterer |  | 1,000,000 |  | 47,600 |  |  | 952,400 |  | 67,780 | 854,620 |  |  |
| To | 1,670 | 5,580,850 | 1,000,000 | 871.500 | 408,072 |  | 760,275 | 6,194,093 | 1,247,875 | 89,620 | 4,885,268 |  | 2,467,080 |

[^10]Output of Salmon From the State Hatcherien-Continued.

Outjut of Salmon From the State Hateherien-Continued.

| STEELHE.AD-Conctuded | No. <br> Fumales Spa'ned | $\underset{\text { Thken }}{\text { No. Eggs }}$ | No. Eggs Received from Other Hatcheries | No, Eggs On Hand Aptil 1, 1920 | $\underset{\text { Nost }}{\text { No. Eggs }}$ | No. Fges Shipped | No. Eggs On Hand March 31 , 1021 | No. Fry Hatched | No. Fry <br> On Hand April 1, 1020 | $\begin{aligned} & \text { No, } \\ & \text { Fry } \\ & \text { Lost } \end{aligned}$ | No. Fry Planted | No. Fry Shipped | No. Fry On Hand March 31, 1921 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GRAYS HARHOR DISTChehalis. Humpitulips | 454 58 | $1,748,850$ 281,350 |  | 149,390 | 65,100 10,900 | ${ }^{*} 360,000$ | $\begin{aligned} & 287,450 \\ & 165,450 \end{aligned}$ | $\begin{array}{r} 1,185,100 \\ 57,000 \end{array}$ |  | 2,000 4 | 1,007,500 | 175,000 | 56,905 |
| Tot | 512 | 1.979,700 |  | 149,300 | 76,060 | 360,000 | 450,980 | 1,242,100 |  | 2,645 | 1,007,500 | 175,000 | 56,955 |
| WILLAIA HARBOR DIST:- <br> Nasel River. | 3 | 31,300 |  |  | 1,005 |  | 30,455 |  |  |  |  |  |  |
| North River | 92 | 291,700 |  |  | 116.500 |  |  | 705,200 |  | 2,200 | 703,000 |  |  |
| Willapa | 35 | 1,371,500 |  | 522,250 | 140,550 | 1200,000 | 562,000 | 991,200 |  | 17,700 | 263,500 |  | 10,000 |
| Totals | 656 | 2.294 .750 | 1.6.1.20.46 | 522,250 | 258,145 | 200,000 | 592,455 | 1,006,400 |  | 19,800 | 1,060,500 |  | 10,000 |
| RECAPITULATIONPuget Sound District. | 1.603: | 8,754,650 |  | 958,000 | $5>0,645$ | 581,000 | 604,005 | 2,181,400 | 45,000 | 27,893 | 2,034,757 |  | 53,750 |
| Columbla River Distriet.. | 7.0 | $3,159,500$ | 210.000 |  | 431,850 | 500,000 | 47,45] | 2,420,200 | ,500 | 25,940 | 1,614,500 | 775,700 | 53,700 |
| Grays Harbor District..... | 312 | 1.979.700 |  | 149,390 | 76,060 | 360,000 | 450,93t | 1,242,100 |  | 2,645 | 1,007,500 | 175,000 | 56,955 |
| Whapa Harbor District.- | 6isi | 2.224 .750 |  | 322,250 | 258,145 | 200,000 | 55/2,455 | 1,696,400 |  | 19,900 | 1,606,500 |  | 10,000 |
| Grand Totals. | 33.981 | 11.778,000 | 210.000 | 1224,640 | 1,346,700 | 1,641,000 | 1,784,840 | 7,540,100 | 45,000 | 76,378 | 6,323,317 | 1,064,700 | 120,705 |
| ALL SPECIES COMBINED |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PUGET SOLND DIST.- |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chambers Creek..... | 7.81 is | 1,460, 575 | 1,500,000 | 7,507,000 | 645,600 | 70,000 | 616,795 800,590 | 12,185,780 | 1,226,000 | 29,450 | 12,503,700 | 25,000 | 73, 630 |
| Dungeness. | 7is | 2,871,400 | 500,000 | 180,050 | 403,205 |  | 800,530 | 2,347,715 | 737,115 | 64,918 | 2,511,853 | 10,000 | 498,569 |
| Elwha. | 4.114 | 4,455,000 |  | .......... | 235,500 | 2,500,000 | 14,000 | 1,705,500 | 1,860,000 | 10,000 | 2,215,500 |  | 1,340,000 |
| Green River |  | 10,085,300 | 981,000 |  | 988,709 | 2,032,000 | 26,512 | 7.970 .079 | 1,324,657 | 35,105 | 6,799,546 |  | 2,469,055 |
| Green River | 1,055 | 2,985,050 | 8,157,000 | 902,350 | 503,900 | 475,000 | 414,350 | 5,646,750 | 720,393 | 99,119 | 2,762,064 | 15,000 | 3,490,300 |
| Nooksack | 4.408 | 13.371. 100 |  | 219,800 | 731,900 | 3,012,000 | 494,000 | 9,353,000 | 4,179,583 | 41,283 | 10,480,125 |  | 3,011,175 |
| Middle Fork | 1,141 | 3,275,000 | 3,012,000 | 1,179,200 | 275,700 | $\cdots$ | 1,220,000 | 5,970,500 | 935,000 | 92,820 | 3,147,770 |  | 3,005,000 |
| Pilchuck | 400 | 1,182, 800 | 2,000,000 |  | 183,350 | 36,000 |  | 2,963,450 | 1,259,214 | 10,714 | 4,106,000 | 60,000 | 45,050 |
| Puyaliop Ri | 685 | 1,868,000 | 1,200,000 |  | 183,770 |  |  | 2,934,230 | 2,844,321 | 28,684 | 3,318,000 |  | 1,031,867 |
| Samish | 4,562 | 13,196, 200 | $7,000,000$ | 1,047,050 | 671,970 | 150,000 | 7,447,780 | 12,973,500 | 8,313,314 | 40, 561 | 15,680,457 |  | 5,565,006 |
| Skokomis | 2,600 | $6,648,000$ | 1,144,000 | 122,850 | 160,050 | 1,580,009 | 146,500 | 6,003,300 | 1,757,915 | 26,270 | 6,478,000 |  | 1,352,045 |
| Skykomish | 904 | 2,920,700 | $3,120,000$ | 578,350 | 417,080 |  | 899,185 | $5,360,885$ | 2,867,945 | 17,300 | 5,116,615 |  | 3,086,865 |
| Snohomish |  |  | 4,640,000 |  | 200,900 |  |  | $4,349,100$ | 2,927,100 | 30,420 | 6,067,000 |  | 1,178,780 |
| Tahuya Eyeing Station.. | 1,451 | 4,015,400 | 1,580,000 |  | 104,650 | 1,144,000 |  | 4,206,750 | 915,200 | 48,875 | 4,804,650 |  | 983,925 |
| Lake Crescent Trout..... |  |  | 500,000 |  | 5,600 |  |  | 494,400 |  | 400 | 44,000 |  |  |
| Totals....... | 24,619 | 70,834,525 | 30,934,000 | 12,186,650 | 5,705.294 | 10,949,000 | 12,019,002 | 84,581,880 | 31,387,747 | 570.410 | 86,577,188 | 110,000, | 28,712,037 |

Output of salmon From the State Hatchericn-Concluded.

| A1L SPECIES COMBINED -Continued. | No. Females Spa'ned | No. Eggs Taken | No. Egge Received from Other Hatcheries | $\left\lvert\, \begin{gathered} \text { No. Eggs } \\ \text { On Hand } \\ \text { Aprill } \\ 1920 \end{gathered}\right.$ | No. Fggs Lost | No. Eggs Shipped | $\left\lvert\, \begin{gathered} \text { No. Eggs } \\ \text { On Hand } \\ \text { March } 31, \\ 1921 \end{gathered}\right.$ | No. Fry Hatched | No. $\operatorname{Fry}$ On Hand April 1, 1920 | $\underset{\substack{\text { No. } \\ \text { Fryst } \\ \text { lost }}}{ }$ | No. Fry Planter | No. Fry Shipped | No. Fry On Hand 1921 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Columbia |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Chinook. | 3;8 | 1,009,000 | 4,624,250 |  | 182, 800 |  |  | 6.300.450 |  | 26,600 | 6.312,9511 |  | 10,900 |
| Kalama.... |  |  | 13,009,000) |  | 205, $6 \times 40$ |  | 201, | 12,7x,700 |  | 22, 2,150 |  | (000,000 |  |
| Pateros.Meth | G88 | 2,727,000 | $1,000,000$ 5000,000 | 2,825 | 30, 10,255 |  | , | - $4 \times 9,75$ |  | $2,3 \times 1$ |  | , | 467,335 |
| Wind River | 127 | cise +100 | 4,000,010 |  | 141,750 | 6.4, 20 |  | 3, $\times(20,402$ |  | 68, (fx) | 3,797,750 |  |  |
| Titton River | 2\% | 2,562,500 | 1,500,0(0) | 62,740 | 114,312) |  | 4, 4,0 | 3 3, 103,425 | 305,995 | 10,535 | 3,246,564 |  | 1,022,525 |
| Walla Walla Trout |  |  | 160,010 |  | 60, ${ }^{\circ} \mathrm{O}$ |  |  | 100.(M6) |  | 10,900 100 |  |  |  |
| Drmpka Lake Eyeing Sta. |  |  | 50,000 |  | 301 |  |  |  |  | 10 |  |  |  |
| To | 1,9i2 | 7,830,900 | 24,834,250 | 65, 565 | 1,103,913 | 1,124,250 | H9, 1: | 30, 153,400 | 300, 905 | 152,545 | 2x,006,590 | 79,700 | 1,620,5\%0 |
| (iRAYS HARBOR DIST.- |  |  |  |  |  | 30,620,800 | 2,2011,887 |  | 9, $2120 \times 5$ | 14.476 |  | 175 | 7,075,572 |
| Chehalis...... | 22,009 | $\begin{array}{r} 7,736,720 \\ 124,000 \end{array}$ | 5,643,590 | 2,601,401 | -243,390 | 3,8, | 2,2n,on | 5.524,480 | 3,737,995 | 10,975 | 9,251.500 |  | 7310 |
| Humjtulips. | 7,973 | 21,913,250 |  |  | 3,155,425 | 11,500,000 | 6:33,663, | 6,624.190 |  | 7,932 | 3,588,948 |  | 3,027,310 |
| To | 37,021 | 93,774,000 | 5, 643,8000 | 2,601,460 | 7,633,182 | 51,120, 800 | 2,833,550 | 40,317,728 | 13,559,080 | 33,383 | 43,765,543 | 175,000 | 10,102,862 |
| ILLAPA HARBOR | $2 . \mathrm{mm}$ | 6,212,450 |  | 279,590 | 652,605 | 1,500,0in | 180,230 | 4, 130, 115 | 651,395 | 21,993 | 4,067,700 |  | 790,8 |
| North Riv | 393 | 1,12, 250 | 1,500,000 |  | 143,319 |  |  | 2.481, 931 |  | 6,326 | 2,475, 015 |  |  |
| Willapa | 1,76* | 6,148,400 |  | 1,114,250 | 470,6.50 | 200,000 | 1,181,500 | 3. 410.50 m | 596,400 | 37,000 | 4,123,900 |  | 1,846,000 |
| Willapa No. |  |  | 2,000.000 |  | 79,300 |  |  | 1,020,700 |  | 127,750 | 1,792,950 |  |  |
| To | 4,20, | 13,4¢6,100 | 3,500,000 | 1,393,840 | 1,345,964 | 1,700,000 | 1,361,730 | 13,972,246 | 1,247,875 | 193,151 | 12,460, 155 |  | 2,566,815 |
| hecapitolation- |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Puget Sound District.... |  |  | 30, 284,000 | 12, 136,680 | 1,103, 915 | 1,124,250 | 12,019, $34,1.00$ | 30, $153,4(4)$ | ${ }^{31,315} 319$ | 152,545 | 28,016,5! | 770,700 | 1,530,560 |
| Columbia River District.. | 30.121 | (33,774,000 | 5,643, 000 | $2,697,+60$ | 7,635,182 | 51,120, 200 | 2,85,550 | 40,517,72x | 13,559.080 | 33,383 | 43,765, 543 | 175,000 | 10,102,882 |
| Willapa Harbor District.. | $4,2(8)$ | 13,166,100 | 3,500,000 | 1,303,840 | 1,34, 964 | 1,700,010 | 1,361,730 | 13,972, 246 | 1,247,875 | 133,151 | 12,400,153 |  | 2,566,815 |
| Grand Totals | (0), 812 | 185,122,525 | 64, 262,050 | 16,297,515 | 15,700,345 | \|04, 904,050 | 16, $\times 125,432$ | 160, 225,263 | 46,500,697 | 049,498 | 170,809,408 | 1,064,700 | 42,802,294 |

SUMMARY OF OUTPET OF SALMON HROM THE STATE HATCHERIES. Flscal Year 1920.

|  | Ohinook | Dog | Humpback | 8ilver | Steelhead | Totais |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number females spawned. | 1,088 | 35,173 | ............... | 20,980 | 2,981 | 00,802 |
| EGGS- |  |  |  |  |  |  |
| Taken by state hatcheries.. Received from King County | 7,925,230 | 101,357,005 |  | $\begin{array}{r} 65,465,290 \\ 981,000 \end{array}$ | 11,178,000 | 185,925,525 |
| Totals. | 7,925,230 | 101,357,005 |  | 60,446,290 | 11,178,000 | 188,906,525 |
| Ou Hand Aprll 1, 1920 |  | 8,006,730 |  | 7,357,145 | 924,640 | 16,287,515 |
| GRAND TOTALS. | 7,925,230 | 109,382,735 | ................ | 73,803,435 | 12,102,640 | 203,194,040 |
| Iost ..... | 912,627 |  |  |  | 1,846,700 | 15,790,345 |
| Furnished to University of Washington (experimental purposes).. | 912,027 | 10,000 |  | 0,20,000 | 1,040,00 | -32,000 |
| Sold to State of Connecticut........................................ |  |  | , | 100,000 | 00.000 | 150,000 |
| Nold to F. A. Beelnr (private hatchery).............................. |  |  |  |  | 200,000 70,000 | 200,000 70,000 |
|  |  |  |  |  | 70,000 | 70,000 50,000 |
| Sold to C. W. MeLeod (private hatehery) ......................... |  |  |  | 50,000 |  |  |
| Furnished to county hateheries for hatching and planting, as follows: |  |  |  |  | 200,000 | 200,000 |
| Chelan County |  |  |  |  | 200,000 | 200,000 |
| King County ${ }^{\text {Kitas County. }}$ |  |  |  |  | 811,000 | 311,000 |
| Stevens County . |  |  |  |  | 200,000 | 900,000 |
| On hand March 31, 1921... |  | 499,745 |  | $14,280,807$ | 1,784,840 | 16,565,492 |
| Hatched ${ }^{\text {FRY- }}$ |  |  |  |  |  |  |
| On hand April i, 1020 | 7,012,003 | 101,391,382 |  | 53,281,178 | 7,540,100 | 169,225,263 |
| Lost ................................................................ | 1,324,667 | 30,517,907 | 721,750 | 19.891,388 | 45,000 | 48,500,697 |
| Furnlshed to counties (planted in ileu of trout) | 44,653 | 683,255 | 3,150 | 242.062 | 76.978 $1,064,700$ | 1,064,700 |
|  | 8,292,607 | 114, 114,0007 | 718,600 | 41, 1300,887 | 6,823,317 | 170,800,468 |
| Oa Hand March 31, 1921. |  | 17,181,977 |  | 25,590,012 | 180,705 | 42,902,294 |



|  | SPECIE |  | $\begin{gathered} \text { Loss on } \\ \text { Egge } \end{gathered}$ | $\begin{gathered} \text { Loss on } \\ \text { Fry } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Chinook |  |  | 12\% | 0.6\% |
| Dog |  |  | 7\% | 0.5\% |
| Humpback |  |  |  | $0.4 \%$ |
| Silver ... |  |  | 9\% | 0.5\% |
| Steelhead |  |  | 12\% | 1.0\% |

TEARLY COMPARITIE TABLE OF OLTPUT OF SALMON FROM THE STATE HATCHERIES, COST OF OPERATION AND

|  | Chinook | Dog | Humpback | Silver | Sockeye | Steelhead | Totals | Cost of Operating Hatcherles | Cost of Output per Thousand |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 37,673,000 |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 1:N0. 1 | -690,000 |  |  | 1i,400,436 |  | \%,36\%,150 | 18,485,7766 |  |  |
| (1ax | $3,101.000$ <br> $4,255,100$ | 2,000,000 |  | 25,900,000 | ${ }^{820,000}$ |  | - |  |  |
| $1: 10 n 7$. | \% $7,855,4100$ | 2, 278,350 | 2,65,900 | 24,300,752 | ....... | 4.429,575 | 41,572,977 |  |  |
| $1 \times 0$ ? | 10, $\times 25$ S, (\%50 | $7,748,500$ | 519,600 | 25,949,100 |  | 4,855,000 | 49,897,850 |  |  |
| 1911 | $4,742,350$ | 13,255.500 |  | 28,212,500 | .......... | $5,234,240$ | 51,444,590 |  |  |
| 1912 | $7,000,150$ | 12,777,000 | 300,300 | - $50,415,100$ |  | 11,059,900 | ${ }_{8}^{48,311,550}$ |  |  |
| 19.9 | 4,999,000 | 7.0.52, 850 | 1,600,750 | 37,017,255 |  | 3,662,639 | 53,472,594 |  |  |
| 1915 | $3,207,239$ | 11,688, 138 | 6,148,600 | ${ }_{82,42,087}^{38,48,44}$ | 1,003,483 | 5,545 | ${ }_{80,011,179}$ |  |  |
| 1:17\% | 3,207, 240 | 11, $11.686,159$ | 6,491,400 | 32,425,087 | 1,298,200 | 5,545,653 | $54,100,319$ |  |  |
| 19, 19 | 8 |  | 6,491,400 | $\xrightarrow{\substack{6,125,920 \\ 13,92050}}$ | 12,499,000 | ¢ | 48,038,830 |  |  |
| $1 \times 20$. | 6,971, 2,25 2,61100 | ( $\begin{aligned} & 21,734,300 \\ & 30,439,475\end{aligned}$ | 2,285,050 | $18,466,650$ $34,000,200$ |  | ¢ | - |  |  |
| COIUMBTA RIVER DISTRICT- |  |  |  |  |  |  |  |  |  |
| $1: 10$ |  |  |  |  |  |  | 20,481,210 |  |  |
| 1: $1: 4$. | 3,500,000 |  |  | 185,000 |  |  | cem, |  |  |
| 1:x | ${ }_{\substack{\text { c } \\ 5,173,000}}^{\text {5,470,000 }}$ |  |  | ${ }^{6550,000}$ |  |  | 7,120,000 |  |  |
| $1 m$ | ${ }_{9} 9,977,600$ |  |  | ${ }^{2,0050,000} 9$ |  |  |  |  |  |
| 1908. 1909 | 7,7818000 | 413,000 |  | 1,278,000 |  |  | 9,409,000 | ......... |  |
|  | $9,489,500$ $11,602,39$ | 464,000 |  | $3,384,000$ $1,341,000$ |  |  | 18,407,890 |  |  |
| 1911. | 19,035,400 | ${ }^{114,000}$ |  | 320,000 |  |  | 19,489,400 |  |  |
|  | $24,196,000$ <br> $31,082,000$ | 115,000 |  | 2,015,000 $1,088,500$ |  |  |  |  |  |
| ${ }_{1915}^{194 .}$. | 20,239,050 | 1,831,100 |  | 1,228,000 |  |  | \%8, 806.750 |  |  |
| 1916...................... | - $44,7686,785$ | 787,450 | ......... | 1,247,2000 | .............. | $2,899,750$ $2,890,750$ | ${ }_{4}^{49,502,075}$ |  |  |
| 1917. | 70,256,550 | 192,500 |  | 3,581,000 |  | 4,201,500 | 78,231,650 |  |  |

Yearly Comparative Table of Output of Salmon From the State Hatch

Yearly Comparatlve Table of Output of Salmon From the State Hatcherfes，Cost of Operation and

|  | : |  <br> ： |
| :---: | :---: | :---: |
|  |  |  <br>  <br>  |
| $\begin{aligned} & \text { 罣 } \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$ | ్ర్ర <br>  <br>  |  <br>  <br>  |
|  |  <br>  | ： <br>  <br>  |
|  |  | 8 <br> \％ <br>  － |
| $\begin{aligned} & \text { 華 } \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$ |  |  <br>  <br>  |
|  |  |  |
| \＆ |  | ㅇ్రర 우웅 <br>  <br>  |
| $\begin{aligned} & \text { 믈 } \\ & \text { E } \\ & \text { E } \end{aligned}$ |  <br>  －ーシーデー |  \＆ixisi <br>  |
| $\underset{\text { YEAR }}{\text { DISTRICT }}$ |  |  |

OUTPUT OF TROUT FROM THE STATE HATCHERIES.


[^11]Output of Trout Fron the State Hatcherieg-Continued.

|  | Number Females Spawned | Number <br> Eggs <br> Taken | No. Eggs Recelved from Other Hatch'r's | $\begin{gathered} \text { No. Eggs } \\ \text { on Hand } \\ \text { April 1, } \\ 1920 \end{gathered}$ | $\underset{\underset{\text { Eggs }}{\text { Number }}}{\text { Lost }}$ | Number <br> Egg8 <br> Shipped | No. Eggs on Hand March 31, 1921 | No. Fry Hatched | No. Fry on Hand April 1, 1920 | No. Fry Lost | No. Fry Planted | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { March } 31 . \\ 1921 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN BROOK- |  |  |  |  |  |  |  |  |  |  |  |  |
| Lake Whatcom Trout Hatchery....... |  |  | - 375,000 |  |  |  |  |  |  | 200 |  | 356,540 |
| Little Spokane Trout Hatchery |  |  | +1,016,000 |  | 313,000 |  |  | 703,000 |  | 4,000 | 699,000 | 356,040 |
| Walla Walla Trout Hatehe |  |  | 956,640 |  | 14,590 | 120,000 |  | 822,050 |  | 2,510 | 697,000 | 122,540 |
| Lost Lake Eyeing Station.. | 1,233 |  | $\ddagger$ 221,000 |  | 10,000 |  |  | 211,000 |  | 4,845 | 206,155 | .......... |
| Owhi Lake Eyeing Station. | 1,238 | 1,046,100 |  |  | 1, 14,460 | $1,037,640$ 400,000 |  |  |  | ........... |  |  |
| Chambers Creek Salmon Hatch | 621 | 1,617,275 |  |  | 1,217,275 | $\begin{array}{r}400,000 \\ * * \\ \hline 6,00\end{array}$ | . . . . . . . |  |  |  |  |  |
| Green River Salmon Hatchery. |  |  | 8 + $+160,000$ |  | 41,700 17,347 | ** 56,00 | ........... | 462,300 | 752,975 | 122,600 | 1,092,675 | ..... |
| Pateros-Methow Salmon Hatehery |  |  |  |  | 17,347 3,000 |  |  | 142,653 72,000 | 71,000 | 1,051 | 141,002 | ........... |
| Samish Salmon Hatchery........... |  |  | \$ 160,000 |  | 10,097 |  |  | 149,903 | 71,00 | 1,903 | 148,000 |  |
| Wenatchee Salmon Hatchery. |  |  | 888 136,000 |  | 7,000 | โ 129,000 |  |  |  |  |  |  |
|  |  |  | 210,000 |  | 27,830 |  |  | 172,170 |  | 2,170 | 170,000 |  |
| Totals. | 1,854 | 2,663,375 | 3,850,640 |  | 1,694,499 | 1,736,640 |  | 3,091,876 | 823,975 | 140,314 | 3,296,457 | 479,080 |

[^12]Output of Trout From the State Hatcherien-Continued.

|  | Number <br> Females <br> Spawned | Numiser Eggas Taken | No. Eggs Received from Other Hatch'r' | No. Eggs on Hand April 1, 1920 | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | $\begin{aligned} & \text { Number } \\ & \text { Eggs } \\ & \text { Shlpped } \end{aligned}$ | No. Eggs on Hand March31, 1921 | No. Fry Hatched | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { April 1, } \\ 1920 \end{gathered}$ | $\begin{gathered} \text { No. Fry } \\ \text { Lost } \end{gathered}$ | No. Fry Planted | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { March } 31, \\ 1921 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MACKINAW- |  |  |  |  |  |  |  |  |  |  |  |  |
| Lake Crescent Trout Hatehery |  |  | 50,000 |  | 1,650 |  |  | 48,350 |  | 800 | 9,000 | 88,550 |
| Lake Whatcom Trout Hatchery |  |  | 300,000 |  | 102,700 |  | . + (......) | 197,300 |  | 1,586 | 9,000 | 195,714 |
| Spokane Trout Hatchery............... Omice State Fish Commissioner....... |  |  | 200,000 $1,145,000$ |  | 155,000 22,578 |  | , +1.... | 45,000 |  | 1,560 | 43,490 | 105,74 |
| Otice State Fish Commissioner........ |  |  | $1,145.000$ 100,000 0 | ............ | 22,578 | 11,005,000 |  | 27,422 |  | 2,945 | 24,477 | -......... |
| Humptulips Salmon Hatchery........ |  |  | 50.000 |  | 0,550 |  |  | 77,000 |  | 13,000 | 64,000 |  |
| Pateros Methow Salmon Hatchery..... |  |  | 100,000 |  | 33,500 |  |  | 66,500 |  | 780 | 65,720 |  |
| Skykomish Salmon Hatchory |  |  | 150.000 |  | 31,250 |  |  | 118,750 |  | 4,050 | 114,700 |  |
| Totals |  |  | *2,095,000 |  | 879,22s | 1,005,000 |  | 620.772 |  | 24,961 | 361,547 | 234,264 |
| RATNBOW- ${ }^{\text {Trabi }}$ Hatchery |  |  |  |  |  |  |  |  |  |  |  |  |
| Spokane Trout Hatchery |  |  | 330,500 |  | 17,700 |  |  | 521,800 |  | 2,000 | 518,900 |  |
| Walla Walla Trout Hatchery .......... |  |  | 80,000 |  | 3,100 |  |  | 76,000 |  | 675 | 76,295 |  |
| Dumpka Lake Eyeing Station.......... | 415 | 383,000 | , - . | ........t. | 87,000 | 346,000 |  |  |  |  |  |  |
| Fish Lake Eyelng Station............. | 751 | 281,250 |  | .......... | 7,750 | 278,500 |  |  |  |  |  |  |
| Fackwood Lake Eyeing Station........ | 2,250 | 449,220 |  | ......... | 22,220 | * 420,000 |  |  |  |  |  |  |
| Chambers Creek Salmon Hutchery.... Gireen River Salmon Hatchery .......... | ....L |  | 198,000 |  | 38,000 |  |  | 160.000 |  | 5,000 | 155,000 |  |
| Great River Salmon fatchery........... |  |  | I 285,000 |  | 29,375 | +1250,000 |  | 205,625 | ........... | 583 | 205,002 | , |
| Totals | 8,416 | 1,106,470 | 1,402,500 |  | 155,145 | 1,850,500 |  | 964,325 |  | 9,108 | 055,217 |  |

[^13]Output of Trout From the State Hatcheries-Continued.

|  | Number <br> Females <br> Spawned | Number <br> Eggs <br> Taken | No. Eggs <br> Received from Other Hatch'r's | $\begin{array}{\|c} \text { No, Eggs } \\ \text { on Hand } \\ \text { April 1, } \\ 1920 \end{array}$ | $\begin{array}{\|c} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{array}$ | $\begin{aligned} & \text { Number } \\ & \text { Egge } \\ & \text { Shlpped } \end{aligned}$ | $\begin{gathered} \text { No. Eggs } \\ \text { on Hand } \\ \text { March 31, } \\ 1921 \end{gathered}$ | No. Fry Hatched | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { Aprf11, } \\ 1920 \end{gathered}$ | No. Fry Lost | No. Fry Planted | $\begin{gathered} \text { No. Fry } \\ \text { on Hand } \\ \text { March } 31, \\ 1921 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SLLVER- |  |  |  |  |  |  |  |  |  |  |  |  |
| Lake Orescent Trout Hatchery |  |  | 1,000,000 |  | 6,500 |  |  | -908,500 |  | 1,000 | -300,000 |  |
| 1.ake Whateom Trout Hatchery Llttls Spokune Trout Hatchery | 35,390 | 7,07s,500 | $\cdots$ | 2,982,000 | 454,650 | $=4.725,000$ | 408,350 | 4,467,500 |  | 4,000 | 2,904,600 | 1,558,906 |
| Llitln Spokane Trout Hatchery Spokann Trout Hatchery | ……..... |  | 010,000 010,000 |  | 23,000 |  |  | 917,000 |  | 4,000 | 013,000 |  |
| Waln Walla Trout Hatchery |  |  | $1,010,000$ 250,000 | ........... | 90,000 2,000 | ........... | ........... | 910,000 948,000 |  | 2,700 1,155 | 1067,300 |  |
| Lak' Sammamish Eyeing Station..... | 136,005 | 14,058,050 | 200,000 |  | 2,000 | +14,058,950 |  | 248,000 |  | 1,185 | 246,815 |  |
| Offlee State Fish Commissioner........ |  |  | 35,000 | + . . . . . . | 3,160 | 俍, |  | 32,840 |  | 840 | 132,000 |  |
| Chambers Creek Salmon Hatchery..... |  |  | 2,000,000 |  | 41,000 |  |  | 1,059,000 |  | 29,000 | 1,031,000 |  |
| Chehalle No. 2 Salmon Hatchery Dungeness Salmon Hatchery | ........ |  | 250,000 150,000 | 144,085 | 3,505 |  | . | - 240,495 | 392,072 | 2,412 | 636,155 |  |
| Dingeness Salmon Hatchery........... |  |  | 150,000 $12,653,000$ | 144,085 | 6,415 676,200 | 111,976,800 |  | 258,520 |  | 2,082 | 988,488 |  |
| Humptulips Salmon Hatchery |  |  | $12,050,000$ 250,000 |  | 11,780 | 111, $7 . . .1$. . |  | 228,220 |  | 620 | 287,600 |  |
| Kalama Salmon Hatchery |  |  | 500,000 |  | 2,908 | , |  | 497,092 |  | 1,592 | 495,500 |  |
| Paturos S thow Snlmon Hatchery |  |  | 1,000,000 |  | 14,000 |  | ..1.-1... | 966,000 | 973.230 | 1,500 | 1,057,650 |  |
| Sumish Salmon Hatchery |  |  | 1,000,000 | 122,070 | 64,570 |  |  | 1,057,500 | 250,769 | 6,490 | 1,310,700 |  |
| Skokomish Salmon Hatehrry. |  |  | 150,006 |  | 1,000 |  |  | 149,000 |  | 100 | 148,900 |  |
| Skykomish Saimon Hatchery .......... |  |  | 1,000,000 |  | 19,275 |  |  | 980.725 |  | 4,065 | 976,600 |  |
| Totnls | 172,391 | 21,132,45c | 22,178,000 | 3,249,005 | 1,418,963 | 30,760,750 | 405,350 | 12,071,302 | 1,625,071 | 60,625 | 13,284,438 | 2,251,400 |

[^14]Output of Trout From the State Hatcherien-Coneluded.

|  | Number <br> Females <br> Spawned | Number <br> Eggs <br> Taken | No. Eggs <br> Received from Other <br> Hatch'r's | $\begin{array}{\|c\|} \text { No. Eggr } \\ \text { on Hand } \\ \text { April 1, } \\ 1920 \end{array}$ | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | Number Eggs Shipped | $\begin{gathered} \text { No. Eggs } \\ \text { on Hand } \\ \text { March } 81 \text {, } \\ 1921 \end{gathered}$ | No. Fry Hatched | No. Fry on Hand April 1. 1920 | No. Fry Lost | No. Fry Planted | No. Fry on Hand March 81, 1921 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WHITE FISHOmfe State Fish Commissloner, |  |  | * 120,000 |  |  | + 120,000 |  |  |  |  |  |  |
| ALL SPECIES COMBINED- <br> Lake Chelan Trout Hatchery. | 681 | 710,300 |  |  |  | 518,000 |  | 172,000 |  | 1,200 | 170,800 |  |
| Lake Grescent Tront Hatchery........ | 120 | 257,600 | 1,050,000 | 66.675 | 158,765 | 40,000 | 14.960 | 1,100,550 | 16,200 | 2,700 | 431,700 | 742,400 |
| Lake Whatcom Trout Hatchery ...... | 35.449 | 7.190 .500 | 675,000 | 3,012,963 | $500,7 \times 0$ | 4,725,000 | 401, 04 | 5,086,800 | 10.20 | 5,076 | 2,988,700 | 2,147,124 |
| Little Spokane Trout Hatchery |  |  | 1,956,000 |  | 326,000 |  |  | 1,620,000 |  | 8,000 | 1,612,000 |  |
| Spokane Trout Hatchery.. |  |  | 2,978,140 |  | 209,000 | 12),000 |  | 2, 8000.450 |  | 11,800 | 2,425,020 | 122,540 |
| Titon River Trout Hatchery | 2 | 1,500 |  |  | 200 |  |  | 1,500 |  |  | 1,265 |  |
| Walla Walla Trout Hatchery... |  |  | 751,000 |  | 34.300 |  |  | 716,700 |  | 12,905 | 708,795 | ........b. |
| Dumpka Lake Trout Hatchery Echo Lake Fyelng Station.... | 415 | 383,000 |  |  | 37,000 | 346,000 |  |  |  |  |  |  |
| Echo Lake Fyelng Station. | 991 | 98,200 |  |  | 30,200 | 65.000 |  | - 8,000 |  |  | 8,000 | . |
| Fish Lake Eyeing Station.............. | 751 | 281,250 |  |  | 7,750 | 278,509 |  |  |  |  |  | .......... |
| Lake Sammamish Eyelng Station...... | 138,095 | 14,058,150 |  |  |  | 14,058,950 |  |  |  |  |  | .......... |
| Lost Lake Eyeing Station, | 1,223 | 1,046,100 |  |  | 14,400 | 1,081,640 |  |  |  |  |  | ........... |
| Owhi Lake Fyeing Station.... | 621 | 1,617,275 |  |  | 1,217,275 | 400,000 |  |  |  |  |  |  |
| Packwood Lake Eyeing Station Offer State Fish Commissioner | 2,250 | 442,220 |  |  | 29,220 | 400,000 |  |  |  |  |  |  |
| Office State Fish Commissioner........ |  |  | 1,325,000 |  | 25,738 | 1,215,000 |  | 84,262 |  | 5,785 | 78,477 |  |
| Chamhers Creek Salmon Hatchery... | 843 | 328,100 | 3,182,500 |  | 249,180 | 131,000 |  | 3,125,470 | 759,975 | 186,400 | 3,622,045 |  |
| Chehalis No. 2 Salmon Hatchery...... |  |  | 250,000 |  | 8,506 | . ......... |  | 246, 496 | 302,072 | 2,412 | 636,155 |  |
| Dungeness Salmon Hatchery |  |  | 175,000 | 144,985 | 7,415 |  |  | 812,520 |  | 8,282 | 309,258 |  |
| Etwha Salmon Hatchery..... | 16 | 12,000 |  |  | 8,000 |  |  | 9,000 |  |  | 9,000 |  |
| Green River Salmon Hatchery |  |  | 13,429,000 |  | 798,772 | 12,396,800 |  | 378,428 |  | 1,734 | 276,694 |  |
| Mumptulips Salmon Hatcher |  |  | 300,000 500,000 | , .....rrr | 21,230 2,008 |  |  | 278,670 |  | 1. 860 | 277.830 |  |
| Kalama Salmon Hatchery - Hatchery |  |  | 500,000 $1,300,000$ |  | 2,008 51,600 |  |  | 497,002 $1.14,400$ |  | 1,562 | 496.500 8.184 .095 |  |
| Pnteros Methow Salmon Hatchery ..... |  |  | $1,300,000$ $1,100,000$ |  | 51,600 74,722 |  |  | 1,148,400 | 1,044,930 | 3,685 | \$.183,005 |  |
| Sainish Salmon Histchery. Skokomish Salmon Hatchery |  | 250 | $1,100,000$ 150,000 | 122,070 | 74,722 1,000 |  | - $1+1$. | $1,307,508$ 149,000 | 259,700 | 8,409 | $1.458,958$ 145,900 |  |
| Skykomish Salmon Hatehery |  |  | 1,296,000 |  | 57,525 | 129,000 |  | 1,0909,475 |  | 8,115 | 1,001,360 |  |
| Wenatchee Salmon Hatchery.......... |  |  | 200,000 |  | 27,830 |  |  | 172,170 |  | 2,170 | 170,000 |  |
| Tota | 170,048 | 26,423.295 | 50,567,640 | 3,346,618 | 4,002,424 | $85,794,800$ | 506,854 | 20,039,880 | 2,465,296 | 967,130 | 19,219,482 | 3,012,064 |

[^15]SUMMARY OF OUTPU' OF TROUT FROM THE STATE HATCHERIES. Fiseal Year 1920.

|  | Beards. lee | Black Spott'd | Creseentif | Cut Throat | Eastern Brook | Mackinaw | Rainbow | Silver | Total Trout | White Fish | Grand Tota's |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number females spawned, , ............................ | -6.ctio. | .....t... | 72 | 1,315 | 1,854 | ........... | 3,416 | 172,391 | 179,048 | .............. |  |
| EGGS Taken by state hatcheries. |  |  | 178,000 | 1,348,000 | 2,668,375 |  | 1,106,470 | 21,132,450 | 36,423,295 |  |  |
| Received from U. S. Bureau of Fisheries. . |  | 25,000 |  |  |  |  |  |  | 25,000 |  |  |
| Recoived from eastern states on exchange agreement, as follows: <br> State of Now Hampshire. <br> State of Wisconsin. $\qquad$ |  |  |  |  | 500,000 | 2,005,006 | 438,000 |  | 500,000 $2,533,000$ | 120,000 |  |
| Purchased by the state, as follows: <br> C. L. Caldwell, Ruby, Wash.. Paradise Brook Trout Co., Henryville, Pa . |  |  |  |  | 442,000 160,000 |  |  |  | 442,000 160,000 |  |  |
| Taken by county hatcherles and turned over to state, as follows: <br> Cholan County <br> King County (for eyeing only) |  |  |  | 259,500 <br> $\ldots . .$. | 136,000 |  |  | $\cdot$ | 259,500 136,000 |  |  |
| Purchased by counties from Paradise Brook Trout Co., Henryville, Pa., and turned over to the State for hatching for bencfit of counties, as follows: <br> Skagit County |  |  |  |  | 160,000 |  |  |  |  |  |  |
| Spokane County |  |  |  |  | 375,000 |  |  |  | 375,000 |  |  |
| Thurston County |  |  |  |  | 160,000 |  |  |  | 160,000 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Tota |  | 25,000 | 173,000 | 1,607,500 | 4,971,375 | 2,095,000 | 1,544,470 | 21,132,450 | 31,548,795 | ............. |  |
| On hand April 1, 1920. | 23,675 | ......... | 39,000 | 34,983 | ............ | . . $\cdot$........ |  | 3,249,005 | 3,346,613 | . $\cdot$........... |  |
| Grand totals | 28,675 | 25,000 | 212,000 | 1,642,433 | 4,971,375 | 2,005,000 | 1,544,470 | 24,381,455 | 34,805,408 | 120,000 | 35,015,468 |
| Lost. . | 275 | 1,000 | 142,240 | 211,074 | 1,694,499 | 379,228 | 155,145 | 1,418,963 | 4,002,424 | .............. | ............ |

Summary of Output of Trunt From the State Hatcherien-Concluded.

|  |  | $\begin{gathered} \text { Beards. } \\ \text { lee } \end{gathered}$ | $\begin{aligned} & \text { Black } \\ & \text { Spott'd } \end{aligned}$ | Orescentii | Cut Throat | Eastern Brook | Mack- | $\begin{aligned} & \text { Rain- } \\ & \text { bow } \end{aligned}$ | Silver | Total Trout | $\begin{aligned} & \text { White } \\ & \text { Fish } \end{aligned}$ | Grand <br> Tota's |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EGis | Shopped to eastern states on exchange agreement, as follows: <br> State of New Hampshire.................. |  |  |  |  |  |  |  | 500,000 | 500,000 |  |  |
|  | State of Wisconsin........................ |  |  |  |  |  |  | , | 5,000,000 | 5,000,000 |  |  |
|  | Sold to State of Minnesota. |  |  |  |  |  |  |  | 500,000 | 500.000 |  |  |
|  | Furnished to county hatcheries, for hatebing and planting, as follows: <br> King County |  |  |  | 50,00] | 129,000 | 500,000 | 325,000 | 1,405,1000 | 2,400,250 | 120,000 |  |
|  | Kittitas County .......................... | S,000 |  |  |  |  | 150,000 | 100,000 |  | 225,000 |  |  |
|  | Pend Oreflle County ............................ Pieres County |  |  | 10,000 |  | 56,000 | 100,000 200,000 |  |  | 1000.000 |  |  |
|  | Pierer County ${ }^{\text {Prem }}$ Skmania County .......................... |  |  |  |  |  | 45,000 |  | 250,000 | 205,000 |  |  |
|  | Stevens County ...... |  |  |  |  |  | 109,000 |  | 500,000 | 600,000 |  |  |
|  | On hand March 31, 1921.................... |  |  | 7,960 | 10,544 |  |  |  | 408,350 | 506,854 |  |  |
| FRY | Hatched | 18,400 | 24,000 | 31,800 | 1,200,815 | 3,091,876 | 620,772 | 204,325 | 13,071,302 | 20,033,350 |  |  |
|  | On band April 1, 1920. |  |  | 16,250 |  | 823,975 |  |  | 1,625,071 | 2,405,206 |  |  |
|  | Lost |  | ${ }^{2,000}$ |  | 1, \%2, 62 | 140,314 | 24,961 | 055,108 | -60,625 | 307,130 |  |  |
|  | Planted Marche | 18,300 | 22,000 | 56,300 11,350 | $1,225,228$ 85,970 | $3,220,457$ 479,080 | ${ }_{24,24}^{361,547}$ | 055,217 | $13,284,438$ $\mathrm{~g}, 251,400$ | $19,219,482$ <br> $3,012,064$ |  |  |
|  | On hand March 31, 103 |  |  | 11,350 |  | 470,000 | 23,2H |  | 2,201,400 | 3,012,00 |  |  |



YEAKLY COMPARATIVE TABLE OF OLTPLT OF TROUT FHOM THE STATE HATCHERIES.

|  | Heardsles | Black Spotted | Orescentii | CutThroat | Eastern Brook | Mactylnaw | Rainbow | Silver | Tota's |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| 1:06. |  |  |  | 1,000,000 | 300,000 |  |  |  | 1,30),000 |
|  |  |  |  | 1,896,000 | 352,896 |  | 130,000 |  | 2,478,693 |
|  |  |  |  | 849,000 | 900,000 |  | 188,150 |  | 1,884,150 |
| 1910. |  |  |  | 1,573,700 | 1,340,000 |  | 127,950 |  | 3,041,650 |
| 1911. |  |  |  | 1,076,250 | 2,161,000 |  | 523,000 |  | 3,760,200 |
|  | $\dddot{291,000}$ <br>  <br> $1 . .$. | 119,000 | ........... | 652,000444,464 | 1,704,300 |  | 1,375,000 |  | 3,850, 30 |
| 1914. |  |  |  |  | 632,200 | ............ |  |  |  |
|  |  | 400,000300,000 |  | 2,187,185 |  |  | 889,107 | 718,195 $3,472,400$ | 7,570,982 |
| 1916. | 45,000 45,000 |  | 13960000 | 3,249,094 | 608, 200 |  | 1,113,202 $1,113,202$ | $7,921,670$ $7,921,705$ | $13,463,222$$13,463,201$ |
| 1917. | 27,00034,00024,000 | 300,000 100,000 |  |  |  |  | 1,38\%,175 | 9,843,411 <br> 13,914,170 <br> 12,794,900 <br> 21,132,450 |  |
| 1918. |  | ($\begin{array}{r}33,260 \\ 25,000\end{array}$ | $\begin{array}{r} 297,000 \\ 42,000 \\ 97,000 \\ 173,000 \end{array}$ | $\begin{aligned} & \mathbf{2 , 4 7 5}, 093 \\ & 2,996,260 \\ & 2,67,300 \\ & 1,607,500 \end{aligned}$ | $\begin{aligned} & 2,117,340 \\ & 8,260,975 \\ & 4,911,375 \end{aligned}$ | $2,000,000$ | $\begin{aligned} & 1,385,175 \\ & 1,445,987 \\ & 1,67,400 \\ & 1,544,470 \end{aligned}$ |  | $\begin{aligned} & 16,037,752 \\ & 20,579,707 \\ & 23,508,335 \\ & 31,549,795 \end{aligned}$ |
| 19 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

(Tha above table does not include take of steethead eges, whieh, under the laws of thls state, are classed as salmon)
DISTRIBUTION OF TROUT FRY PLANTED FROM THE STATE HATCRERIESS. (Including Salmon Fry Planted in Frenh Waterm in Liea of Treut.)

| COUNTIES AND WATERS | Brards. lee | BlackSpotted | Cres. centil | OutThroat | Eastern Brook | Mack. haw | Rainbow | Silver | Total Trout | Steelhesd Balmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WESTERN WASHLNGTON DISTRICT- |  |  |  |  |  |  |  |  |  |  |  |
| CLALIAM GOUNTY- |  |  |  |  |  |  |  |  |  |  |  |
| Lake Orescent .. | 18,300 |  | 56,300 | 29,500 |  | 9,000 |  | 300,000 |  |  |  |
| Mur Lake Sutberland... |  |  |  |  |  |  |  |  |  | 10,000 |  |
|  |  |  |  | 27,00 |  |  |  |  |  |  |  |
| Totals...... | ....... |  |  |  |  |  |  |  | 440,700 | 10,000 | 450,700 |
| CIARKE COLINTY- <br> Burnt Bridge |  |  |  |  |  |  |  |  |  |  |  |
| Burnt Briage ... <br> Cold Creek |  |  |  | 20,000 | 60,000 | ... |  |  |  |  |  |
| E. F. Lowis River |  |  |  | 20,000 |  |  | 15,000 |  |  |  |  |
| Lackamas Croek |  |  |  |  |  |  | 15,000 | - 220.500 |  |  |  |
| Battle Ground Lake. |  |  |  |  |  |  |  | 275,000 |  |  |  |
| Totals. |  |  |  |  |  |  |  |  | 590,500 | . | 500,500 |
| COWLITZ OOUNTY- <br> Coal Creek |  |  |  |  |  |  |  |  |  |  |  |
| Gobel Creek ........ |  |  |  | 8,000 |  |  | 7,000 |  |  |  |  |
| Totals. |  |  |  | ........... | ........... |  | . $\cdot . . . . . . .$. |  | 15,000 | …........ | 15,000 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Wishkah River ... |  |  |  | 8,000 |  | 40,230 | $\cdots \cdots, 1.000$ | 237,000 |  |  |  |
| Bush Creek .......... |  |  |  | 3,000 | ........ |  | 5,00 |  |  |  |  |
| Mox Chehalis River. Widd Cat Creek ..... |  |  |  | ......\| | ..... |  | 5,000 |  |  |  |  |
| Widd Cat Greek ..... |  |  |  | 8,000 |  |  | 10,000 |  |  |  |  |
| E. B. Satsop River. |  |  |  |  |  |  | 10,000 |  |  |  |  |
| W. B. Satsop River. Hoguiam River ... |  |  |  |  |  |  | 5,000 |  |  |  |  |
| Hoguiam Rjver Wynooche River |  |  |  |  |  |  | 10,000 |  |  |  |  |
| Wynooche River ... |  |  |  | 12,500 | ........... |  |  |  |  |  |  |
| F. Hoquiam River. |  |  |  | 12,500 | - |  |  |  |  |  |  |
| Gloquallam Rlver ........... |  |  |  | 8,000 | - |  |  |  |  |  |  |
| Trib. of E. Hoquiam River. |  |  |  | 15,000 |  |  |  |  |  |  |  |
| Totale. |  |  |  |  |  |  |  |  | 417,830 |  | 417,830 |

Dimiribution of Trout Fry Planted From the State Hatchericu-Contiaued.

Dintribution of Trout Fry Planted From the State Hatcherien-Continued.

| COUNTIES AND WATERS | $\begin{gathered} \text { Beards- } \\ \text { les } \end{gathered}$ | BlackSpotted | Orescentil | Cut- <br> Throat | Eastern Brook | Mackinaw | Rainbotr | Sitver | Total Trout | Steelhead <br> Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WESTERN WASHINGTON DISTRICT (Continu d) |  |  |  |  |  |  |  |  |  |  |  |
| I.EWIS COUNTY (Continued)- <br> Lacamas Oreek ................. |  |  |  |  |  |  |  | 15,000 |  |  |  |
| Mint Creek No. Donahue Lake . |  |  |  |  | 5,000 |  |  | 25,000 35,100 |  |  |  |
| Olaqua Creek |  |  |  |  | 20,000 |  |  | 15,000 |  |  |  |
| Salzer Creek |  |  |  |  | 10,000 |  |  | 10,000 |  |  |  |
| Coal Oreek |  |  |  |  |  |  |  | 20,000 |  |  |  |
| Gowen Lake - |  |  |  |  | 15.00 |  |  | 50,000 29,000 |  |  |  |
| Rliver Creek ${ }^{\text {Rundtree }}$ Creek |  |  |  |  |  |  |  | 18,000 |  |  |  |
| Rock Creek .... |  |  |  |  |  |  |  | 40,000 |  |  |  |
| Oreem Oreek |  |  |  |  |  |  |  | 14,000 |  |  |  |
| Dunn Creek ${ }_{\text {Big Creek }}$ (........ |  |  |  |  |  |  |  | 18,000 |  |  |  |
|  |  |  |  |  |  |  | 5.000 | 10,000 6,000 |  |  |  |
|  |  |  |  | 1,260 |  |  |  |  |  |  |  |
| Vouwakum River |  |  |  | 7,300 |  |  | 7.000 |  |  |  |  |
| MiII Creck No. 3 . |  |  |  | 15,000 |  | ........ | 5,006 |  |  |  |  |
| Sliver Creek No. |  |  |  |  | ........ .. |  | 5.600 |  |  |  |  |
| Totals |  |  |  |  | ........ .. |  |  | ....... | 585,720 |  | 585,720 |
| MARON COUNTYKamilcha Crock |  |  |  |  |  |  |  |  |  |  |  |
| Fioldsboro Creek |  |  |  | 14,000 |  |  | 7,000 |  |  |  |  |
| Thenson Lake |  |  |  |  |  |  |  | 50,000 |  |  |  |
| Spatiear Lake Mason lake. |  |  |  |  |  |  |  | 50,000 48,900 |  |  |  |
| Mason 1.ake .................................... | , |  |  |  | . |  |  | 48,900 |  |  |  |
| Totals | ... ...... | ......... | .... |  | ...... |  |  |  | 169,200 | .......... | 109,900 |
| PICIFIC COUNTY- <br> Smith's Creek ... |  |  |  |  |  |  | 29,892 |  |  |  |  |
| Upper Willapa River |  |  |  |  |  |  |  | 174,000 |  |  |  |
| S, F, Willapa River |  |  |  | 28,000 | …….... |  | 16,000 10,000 |  |  |  |  |
| Sill Creok |  |  |  |  | ..... .... |  | 10,000 |  |  | ........... | ....... |
| Tota |  |  |  |  |  |  |  | ...... | 257,802 |  | 257,892 |

Distribution of Trout Fry Planted From the State Hatcherlen－Continued．
（Including Salmon Fry Planted in Fresh Watern in Lieu of Trout．）

|  |  |  | $\left\lvert\, \begin{aligned} & \frac{10}{6} \\ & 8 \\ & 80 \end{aligned}\right.$ | 8 <br> 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 交 | ， |  |
| 馬芌 |  |  | 呂 | 8 8 9 |  |
| $\begin{aligned} & \text { 殅 } \\ & \text { 音 } \end{aligned}$ |  |  |  | $\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$ |  |
| $\begin{aligned} & \frac{2}{8} \\ & \text { 若 } \\ & \text { x } \end{aligned}$ |  |  |  | $\vdots$ |  |
| $\begin{aligned} & \text { 畄会 } \end{aligned}$ |  |  |  | $\vdots$ |  |
|  |  | 기양 ： <br>  |  | $\vdots$ $\vdots$ |  |
| ర゙ず参 |  |  |  | $\vdots$ |  |
|  |  |  | 交 | $\vdots$ |  |
|  |  |  | $\vdots$ | $\vdots$ |  |
|  |  |  |  | $\vdots$ |  |
|  |  |  | 를 |  |  |

Distribution of Trout Fry Planted From the State Hateherien-Continued.

| COUNTIES AND WATERS | $\begin{gathered} \text { Beards- } \\ \text { lee } \end{gathered}$ | Black. Spotted | Cres. centil | CutThroat | Eastern Brook | Mack. inaw | Rainbow | Sllver | Total Trout | Steelhead Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WeStern washingion district (Continued) |  |  |  |  |  |  |  |  |  |  |  |
| SkAGIT COUNTY (Continued)-. |  |  |  |  |  |  |  |  |  |  |  |
| Cloar Lakn .................................... |  |  |  |  |  |  | 10.600 | 60,000 |  |  |  |
|  |  |  |  | 188 |  |  |  |  |  |  |  |
| İpper Friday Creek............................................... |  |  |  | 19,000 |  |  | 10,000 | 58,800 |  |  |  |
| lake Murray |  |  |  |  |  |  |  | 230000 |  |  |  |
| Lake Frie ... |  |  |  |  |  |  |  | 100,000 |  |  |  |
| Minkler Lake |  |  | ....... |  |  |  |  | 40,000 |  |  |  |
| Hart Lake Calloek Lake $\ldots$................................................. |  |  |  |  |  |  |  | 20,000 |  |  |  |
| Tro Lakes east of Mountborne.................. |  |  |  |  | 20,000 30,000 |  |  |  |  |  |  |
| Lake Campbell .................................... |  |  |  |  | 15.0 mm |  |  |  |  |  |  |
| Lake Frie ..... |  |  |  |  | $15 . \mathrm{mm}$ | . |  |  |  |  |  |
| Mig Marray Lake .............................................. |  |  |  |  | 7,000 |  |  |  |  |  |  |
| McMurras Lake .................................. |  |  |  |  | 6,000 |  |  |  |  |  |  |
| Finney Creek ......................... |  |  |  |  | 15.004 |  |  |  |  |  |  |
| Grandy Creek |  |  |  |  | 15.0000 |  |  |  |  |  |  |
| Bear Creek | .......... | .......... | ......... | .......... | 10,000 | ...... |  |  |  |  |  |
| Totals. |  |  |  |  | ..... |  | ......... | .......... | 1,308,888 |  | 1,308,888 |
| SKIMANIA COUNTY- |  |  |  |  |  |  |  |  |  |  |  |
| Rock Creek ................................... |  | 10,000 |  |  |  |  | 5,000 |  |  |  |  |
| Woodard Greek ${ }_{\text {Little }}$ White Salmon River |  | 2,000 |  |  | . |  |  |  |  |  |  |
| Wind River ............... |  |  |  |  |  |  | 3,000 |  |  |  |  |
| Totals. |  |  |  |  |  |  |  |  | 25,000 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| SNOHOMISH OOUNTY- |  |  |  |  |  |  |  |  |  |  |  |
| Lake Stevens. |  |  |  |  |  | 23,000 |  | 175,000 |  |  |  |
| Lake Goodwin |  |  |  |  |  | 25.000 |  | 206,660 |  |  |  |
| Lake Ki |  |  |  |  |  | 8,000 |  | 20,60 |  |  |  |
| Laka Isobol |  |  |  |  |  | 14,700 |  |  |  |  |  |
| Boulder Lake Crabapple Lake |  | 2,500 7,500 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Distribution of Trout Fry Planted From the State Hatcherien-Continued.

Dintribution of Trout Fry Planted From the State Hatcheries-Continued.

| COUNTIES AND WATERS | Beards. lee | Black. Spotted | Ores. centil | Cut- <br> Throat | Eastern Brook | Mack inaw | Rainbow | Silver | Total Trout | Steelhead Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WESTERN WASHINGTON DISTRICT (Continued) |  |  |  |  |  |  |  |  |  |  |  |
| WHATCOM COUNTYLake Padden |  |  |  |  |  |  |  | 156,970 |  |  |  |
| Ten Milo Creek. |  |  |  |  | ... | ........ | 20,000 |  |  |  |  |
| Lake Whatcom. | W | totter | , +1.t.e. | 29,100 |  | $\cdots 3.7$ |  | 664, 600 |  |  |  |
| Toad Lake ... |  |  |  | ,100 |  |  |  | 80,000 |  |  |  |
| Lake Samish |  |  |  |  |  |  |  | 80,000 |  |  |  |
| Sumas Oreek |  |  | .,.... |  |  |  | 20,000 |  |  |  |  |
| Totals. | . . . |  |  | ... | ... | , $\cdot \cdots$ | *-1...... | ........... | 3,074,370 | . | 3,074,370 |
| Total Western Washington District. | 18,300 | 22.000 | 56,300 | 578,823 | 1,382,977 | 253,407 | 360,092 | 9,250,673 | 11,920,872 | 225,000 | 12,154,872 |
| EASTERN WASHINGTON DISTRICT- |  |  |  |  |  |  |  |  |  |  |  |
| ADAMS COUNTY- <br> Cppar Cow Creek |  |  |  |  |  |  |  |  |  |  |  |
| Lower Cow Creek. |  |  |  | 10,000 | 75,000 |  | 22,500 |  |  |  |  |
| Totals. |  |  |  |  |  | ......... | ............ | ........... | 107,500 | ........... | 107,500 |
| ASOTIN COUNTYAsotin Creek .. |  |  |  |  |  |  | 18,900 |  |  |  |  |
| George Creek .. |  |  |  |  | 20,000 |  | ........... |  |  |  |  |
| Alpowa Creek |  |  |  | 8,000 | 20,000 |  |  | 25,000 |  |  |  |
| Couse Creek |  | + |  |  |  |  | . | 15,000 |  | ........... | ........... |
| Ten Mile Creek.................... |  |  |  |  |  |  | ........... | 10,000 |  |  |  |
| Totals. |  |  |  |  |  |  | ............ | ........... | 116.900 | .......... | 116,900 |
| OHELAN OOUNTYDumpks Leke |  |  |  |  |  |  |  |  |  |  |  |
| Dumpka Lake Coon Oreek |  |  |  |  |  |  |  |  | ........... | 49,600 | . |
| Bowen Slough |  |  |  | 40,000 |  |  |  | . . . . . . . . | . .............. | ............ | . |
| Little Boulder Creek |  |  |  | 50,000 |  |  |  |  |  |  | . ${ }^{\text {a }}$. |

Dintribution of Trout Fry Planted From the State Hatcherien-Continued.
(Including Salmon Fry Planted in Frenh Waterm in Leu of Trout.)

Dintribution of Trout Fry Planted From the State Hatcherien-Continued.

| COUNTIES AND Waters | $\begin{gathered} \text { Beards- } \\ \text { lee } \end{gathered}$ | BlackSpotterd | Crescentil | Out. Throat | Eastern Brook | Mack. Inaw | Rainbow | Sllver | Total Trout | Steelhead Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EASTERN WASHINGTON DISTRICT (Contmued) |  |  |  |  |  |  |  |  |  |  |  |
| GRANT COUNTX- |  |  |  |  |  |  |  |  |  |  |  |
| Brook Lake <br> Crab Creck <br> ........................................................... |  |  |  | 4,000 |  |  | 0,400 |  |  |  |  |
| Crab Creek ..................................... |  |  |  | 4,000 | 50,000 | ..... | 0,500 |  |  |  |  |
| Totals. |  |  |  |  | .......... | ........ | .......... | .......... | 76,900 | .......... | 76,800 |
| KITTITAS COUNTY- <br> Monastosh Creek |  |  |  | 9,000 |  |  |  |  |  |  |  |
| Toanaras River . ........................................ |  |  |  | 23,000 |  |  |  |  |  |  |  |
| Kecholus Lake. |  |  |  |  |  |  | 20,000 |  |  |  |  |
| Kachnss Lake .......................................... |  |  |  |  |  |  | 20,000 |  |  |  |  |
| Cle Elum Lake ......................................... |  |  |  |  |  |  | 23,900 |  |  |  |  |
| Fogarty Slough ................................ |  |  |  |  | 12,000 |  |  |  |  |  |  |
|  |  |  |  |  | 18,000 |  |  |  |  |  |  |
| Tilliers Slough .................................................... |  |  |  |  | 12,003 |  |  |  |  |  |  |
|  |  |  |  |  | 36,000 |  |  |  |  |  |  |
| Hand Slough ......................................... |  |  |  | . | 20,000 |  |  |  |  |  |  |
| Damond Slough .................................... |  |  |  |  | 20,000 |  |  |  |  |  |  |
| Thorp Pond | ... |  |  | .......... | 20,000 |  |  |  |  |  | , |
| Totals. |  | ........ | ........ | .......... | .......... |  | .......... | ......... | 245,900 |  | 245,906 |
| KI,IOKITAT COUNTY- |  |  |  |  |  |  |  |  |  |  |  |
| Spring Creek ................................. |  |  |  |  |  |  | 50,500 | 250,000 |  |  |  |
| Trout lake $\ldots$............................... |  |  |  | 25,000 |  |  |  | 121,815 |  |  |  |
| Bomign Creek White Salmon River |  |  |  |  | 75,000 |  |  | 125.7.000 |  |  |  |
|  | . |  |  |  |  |  |  | 120,00 |  |  | ....... |
| Totals. |  | - | ......... | ...... | .......... | .......... | .......... | .......... | 647,315 | .......... | 647,315 |
| LINCOLN COUNTY- |  |  |  |  |  |  |  |  |  |  |  |
| Tamrack Creek |  |  |  | 27,000 | 50,000 10,000 |  | 60,600 |  |  |  |  |
| Hocok Cresk ....................................... |  |  |  |  | 16,000 |  |  |  |  |  |  |
| Condon Creek |  |  |  |  | 10,000 |  |  |  |  |  |  |
| Wilson Creek |  |  |  |  | 14,000 |  | . $\ldots$...... | $\cdots$ | , |  | ........ |
| Totals. |  |  |  |  |  |  |  |  | 187,600 | . | 187,600 |

Dintribution of Trout Fry Planted From the State Hatcheries-Continaed.

Distribution of Trout Fry Planted From the State Hateherien-Continued.

| COUNTIES AND WATERS | $\begin{gathered} \text { Beards- } \\ \text { les } \end{gathered}$ | Black. spotted | Cres. centil | $\begin{aligned} & \text { Cut- } \\ & \text { Throat } \end{aligned}$ | Eastern Brook | Mackfruw | Rainbow | Sllver | Total Trout | Steelhead Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EAStERN WASHINGTON DIStrict (Continued) |  |  |  |  |  |  |  |  |  |  |  |
| okanogan county (Continued)Bonaparte Swamp |  |  |  |  | 30,000 |  |  |  |  |  |  |
| Libby Oreek ....... |  |  |  |  | 10,000 |  |  |  |  |  |  |
| Eight Mile Creek. Lost in Transit... |  |  |  | 56,600 | 15,000 |  | 24,000 |  |  |  |  |
| Totals | .......... |  |  |  | .......... | ........... | .......... | ......... | 2,309,495 | 500,000 | 2,863,495 |
| PEND OREILLLE COUNTY- <br> Half Moon Lake |  |  |  |  |  |  | 32,100 |  |  |  |  |
| Brown's Lake |  |  |  | 14,000 | 50,000 |  |  |  |  |  |  |
| Le Clerc Oreek .... | ........... |  |  |  | 25,000 |  |  |  |  |  |  |
| Crescent Lake | ......... |  | ...... |  | 25,000 |  |  |  |  |  |  |
| Davis Lake ...... |  |  |  |  |  |  |  | 90,300 |  |  |  |
| Totals |  |  |  |  | ......... | ...... | .......... | ......... | 245,400 | . | 245,400 |
| SPOAKNE COUNTY- |  |  |  |  |  |  |  |  |  |  |  |
| Newman Lake |  |  |  | 22,500 |  |  | 50,000 |  |  |  |  |
| Liberty Lake ................................... |  |  |  | 22,500 | .......... |  | 45,500 |  |  |  |  |
| Long Lake $\begin{aligned} & \text { Lolding in feeding ponds............................ }\end{aligned}$ |  |  |  |  | 531,000 | 32,420 |  | 450,000 |  |  |  |
| Holding in | . |  |  |  |  |  |  |  |  |  |  |
| Totals | . | ......... | ......... | .......... | .......... | .........., | .......... | .......... | 2,074,020 |  | 2,074,920 |
| STEVENS COUNTY- <br> Pend Orelle Lakes |  |  |  |  |  |  | 15,000 |  |  |  |  |
| Mill Creek ......... |  |  |  | 7,500 |  |  | 7,500 |  |  |  |  |
| Walts Lake ..................................... |  |  |  | 7,500 |  |  | 22,000 |  | ......... |  |  |
| Held in County Hatchery........................ |  |  |  |  | 150,000 | ..... |  |  |  |  |  |
| Totals | - |  | ....... |  |  | .......... | ......... | .......... | 200,500 | .......... | 200,500 |
| WALIA WALLA COUNTYMill Creek |  |  |  | 100,000 |  |  |  |  |  | 80,160 |  |
| Totals... |  |  |  |  |  |  |  | 㖪 | 100,000 | 80,100 | 180,100 |

Distribution of Trout Fry Planted From the State Hatcheries-Concluded.
(Including Salmon Fry Planted in Fresh Waters In Lex of Trout.)

| COUN'TIES AND Waters | $\begin{gathered} \text { Beards- } \\ \text { lee } \end{gathered}$ | BlackSpotted | Cres. centil | CutThroat | Eastern Brook | MackInaw | Rainbow | Silver | Total <br> Trout | Steelhead Salmon | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fastern washington district (Continued) |  |  |  |  |  |  |  |  |  |  |  |
| WhiTMAN COUNTY- |  |  |  |  |  |  |  |  |  |  |  |
| Paradise Creek |  |  |  |  |  |  | 18,000 | 3,500 |  |  |  |
| Almota Creek ................. |  |  | , |  | , | ........... |  | 6,500 |  |  |  |
| Pino Crenk at head of Rock Lake............. Rock Creek 2 miles below Rock Lake......... |  |  |  |  |  |  |  | 8,000 |  |  |  |
|  |  |  |  |  |  | . | .......... | 32,000 |  |  |  |
| Totals. |  |  | ....... | $\ldots$ | - | .......... | .......... |  | 76,900 | .......... | 76,900 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Rumping Lake. |  |  |  | 3,80 |  | 11,000 | 18,000 |  |  |  |  |
| Bachelor Cresk |  |  |  | .......... | 125,000 | 11,00 | , |  |  |  |  |
| lost in transit |  |  |  |  |  |  | 58,225 |  | , | ........ | . |
| Totals. |  |  | - | , | ......... | ........... | ......... |  | 251,125 |  | 261,125 |
| Total Eastern Washington District.. |  |  |  | 646,400 | 1,914,180 | 109,140 | 585,125 | 4,024,765 | 7,289,610 | 859,700 | 8,129,510 |
| gRaND totals. | 18,300 | 22,000 | 56,300 | 1,225,223 | 3,296,457 | 361,547 | 965,217 | 13,284,438 | 19,219,482 | 1,064,700 | 20,281,182 |



## TROUT TGGGS PURCHASED BY THE COUNTIES. Piseal Year 1820.

(Orders placed by ths State Fish Commissioner with Paradise Brook Trout Company, of Henrysville, Pa., for Eastern Brook Trout eggs.)

| COUNTIES | $\begin{gathered} \text { Number } \\ \text { Eastern } \\ \text { Brook Eggs } \end{gathered}$ | WHERE HATOHED |
| :---: | :---: | :---: |
| King. | 160,000 | King Oounty Hatchery |
| Skagit | 160,000 | Samish (State) Saimon Hatchery |
| Snohomish | 375,400 | Snohomish Oounty Hatchery |
| Sporane. | 375, .00 | Spokane (State) Trout Hatchery |
| Thurston | 160, 000 | Ohambers Oreek (State) Salmon Hatchery |
| Whatcom. | 375,000 | Lake Whatcom (State) Trout Hatchery |
| Total. | 1,605,000 |  |

PERMITS GRANTED FOR THE PLANTING OF FRY FROM COUNTY HATCHERIES.
FIscal Year 1920.

| COUNTLES AND WATERS | Black Spotted | Cutthroat | Eastern Brook | Mackinaw | Rain. bow | Sllver | Trotal | SALMON |  | White Fish | $\begin{gathered} \text { Pike } \\ \text { and } \\ \text { Muskel- } \\ \text { lunge } \end{gathered}$ | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Chinook | Steelhead |  |  |  |
| WESTERN WASHINGTON DIST |  |  |  |  |  |  |  |  |  |  |  |  |
| GRAYS HARBOR COUNTYWishkah River. |  | 15.000 |  |  |  |  |  |  |  |  |  |  |
| East Branch Satsop River. | niver | 10.000 | .... |  |  |  |  |  |  |  |  |  |
| Totals. |  | 25,000 | ......t... | ...t........ |  |  | 25,000 | ........... | ......... | . ${ }^{\text {a }}$. |  | 25,000 |
| KING COUNTY-Cedar River Water Shed. |  |  |  |  |  |  |  |  |  |  |  |  |
| Snoqualmie River Water Shoil. |  | 70,000 70,000 |  |  |  |  |  |  |  |  |  |  |
| Judd Oreek................... |  | 7.000 | 15,000 |  |  |  |  |  |  |  |  |  |
| Lake Marie....................... |  | 305,000 | 71,000 | 150,000 | 20,000 | 1,416,000 |  |  | 51,000 | 58,000 | 300,000 |  |
| Skykomish River. |  |  | 100,000 |  |  |  |  |  |  |  |  |  |
| 1ssaquah River.. Grequ River Snoqualmie River |  | 40,000 | 100,000 400,000 | ........... |  |  |  |  |  |  |  |  |
| Snoqualmie River |  |  | 400,000 800,000 |  |  |  |  |  |  |  |  |  |
| Cedar River.... |  | 6,340 | 618,500 |  |  |  |  |  |  |  |  |  |
| Lake Hancock.... |  |  | .......... |  | 250,000 |  |  |  | 18,000 |  |  |  |
| Philips Oreek.................. |  | 25,000 |  |  | ${ }^{5} .000$ |  |  |  |  |  |  |  |
| Tributarios of Tye River......... 1ssaquah Oreek. Lake two mil.......... |  | 5,000 | , |  |  |  |  |  |  |  |  |  |
| lasaquah Oreek. |  | 80,680 |  |  | 21,000 |  |  |  |  |  |  |  |
| Lake four miles from Tye......... |  | 2,000 4,000 |  |  |  |  |  |  |  |  |  |  |
| Stillwater Oreek................. North Fork Snoqualmie River.. |  | 万,000 |  |  |  |  |  |  |  |  |  |  |
| North Fork Snoqualmie River.... |  | 2,000 |  |  |  |  |  |  | 40,000 |  |  |  |
| Tokul Creek................... |  |  | ............ |  |  |  |  | . | 60,000 | ..... |  |  |
| Tributaries of Cedar River....... | 11,500 |  |  |  |  |  |  |  | 30,000 |  |  |  |
| lesaquah River Water Shed....... |  | 40,000 |  |  |  |  |  |  |  |  |  |  |
| Trib, to S, F, Snoqualmie River.. |  |  |  |  |  |  |  |  | 18,000 |  |  |  |
| Tributarles to Lake Washington. | , |  |  |  |  |  |  |  |  |  |  |  |
| Green Lakc...................... |  |  |  |  |  | 30,000 |  | 5,000 |  | ,..... |  |  |
| Totals. | 26,500 | 722,020 | 2,099,500 | 220,060 | 296,000 | 1,400,400 | 4,824,420 | 5,000 | 220,000 | 113,000 | 300,000 | 5,462,420 |

Permitn Granted for the Planting of Fry From County Hateherien-Continued.

Permits Granted for the Planting of Fry From County Hatcheries-Continued.

Permits Granted for the Planting of Fry From County Hateheries-Concluded.

| COUNTIES AND WATERS | BlackSpotted | Cutthroat | Eastern Brook | MackJnaw | Rafnbow | Silver | Total | SALMON |  | $\begin{aligned} & \text { Whit? } \\ & \text { Fish } \end{aligned}$ | $\begin{gathered} \text { Pike } \\ \text { and } \\ \text { Muskel- } \\ \text { lunge } \end{gathered}$ | Grand <br> Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Chinook | Steelhead |  |  |  |
| EASTERN WASHINGTON DIST.  <br> STEVENS COONTY Coded.  <br> STE  |  |  |  |  |  |  |  |  |  |  |  |  |
| Little Pend Oreille River........ |  |  | 77,000 |  | 25,000 |  |  |  |  |  |  |  |
| Little Ohewelah Oree |  |  | 112,000 |  |  |  |  |  |  |  |  |  |
| Chewelah Oreeks (3). |  |  | 105,000 75,000 |  |  |  |  |  |  |  |  |  |
| Pend Oreflle Lakes |  | 25,000 | 371,000 |  | 270,000 |  |  |  | 170,000 |  |  |  |
| Big Sheep Oreek. |  |  | 30,000 15,000 |  |  |  |  |  |  |  |  |  |
| Deep Sheep Oreek |  |  | 110,000 |  |  |  |  |  |  |  |  |  |
| Twin Lakes... |  |  | 30,000 |  |  |  |  |  |  |  |  |  |
| Phalan's Lake |  |  | 40,000 |  |  |  |  |  |  |  |  |  |
| Sheep Creek... |  |  | 20,000 |  |  |  |  |  |  |  |  |  |
| Cottonwood Swamp Oreek. Thompson Crek...................... |  |  | 25,000 |  |  |  |  |  |  |  |  |  |
| Thompson Creek ...................... |  |  | 20,000 |  |  |  |  |  |  |  |  |  |
| Sherwood Oreek. |  |  | 30,000 |  |  |  |  |  |  |  |  |  |
| Dunlap Creek... Huckleberry Oree Pepone Lake... |  |  | 20,000 |  |  |  |  |  |  |  |  |  |
| Pepone Lake.. ${ }^{\text {Pill }}$ |  |  | 20,000 |  | 10,000 |  |  |  | 10,000 |  |  |  |
| Upper Colville Riv |  |  | 80,000 |  | 100,000 |  |  |  |  |  |  |  |
| Lower' ${ }^{\text {Clark's Lake.................... }}$, |  |  | 20,000 |  |  |  |  |  |  |  |  |  |
| $\xrightarrow[\text { Hunter's Oreek }]{\text { Deer Creek.... }}$ |  |  | 10,000 |  |  |  |  |  |  |  |  |  |
| Deer Creek.. Bear Creek.. |  |  | 30,000 |  | 90,000 |  |  |  | 65,000 |  |  |  |
| Bear Creek, Coffin's Lake Lakg Leo... |  |  | 20,000 |  |  |  |  |  |  |  |  |  |
| Lake Leo.... |  |  | 20,000 |  |  |  |  |  | 90,000 |  |  |  |
| Black Lake........................... |  |  |  |  | 50,000 |  |  |  |  |  |  |  |
| Loon Lake. <br> Totals |  |  |  |  | 00,000 |  |  |  | 70,000 65,000 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 25,000 | 1,485,000 |  | 725,000 |  | 2,235,000 | .....iv... | 400,000 |  |  | 2,635,000 |
| YAKIMA OOUNTY *- <br> Bumplng Lake..... |  |  |  | 12,500 |  |  | 12,500 |  |  |  |  | 12,500 |
| Total Eastern Washington Dist.. |  | 1,183,200 | 2,065,000 | 25,000 | 765,000 |  | 4,088,200 |  | 000,000 |  |  | 4,638,200 |
|  |  |  | 4,36,500 | 245.000 | 86,000 |  | 8.912.620 | 5.000 | 872,200 | 118,000 | 300.000 | 202. |

PERMITS GRANTED FOR THE PLANTING OF FRY FROM OTHER THAN STATE AND COUNTY HATCHERIES.

Permits Granted for the Planting of Fry From Other Than State and County Hatcherlem-Concluded.

| COUNTIES AND Waters | Blark Spottod | Cutthroat | Eastern Brook | Rainbow | Total Trout | Steelhead Salmon | Bass | Catflsh | Crappies | Perch | Sunfish | Grand Totals |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fastern washington dist. |  |  |  |  |  |  |  |  |  |  |  |  |
| CHELIN COUNTYBowen Slough.................... |  |  |  |  |  |  |  | 2,000 |  |  |  | 2,000 |
| LINCOLN COUNTYHawk Orcek........ |  |  |  | 90,000 |  |  |  |  |  |  |  |  |
| Wilson Crook |  |  |  | 80,000 |  |  |  |  |  |  |  |  |
| Crab Crcek. |  |  |  | 250,000 |  |  |  |  |  |  |  |  |
| Spokang River |  |  |  | 50,000 |  |  |  |  |  |  |  |  |
| Weleh Creek.... |  |  |  | 15,000 |  |  |  |  |  |  |  |  |
| Meschum Creak. | ......... | ....... | ......... | 15,000 |  |  |  |  |  |  |  |  |
| Totals. |  | .......... |  | 500,000 | 500,000 | ......... |  |  |  |  |  | 500,000 |
| PEND OREILLE COUNTYBabbitz Lake. |  |  | 10,000 | ............ | 10,000 | ......... |  |  |  |  |  | 10,000 |
| STFVENS COUNTY- <br> Pierre Lake......... |  |  |  |  |  |  | 5,000 |  |  |  |  |  |
| Williams Lake.................. |  |  |  |  |  |  | 5 5,000 |  |  |  |  |  |
| White Mud Lake............... |  |  | 300 |  |  |  | 5,000 |  |  |  |  |  |
| Private Pond-J. H. Root...... | .......... | ....... | 300 | ............ |  |  |  |  |  |  |  |  |
| Totals |  |  | 300 |  | 300 | .......... | 15,000 | ........... |  |  | ......... | 15,300 |
| YAKIMA COUNTYBumping Lake.. |  |  |  | 40,000 | 40,000 |  |  |  |  |  |  | 40,000 |
| Total Eastern Wash. Dist. | .......... | .......... | 10,300 | 540,000 | 550,300 |  | 15,000 | 2,000 | .......... |  | ......... | 567,300 |
| Grand Tota | 10,500 | 8 | 102,300 | 544,000 | 656,808 | 40,000 | 31,053 | 2,000 | 500 | 2,042 | 25 | 732,428 |

## SUMMARY OF FRY HLANTED.

Fincal Year 1820.

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS.

| Date of Arrest | OFFENDER | OHARGE | Disposition of Oase | Penalty Imposed |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OLALLAM COUNTY |  |  |  |
| June 28 | W. A. Alexander. | Gaffing salmon in Dungeness Rlver. | Discharged (minor).. |  |  |
| June 26 | George Brazil | Gaffing salmon in Dungeness River. | Guilty................ | \$1000 |  |
| June 28 | Ed. Cassolery | Gaffing salmon ln Dungeness River | Guilty................ | 1000 10 |  |
| Oct. 29 | Oharles Lewis | Operating seine without license.................. | Guilty.................. | 10 50 500 |  |
| June 25 | Herman Moorbeck | Fishing without license. | Guilty................. | 10000 |  |
| Oct. 29 | Charles Peterson | Operating seine without license. | Guilty................ | 1000 |  |
| June 26 | John Potter | Gaffing salmon in Dungeness River | Gullty............... | 1000 |  |
| June 29 | Robert Priest | Gaffing salmon in Dungeness River | Guilty............... | 1000 |  |
| Oct. 29 Oct. 29 | Ed. Sampson. | Operating seine without license.... Operating seine without license.... | Guilty................ | 10 10 100 00 |  |
| Oct. 29 | Morris Sampson | Operating seine without license. | Guilty. | 1000 |  |
| June 28 | J. A. Sanford. | Gaffing salmon in Dungeness River | Guilty. | 1000 |  |
| Oct. 29 | Charles Wilson | Operating seine wlthout license. | Guilty................ | 1000 |  |
| June 26 | William Wright | Gaffing salmon in Dungeness River | Guilty................ |  | \$270 00 |
|  |  | OLAREE OOUNTY |  |  |  |
| Dec. 28 | H. O. Ditmer. | Having short sturgeon in possession. | Guilty................ | 81500 |  |
| May 28 | J. H. Peters | Having short sturgeon in possession. | Guilty............... | 1000 |  |
| May 3 | Leo Reed. | Having short sturgeon in possession................................ | Guilty................ | 2300 | 4800 |
|  |  | OOWLITZ COUNTY |  |  |  |
| June 11 | Allen \& Hendrickson. | Having short sturgeon in possession | Guilty................ | \$25 00 |  |
| $1921-7$ | Oscar Beebe ................... ........ | Fishlng with Chinese ge | Guilty. |  |  |
| Feb. 7 | R. Oolvin... | Fishing with Chinese gear | Guilty ..................... | 5000 |  |
| Feb. 7 | John Dethman | Fishing with Chinese gear. | Acquitted. ........... |  |  |
| 1920- ${ }_{\text {April }} 29$ | E. D. Erway.......................... | Fishing with gill net during closed season. | Gullty............... | 7500 |  |
| April 28 | Ora Jarnot ........................... | Having fish in possession during closed season............. | Gullty................. | 2500 |  |
| $\text { Jan. } 20$ | Victor Lampi | Buylng fish without buyers license. | Gullty................ | 2000 |  |

Arrestn Made for Violntions of the Food Fish Laws-Continued.

| Date of Arrest | OFFENDER | CHARGE | Disposition of Oase | Penalty Imposed |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | COWLITZ COUNTY-Concluded |  |  |  |
| May 18 | Edward Mustola | Destroying food fish. | Gullty................ | \$2500 |  |
| $\text { Fob. } 7$ | John E. Nelson. | Fishing with Chinese Innes. | Guflty. | 5000 |  |
| Fob. 7 | Walter Rivers. | Fishing with Chinese lines. | Gulity............... | 5000 |  |
| Jan. 23 | S. E. Sarajarvi. | Flshing without license.............................................. | Gulity | 2500 | \$370 00 |
|  |  | GRAYS HARBOR COUNTY |  |  |  |
| Jan. 27 | Albort Brisman | Fishing with two set nets within 900 feet of flsh trap.......... | Guilty................ | \$2500 |  |
| $\text { Oct. } 25$ | Andrew Matson | Destroying food fish. | Gulty. |  |  |
| Nov. 3 | Northwest Electric \& Water Works | Failure to maintain flshway over dam | Gulity. | 10000 |  |
| Oct. 25 | Sea Beach Packing Co. | Destroylng food fish. | Guility. | 1000 |  |
| Oct. 25 | Gus Strand | Destroylng food flsh. | Gulity................ | 1000 | 15500 |
|  |  | KING COUNTY |  |  |  |
| ${ }_{\text {Feb }}^{1921-} 3$ | John Anderson | Oparating gill net in closed stream. | Gulity................ |  |  |
| Fib. 2 | Fred August. | Having short salmon in possession...................................... | Guilty. | 1500 |  |
| Jan. 31 | Al. G. Austin. | Having short salmon in possession..................................... | Gulty | 1000 |  |
| Feb. 3 | John Brunn | Operating gill net in closed stream................................. | Acquitted. |  |  |
| Oct. 16 | C. A. Carlson. ......................... | Operating set net in closed stream................................. | Guilty. |  |  |
| May 7 | H. L. Chase (Whiz Fiyh Co.).......... | Having short salmon in possession for sale........................ | Guilty. | 2500 2500 |  |
| May 7 | W. B. Corcoran (Oean Fisheries Co). | Having short salmon in possession for sale........................ | Guilty. | 2500 |  |
| May 23 | Morris Eskenazi ${ }_{\text {Roy }}$ Jenson (Washington Fish Markot) |  | Guilty ............... | 500 |  |
| May 11 | Roy Jensen (Washington Fish Market) | Seiling short saimon................................................ | Guilty................ | 2500 |  |
| $\underset{\text { Feb }, ~}{1921}$ | W. E. Laure (Newport Fish Oo.)...... | Having short salmon in storage | Gulity | 500 |  |
| ${ }^{1920-} \quad{ }_{\text {Dec. }}$ | Joe Nick | Oparating retali fish market without lic |  |  |  |
| July 2 | Lars Peterson (Lyon Oyster House)... | Having short salmon in possession..................................... | Bail forfeited......... | 1000 |  |
| Nov. 5 | Ripley Fish Co...................... | Destroying food flsh (cutting out bellies and wasting balance of saimon) ................................................................... | Under advisement... |  |  |

Arrests Made for Violations of the Food Fish Laws-Continued.

Arreutn Made for Violations of the Food Fish Lavis-Contiuucd.

| Date of Arrest | OFFENDER | OHARGE | Disposition of Case | Penalty <br> Imposed |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | PACIFIC COUNTY-Concluded |  |  |  |
| $\begin{aligned} & \text { 1020- } \\ & \text { July } \end{aligned}$ | John Bertapelli ant crew of six mn.. | Fishing with purse soine in Willapa Harbor without license. | Guilty | \$395 00 |  |
| July 26 | Paul Bosnich and erow of seven men.. | Fishing with pursc seine in Willapa Harbor without license....... | Giuilt y . | 44500 |  |
| 1921- |  |  | Guilty................ | 250 |  |
| ¢930. ${ }^{\text {Ta }}$ | W. H. Deanis. ............................. | Selling clams during closed season........................................ | (1)............... | 250 |  |
| July 25 | Vine. Dulcich and crew of seven men.. | Fishing with purse soine in Willapa Harbor without license...... | Guilty | 44500 |  |
| July 25 | James Elias and crew of six men...... | Fishing with purse soine in Willapa Harbor without lieense....... | Guilty. | 39500 |  |
| $\stackrel{1921-}{\text { Mar } 30}$ | Charles Foster ........................... | Having salmon in possession during closed season............... | Guilty | 2000 |  |
| $\underset{\text { Tuly }}{1920-}$ | John Kuljis and crew of seven mon... | Fishing with purse seine in Willapa Harbor without lieonse....... | Guilt y................ | 44500 |  |
| 1921- |  |  |  |  |  |
| Jan. 25 | Robert Lawrence .......................... | Solling clams during closed ssason....................................... | Ginity ................. | 200 |  |
| 1920-- ${ }_{\text {July }} 25$ | Chris Lucas and crew of sevon men.. | Fishing with purse ssine in Willapa Harbor without lifense. | (iuilty............... | 44500 |  |
| Tuly 25 | Ed. Mattson and crew of six men.... | Fishing with purse seine in Willapa Harbor without license. | Guilty................ | 39500 |  |
| July 25 | Nicholas Milosevitch and crew of sev"n men | Fishing with purse soine in Willapa Harbor without license....... | Guilty................ | 44500 |  |
| July 25 | Nick Morine and crew of sev cn men.. | Fishing with purse soine ln Willapa Harbor without lieonse....... | Ginilty ................ | 44500 50 |  |
| June 22 | Flimer Pulkkinen $\ldots$..................... | Alion fishlng without license.................................................... | Giulty ................. | 5000 |  |
| July 25 | men | Fishing with purse ssine in Willapa Harbor without license........ Retailing clams without license......................................... | $\begin{aligned} & \text { Guilty.................... } \\ & \text { Guilty................... } \end{aligned}$ | $\begin{array}{r} 44500 \\ 500 \end{array}$ | 34,927 50 |
| Aug. 3 | Arthur Strans .......................... | Retailing clams without license........................................ | Ginity |  | (14,927 50 |
|  |  | PIERCE COUNTY |  |  |  |
| May 10 | Stove lurke | Selling and having in possession short salmon.................. | Guilty............... | \$25 00 |  |
| Mar. 15 | A. Harris | Snagging salmon in trap at Chambers Creok Hatchery............ | Guilty................ | 2500 |  |
| Nov. 20 | N. J. La Patt........................... |  | Bail forfeitad........ | 2500 |  |
| $1921-\mathrm{Mar} .16$ | Nick Mosich | Failure to make catch report | Guilty................ | 5000 |  |
| $1920-15$ | Charles Williams | Snagging salmon in trap at Chambers Creak Hatehery | Guilty | 2500 |  |
| Nov. 31 | Max Ziolkowski ........................ | Snagging salnion ................................ | Bail forfeited. | 2500 | 17500 |

Arrestg Mide for Violationg of the Food Finh Lawm-Continued.

| Date of Arrest | OFFENDER | CHARGE | Disposition of Case | Pensilty <br> Imposed |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1091- |  | SKAGIT COUNTY |  |  |  |
| Feb. 18 | Frank Boomhower . ...................... | Doaling in food fish without license.................................. | Guilty................ | 8500 |  |
| Oct. 5 | Chris Knutzen | Gaffing salmon . ...................................................... | Guilty............... | 500 | \$1000 |
|  |  | SNOHOMISH COUNTY |  |  |  |
| S'pt. 21 | Wysal Zazubiski ...................... .. | Constructing artificial eddy.. | Guilty................ | $\$ 500$ | 500 |
|  |  | . THURSTON COUNTY |  |  |  |
| Nov. | B. Barn ................................ | Gaffing salmon . $\therefore . .$. .................................................... | Guilty................ |  |  |
| Nov. Nov. | W. J. Barn...... . . . . . . . . . . . . . . . . . . . . . | Gaffing salmon .................................................................... | Gullty................... | 500 |  |
| Nov. | J. S. Boone. Rufins Cook | Gaffing salmon .............................................................. | Guilty . . . . . . . . . . . . . | 1000 |  |
| Nov. |  |  | Guilty . . . . . . . . . . . . | 500 1000 |  |
| Nov. | C. Johnson ............................... | Gaffing salmon | Guilty. | 500 |  |
| $\text { Jan. } 15$ |  |  |  |  | . |
| $1320-15$ | Ralph Kaspatis ......................... | Fishing for smelt in closed waters................................... | Guilty ................ | 10000 |  |
| Nov. | R. H. Kirkendall. . . . . . . . . . . . . . . . . . . | Gafing salmon | Guilty................. | 10.00 |  |
| Nov. | Haldon Lewis ............................ | Gafling salmon ................................................................. | Guilty.................. | 500 |  |
| Nov. Nov. | Andrew Moses . ........................... | Gaffing salmon | Gullty .................. | 500 |  |
| Nov. | O. W. Nolson. . . . . . . . . . . . . . . . . . . . . . . | Gaffing salmon, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | Guilty................. | 450 |  |
| Nov. | B. Steelc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  | Guity ${ }^{\text {Guilty } . . . . . . . . . . . . . . . . . . . . . . ~}$ | 500 500 |  |
| Nov. | Ira Steole . .............................. | Gaffing salmon | Guilty ................ | 500 |  |
| Nov. | J. A. Steele................................. | Gaffing salmon | Guilty .................. | 500 |  |
| Nov. | A. Torson ............................... | Gaffing salmon ...................................................... . . . . . | Guilty . . . . . . . . . . . . . | 500 |  |
| Nov. Nov. | E. R. Welter............................... | Gaffing salmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | Guilty.................. | 500 500 | 19950 |

Arrents Made for Violations of the Food Fish Laws-Concluded.

| Date of Arrest | OFFENDER | CHARGE | Disposition of Case | Penalty <br> Imposed |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1020-$ |  | WAHKIAKUM COUNTY |  |  |  |
| Spt 27 | T. Bjorge $\quad$............................. | Having small sturgaon in possession................................... | Guilty................ |  |  |
| June 8 | Columbia River Packers Assa......... | Having short sturgeon in possossion.................................. | Guilty................. | 5000 |  |
| sunt. 27 dune 8 | H. Romitk .......................... | Having short salmon in possession................................................. | Guilty................ | 5000 |  |
| . dune 8 | Warren Packing Company............. | Having short stargeon in possession. | Guilty................ | 8000 | \$225 00 |
| $\stackrel{\text { Mar. }}{9}$ | John A. Taylor.......................... | WHATCOM COUNTT <br> Buying food fish that were caught in fllegal waters (Samish River) | Guilty................ | \$1500 | 1500 |
| 1920- |  | WHITMAN COUNTY |  |  |  |
| Ipril 14 | Roy Frans ............................. | Fishing during closed season. | Bail forfeited........ | $\$ 5000$ | 5000 |
| May 31 | Fred Garberding ........................ | Solling salmon withont license.... | Guilty................ | \$100 | 100 |
|  | Total |  |  |  | 6,812 00 |

The Northwestern Electric Company, who in 1916 constructed a fishway over a dam in the Big White Salmon River, Klickitat County, was permitted to discontinue the flshway, inasmuch as the dam was much higher than over which a successful flshway can be maintained, and the state accepted in lieu of the fishway $\$ 5,000.00$ to be used for the construction of a hatchery, as provided by Section 79 of the Fisheries Code. Inasmuch as the Federal Government operates a hatchery on the Big White Salmon River, it was deemed advisable to use the money for the construction of a hatchery on some other strea m, and the Chinook River, Pacific County, was chosen. The hatchery was completed in July, 1920.
NUMBER AND VAILE OF CINNERIES AND FACTORIES OPERATED, AND THEIR FISHING APPLIANCES AND

|  | $\begin{gathered} \text { PYG } \\ \text { DI } \end{gathered}$ | $\begin{aligned} & \text { ET SOUND } \\ & \text { S'I'RICT } \end{aligned}$ | $\mathrm{COL}, \mathrm{C}^{\mathrm{M}}$ <br> DIS | BIA RIVER TRICT | DIS <br> GRAYS | $\begin{aligned} & \text { HARIBOR } \\ & \text { 'RICI } \end{aligned}$ | WILIAP DI | $\begin{aligned} & \text { PA HARBOR } \\ & \text { STRIOS } \end{aligned}$ | $\underset{C O M}{A L L D}$ | DISTRIOTS MBINED |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number | Value | Number | Value | Number! | Value | Number | Value | Number | Value |
| Cannerins, salmon (buildings and mathinery) <br> Cunn-riss, other than salmon. <br> Fuctorins, by-produets <br> War"houses, cold storages, smoko housos, packing plants, fusi houses, residences for habor, real estate. |  |  |  |  |  |  |  |  |  |  |
|  | 19 |  | 9 | \$276,769 48 | 7 | \$3,3, 20634 |  |  | 35 | \$2,152,680 66 |
|  | 2 | 125), (100 000 | 1 | 5,000 00 | 5 | 21,680 00 | 4 | \$11,912 71 | 13 | 59,092 130 |
|  |  | 1,014, 227 3! | 1 | 48,561 03 |  |  |  |  | 3 | 130,000 00 |
| Automobiles, tracks and other land conweyances |  | $1,014,227$ $3!$ |  | 48,56103 11,475 |  | 64,47800 8,99600 |  | 2400 10000 |  | 1,117,590 39 |
|  | 11 | 230,14060 | 17 .15. | 11,475 00 | 10 | 8,296 00 | 2 | 1,200 00 | 40 | $\begin{array}{r}35,122 \\ 239,000 \\ \hline 20\end{array}$ |
| I.aunches | 27 | 188,3689 | 15 | 37,326 90 | 2 | 3,60000 |  |  | 46 | 299, 290539 |
| Scows .......... | 164 | 117.75644 | 20 | 12,147 41 | 6 | 3,850 00 |  |  | 190 | 133,783 85 |
| Cannery tenders | 18 | 89,813 14 | ${ }^{6}$ | 16,550 00 | 0 | 3,80 |  |  | 190 24 | 106,393 14 |
| Fishing boats ..... | 27 | 46,1:7 32 | 148 | 78,606 25 | 7 | 4,403 \$3 |  |  | 182 | 129,147 40 |
| Fish luyers boats.... lijn drivers or pullers. | 19 | 2,500 83,30949 |  |  |  |  |  |  | 1 | 2,500 00 |
| Poumd not locations oparatad. | 56 | 8,599 714,602 | $\stackrel{2}{14}$ | \%80 00 | 5 | 9,19300 |  |  | 21 | 84,379 49 |
| Pound net locations not of"rat | 79 | 757,045 52 | 11 | .......... | 1 | 30000 |  |  | 91 | 746,373 757,345 78 |
| Stationary or seow fish whecls |  | 析, | 9 | 38,02730 | 1 | 300 |  |  | 91 9 | 701,345 38,027 30 |
| Nits and seines. | 12 | 24.089 51 | 209 | 183,30000 | 2 | 3500 |  |  | 223 | 20ง,218 51 |
| Not racks .............. | $\stackrel{\square}{2}$ | 2.(x)0 m0 | 105 | 10,40183 | 6 | 50100 |  |  | 113 | 12,901 83 |
| Misecllanoous equipment |  | 184, 77130 |  | 6,23400 |  | 4,053 00 |  |  |  | 195,053 30 |
| Total investod in plant and equipment. |  | \$5, 450, 38525 |  | 8748,23534 |  | \$1c4.532 57 |  | \$13.136 71 |  | \$6,376,889 87 |
| On:rating expenses .............................. |  | 3,4*6, (0:6 94 |  | 1,432,747 18 |  | 3066,837 27 |  | 25,5:31 22 |  | 5,251,190 61 |
| Grand Total Capital Invested |  | \$3,937,052 19 |  | \$2,180,952 52 |  | \$471,300 84 |  | \$38,675 33 |  | \$11,628,080 48 |


| NUMBER AND EARNINGS OF LABORERS EMPLOYED IN OPERATION OF CANNERIES, FACTORIES, APPLIANCES. <br> Fiscal Year 1920. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { PUGET SOWND } \\ & \text { DISTRICT } \end{aligned}$ |  |  | $\begin{aligned} & \text { COLUMBIA RIVER } \\ & \text { DISTRIOT } \end{aligned}$ |  |  | $\underset{\text { GISTRIOT }}{\text { GRAYS HARBOR }}$ |  |  | WILLAPA HARBOR DISTRICT |  |  | ALL DISTRIOTS COMBINED |  |  |
|  | No. Km- p'oy'd | Average <br> Season's <br> Earn- <br> ings | $\begin{aligned} & \text { Total } \\ & \text { Earnings } \end{aligned}$ | $\begin{aligned} & \text { No. } \\ & \text { Em. } \\ & \text { pioy'd } \end{aligned}$ | Average Esarnings | Total Earnings | $\begin{gathered} \text { No. } \\ \text { Em. } \\ \text { ploy'd } \end{gathered}$ | Average Season's Earnings | Total Earnings | $\begin{gathered} \text { No. } \\ \text { Em- } \\ \text { ploy'd } \end{gathered}$ | Average Earnings | Total Earnings | $\begin{gathered} \text { No. } \\ \text { Em- } \\ \text { ploy'd } \end{gathered}$ | Average Season's Earn ings | Total Earalngs |
|  | 40 | $\begin{array}{r} 8 \mathrm{~L}, 801 \\ 1,215 \\ 1,21 \end{array}$ | $\begin{array}{r} \$ 72,05631 \\ 0,990 \\ 01 \end{array}$ | $\begin{gathered} 18 \\ 3 \end{gathered}$ | $\left.\begin{array}{r} 31,99692 \\ 92000 \end{array} \right\rvert\,$ | $\begin{array}{r} \$ 25,960 \\ 2,760 \\ \hline 00 \end{array}$ | 4 | $\begin{array}{r} \$ 525 \\ 1,295 \\ 1, \end{array}$ | $\begin{array}{r} \$ 3,67927 \\ 5,18000 \end{array}$ |  |  |  | $\begin{aligned} & 60 \\ & 15 \end{aligned}$ | $\left\|\begin{array}{c} \$ 1,694 \\ 1,195 \\ 196 \\ \hline 26 \end{array}\right\|$ | $\begin{array}{r} \$ 101,695 \\ 17,929 \\ 58 \end{array}$ |
| OL'ERATTNG <br> Onaneries, <br> Factories, Ware <br> honses, Fte- <br> White lator-malo, White Tabor-female. Orloththlabar.a..... Indian lator.......... | 468 163 175 172 | $\begin{aligned} & 70077 \\ & 1977 \\ & 39074 \\ & 13805 \end{aligned}$ | $\begin{array}{r} 368,10824 \\ 31,2459 \\ 52,749 \\ 23,7495 \\ 23 \end{array}$ | $\begin{array}{r} 73 \\ 40 \\ 210 \end{array}$ | $\begin{aligned} & 9648 \\ & 18558 \\ & 6457 \end{aligned}$ | $\begin{array}{r} 70,302 \\ 7,481 \\ 129,060 \\ 198 \end{array}$ | $\begin{gathered} 107 \\ 102 \\ \cdots, \\ \hline 8 \end{gathered}$ | $\begin{array}{r} 35173 \\ 20026 \\ -\quad 574 \\ \hline 554 \end{array}$ | $\begin{aligned} & 87,63556 \\ & 20,42656 \\ & \cdots \ldots, \ldots \\ & 443.42 \end{aligned}$ | $\begin{aligned} & 15 \\ & 38 \end{aligned}$ | $\$ 325$ 165 45 | 4,889 6,250 00 | 657 343 345 180 | 78215 190 5151 5189 134 | 481,025 65 65,946 183 181,810 24,189 24 |
| oferating <br> Pile driy"rs and pullive, hoats, scows, nets and other fish for applianeve. | 108 | 1,022 7i | 475,627 60 | 46 | 71333 | 32,813 32 | 3 | 16730 |  |  |  |  |  |  |  |
| Miselinneous Labor.. | 28 | 81841 | 22,915 61 |  |  |  |  |  | 202 48 |  |  |  |  | $\begin{aligned} & 98829 \\ & 521 \\ & 511 \end{aligned}$ | $\begin{array}{r} 511,94349 \\ 30,22461 \end{array}$ |
| Totals | 1,476 | \$717 77 | 31,050,441 20 | 415 | \$064 57 | 8275,715 16 | 231 | \$203 79 | \$67,867 28 | 53 | $\$ 21017$ | \$11,139 22 | 2,175 | \$050 19 | 1,414,163 00 |

OUTPUT OF THE PRIVATE FISH HATCHERIES.



## INDEX TO STATISTICS

|  | $\begin{gathered} 1919 . \\ \text { Page. } \end{gathered}$ | $\begin{array}{r} 1920 . \\ \text { Page. } \end{array}$ | Biennial Page. |
| :---: | :---: | :---: | :---: |
| Approprlations, fisheries fund. | 152 | 210 |  |
| Appropriations, game fund. | 153 | 211 |  |
| Appropriations, oyster reserve fund | 154 | 212 |  |
| Arrests and court decisions. | 201-6 | 292-7 |  |
| Average number of eggs taken to female, salmon. | 176 | 259 |  |
| Average number of eggs taken to female, trout. | 182 | 269 |  |
| By-products, fish | 166 | 245 |  |
| Canneries, capital employed in operating | 207 | 299 |  |
| Cannerles, labor employed and wages paid | 208 | 300 |  |
| Cannerles, number and value of. | 207 | 299 |  |
| Cannerles, output of | 164 | 238 |  |
| Catch of salmon and values | 160-1 | 224-5 |  |
| Catch of food and shell fish, other than salmon. | 162-3 | 236-7 |  |
| Clams and Mussels, quantity taken and value of | 162-3 | 236-7 |  |
| Clams and Mussels, handled by dealers. | 165 | 244 |  |
| Clams and Mussels, canned and value of. | 164 | 238 |  |
| Clams for bait, quantity taken and value of | 163 | 237 |  |
| Clam nectar | 164 | 238 |  |
| Codfish, handled by dealer | 166 | 245 |  |
| Comparisons, see yearly tables |  | -•• |  |
| Cost of hatching salmon fry | 152 | 210 | 260-3 |
| Cost of hatching trout fry | 153 | 211 | 270 |
| Crabs, number taken and value | 162-3 | 236-7 |  |
| Crabs, handled by dealers. | 165 | 244 |  |
| Distribution of trout eggs and fry planted from state hatcherles | 183-91 | 271-82 |  |
| Eggs furnished by state to counties | 192 | 283 | ... |
| Eggs purchased and hatched by counties. | 192 | 284 |  |
| Eggs and fry, distribution of | 183-91 |  |  |
| Expenditures, fisheries fund | 152 | 210 |  |
| Expenditures, game .fund. | 153 | 211 |  |
| Expenditures, oyster reserve fund | 154 | 212 |  |
| Expenditures, operation, maintainance, etc., salmon hatcheries | 152 | 210 | 260-2 |
| Expenditures, operation, maintainance, etc., trout hatcheries | 153 | 211 | 270 |
| Fines for violation of food fishery laws................... | 201-6 | 292-7 | . . |
| Fisheries fund, appropriations and expenditures. | 152 | 210 | . . . |
| Fishways repaired, installed or ordered installed. |  | 298 |  |
| Food and shell-fish, other than salmon, quantity taken and value of | 162-3 | 236-7 |  |
| Food and shell-fish (other than saimon) handled by dealers | 164 | 244 |  |
| Frozen fish, quantity and value of. | 165 | 244 |  |
| Fry planted, summary | 200 | 291 |  |
| Game fund, appropriations and expenditures | 153 | 211 |  |
| Game fund, recelpts (see game wardens report) |  |  |  |
| Halibut, handled by dealers. | 166 | 245 |  |
| Hatcheries, number and capacity of. | ... | ... |  |
| Hatcheries, cost of operation, etc., salmon | 152 | 210 |  |
| Hatcheries, cost of operation, etc., trout | 153 | 211 |  |
| Hatcheries, output of salmon eggs and fry | 169-76 | 251-58 |  |
| Hatcheries, output of trout eggs and fry | 177-80 | 263-9 |  |
| Hatcheries, eggs, trout and steel head furnished counties.. | 192 | 283 |  |
| Hatcheries, eggs, trout and steel head purchased by counties | 192 | 284 |  |
| Herring, quantity taken and value of | 162 | 236 |  |
| Herring, handled by dealers. | 165 | 244 |  |
| Improvements, on state oyster reserve | 166 | 246 |  |
| Kippered fish, quantity and value of. | 165 | 244 |  |
| Licenses issued..... | 157-9 | 215-6 | 217-23 |
| Licenses, cannery, number issued.......................... | 159 | 216 |  |


|  | 1919. | 1920. | Biennial. |
| :---: | :---: | :---: | :---: |
|  | Page. | Page. | Page. . |
| Licenses, flshing gear, number issued and fees paid. | 157 | 215 |  |
| Loss on salmon eggs and fry | 176 | 259 |  |
| Loss on trout eggs and fry. | 182 | 269 |  |
| Mild cured flsh, quantity and value of. | 165 | 244 |  |
| Oyster industry .... | 167 | 247 |  |
| Oysters, lands owned | 168 | 247 |  |
| Oysters, lands producing | 168 | 247 |  |
| Oyster reserve, improvement of | 166 | 246 |  |
| Oysters, sold from state reserve | 167 | 246 |  |
| Oysters, value per sack.. | 167 | 247 |  |
| Oyster fund, appropriations and expenditures | 154 | 212 |  |
| Fatrol service, expenditures. | 152 | 210 | 260-3 |
| Percentage of loss on salmon eggs and fry. | 176 | 259 |  |
| Percentage of loss on trout eggs and fry. | 182 | 269 |  |
| Permits to plant fry from county hatcheries. | 193-6 | 285-8 |  |
| Permits to plant fry from other than county hatcheries. | 197-9 | 289-90 |  |
| Receipts, fisheries department..... | 155-6 | 213-4 |  |
| Shell and food fish (other than salmon) | 162-3 | 236-7 |  |
| - Salmon, catch and value of. | 160-1 | 224-5 |  |
| Salmon, output from the state hatcheries | 169-76 | 251-8 |  |
| Salmon, handled by dealers. | 165 | 244 |  |
| Salmon, canned and value of. | 164 | 238 |  |
| Salmon hatcheries (see under Hatcheries) |  |  |  |
| Salmon eggs, average number taken to female | 176 | 259 |  |
| Salmon eggs, (and fry) average per cent lost in hatching | 176 | 259 |  |
| Salted fish, quantity and value of. | 165 | 244 |  |
| Shad, quantity taken and value of | 163 | 237 |  |
| Shad, handled by dealers. | 165 | 244 |  |
| Shad, canned and value of. | 164 | 238 |  |
| Shrimp, quantity taken and value of | 163 | 237 |  |
| Shrimp, handled by dealers..... | 165 | 244 | $\ldots$ |
| Smelt, quantity taken and value of | 163 | 237 |  |
| Smelt, handled by dealers. | 165 | 244 |  |
| Smoked Fish, quantity and value | 165 | 244 |  |
| Statistics | 151 | 208 |  |
| Sturgeon, number taken and value of. | 163 | 237 |  |
| Sturgeon, handled by dealers | 165 | 244 | $\cdots$ |
| Trout Hatcheries (see Hatcheries) |  |  |  |
| Trout eggs, average number taken to female. | 182 | 269 |  |
| Trout eggs, average per cent of loss in hatching | 182 | 269 |  |
| Trout fry, average per cent of loss in rearing | 182 | 269 | ... |
| Trout fry, where planted. | 183-91 | 271-82 |  |
| Trout and steelhead egas furnished to counties. | 192 | 283 |  |
| Trout and steelhead eggs purchased by counties. | 192 | 284 |  |
| Trout, output from state hatchery. | 177 | 263 |  |
| Trout, summary of output from state hatcheries. | 181 | 268 |  |
| Values, fisheries products | 168 | 247 |  |

## YEARLY COMPARATIVE STATEMENTS.

Page
260-262
Fxpenditures ..... 239-243
Fry capacity, state salmon hatcheries, 1913-1920 ..... 249
Fry capacity, state trout hatcherjes, 1913-1920 ..... 250
Licenses issued ..... 217-223
Output of salmon from state hatcheries, cost of operation and cost of output per 1,000 ..... 260-262
Output of trout from state hatcheries. ..... 270
Receipts ..... 214
Silmon catch, as to gear and species. ..... 226-235
not 4/1/82

UNIVERSITY OF MICHIGAN


39015084522013



[^0]:    There are five species of the Pacific Coast salmon belonging to the genus Oncorhynchus, all of which are of great commercial value and are,

[^1]:    Green's Sea-snail, Liparis greeni (Jordan and Starks), (Fig. 87).
    Flora's Sea-snail, Liparis florae (Jordan and Gilbert).

[^2]:    - Value based on average wholesale price.

    The Halibut and Codfish items are not strictly Washington products, as these flsh are taken mostly in the waters of Bering Sea and Alaska and brought to Puget Sound to be marketed.

[^3]:    PIGRENTAGE OV LOSS ON SALMON GGGS AND FRY.
    Fimeni Year 1 A19.
    

    SPECIF

[^4]:    $*$ Received from U. S. Bureau of Fisheries, Montana.
    $\dagger 125,000$ eggs to King County.

[^5]:    * Eggs from Eastern states.

    Shipped 600,000 to King County.
    100,000 to Stevens County.
    50,000 to Ferry Oounty.

[^6]:    320,000 recefved from King Oounty．
    $1,300,000$ shipped to Eastern states．
    250,000 shipped to Skamania County．
    500,000 shipped to Kittitas County．

[^7]:    * Value based on average wholesale prica. The Halibut and Codflsh are not strictly Washington products, as those fish are taken mostly in the waters of Bering Sea and Alaska and brought to Puget Sound to be marketed.

[^8]:    *S. F. Nooksack Hatchery troughs transferted to the M. F. Nooksack Hatchery.
    Nisqually Hatehery building destroyed by floods of 1918
    : Skagit River Hatchery buildings destroyed by floods of 1917.
    Etillaguamish Hatchery troughs transferred to Pilchuck Hatchery.

[^9]:    Increase in fry capacity of State Trout Hatcheries from 1913 to 1920, 403 per cent.

[^10]:    - 981,000 Recelved from King Oount y. $_{\text {. }}$ 22,000 Shipped to University of Washington.

[^11]:    ¿Shipperd to Kittitas County Hatchery.

    + Receive fromr C . Surnau of Figherien
    Shipmol to plren County Mntchery.
    - jo.dno hippod to King County Hatehery.

[^12]:    * 375,000 purchased by Whatcom County from Paradise Brook Trout Co., Henryville, Pa. s00,000 purchased by State from State of Now Hampshire.
    $\dagger 375,000$ purchased by Spokane County from Paradise Brook Trout Co., Henryville, l'a.
    221,000 purchased by State from C. L. Caldwell, Ruby, Wash.
    200,000 purchas?d by State from State of New Hampehire.
    $\$ 160,000$ purchased by Thurston County from Paradise Brook Tront Co., Henryville, Pa
    It 56,000 shipped to Pierce County Hatchery.
    
    \$129,000 shipped to King County Hatchery.

[^13]:    2,065,000 eggs received from the State of Wisconsin in exchange for silver trout eggs
    300,000 eggs shipped to King County Hatchary.
    150,000 eggs shipped to Kittitas County Hatchery
    100,000 eggs shipped to Pend Orellle County Hatshery.
    45,000 eggs shipped to Skamania County Hatchary.
    200.000 eggs shipped to Pierce County Hatchery.
    75,000 eggs shipped to King County Hatehery.
    ! 100,000 egggs shipped to Kittitas County Hatehery.
    $: 488,000$ eggs recelved frim State of Wisconsin.

[^14]:    - 500,000 eggs shipped to State of Now Hsmpshire.

    Stavens County Hatchery.
    King Oounty Hatchery.
    to Skamania County Hatchery.
    o Pierce County Hatchery.
    
    
    \%
    
    $\rightarrow-$

[^15]:    Received from State of Wisconsin.

