Reports.

Washington (State).
Olympia [etc.]
https://hdl.handle.net/2027/mdp. 39015073180955

HathiTrust

www.hathitrust.org

Public Domain, Google-digitized
http://www.hathitrust.org/access_use\#pd-google

We have determined this work to be in the public domain, meaning that it is not subject to copyright. Users are free to copy, use, and redistribute the work in part or in whole. It is possible that current copyright holders, heirs or the estate of the authors of individual portions of the work, such as illustrations or photographs, assert copyrights over these portions. Depending on the nature of subsequent use that is made, additional rights may need to be obtained independently of anything we can address. The digital images and OCR of this work were produced by Google, Inc. (indicated by a watermark on each page in the PageTurner). Google requests that the images and OCR not be re-hosted, redistributed or used commercially. The images are provided for educational, scholarly, non-commercial purposes.

B 410917

W 2 A31

STATE OF WASHINGTON Department of Fisheries and Game CHARLES R. MAYBURY, Director

Thirty-Sixth and Thirty-Seventh Annual Reports

OF

State Department of Fisheries and Game DIVISION OF FISHERIES

FOR THE
Period From April 1, 1925, to March 31, 1927
Fiscal Years of 1925 and 1926

CHARLES R. POLLOCK
State Supervisor of Fisheries

OLYMPIA
JAY THOMAS, PUBLIC PRINTER

DEPARTMENT OF FISHERIES AND GAME DIVISION OF FISHERIES

PERSONNEL AS OF MARCH 81, 1927

Director of Fisheries and Game

f R. Maybury. Olympla

	Supervisor of Fisherles
R. Pollock	

Hatcheries		
fayhall. General Superintendent of Hatcheries		
S. Ein	. Assistant Superintendent of Hatcherie	
	Superintendent Green River Hatchery	
	.Superintendent Kalama Hatchery Kalama	
硡		
aldridge	. Superintendent Skykomish Hatchery.............. Startup	
Rice	. Superintendent Chehalls Hatchery. Elma	
Dedma	Superintendent Cowlitz River Hatchery...........	
Lytle	.Superintendent Salt Water Feeding Pond........ Brinnon	
Jackso	Superintendent Chinook Hatchery............. . . Chinook	
Sawde	. Superintendent Nasel River Hatchery..................Naselle .Superintendent Nooksack Hatchery Kendall	
Cook		
Deemer	. Superintendent Puyallup River Hatchery Orting	
Fletch	. .Superintendent Willapa Hatchery................... . Lebam .Superintendent Dungeness Hatchery............... . Sequim	
Knapm		
	. Superintendent Chehalis Hatchery No. 2........... Ceres	

Oyster Reserves

Patrol

Office

STATE OF WASHINGTON
 Department of Fisheries and Game Division of Fisheries

Thirty-Sixth and Thirty-Seventh Annual Reports
of
\title{ State Department of Fisheries and Game }
\section*{DIVISION OF FISHERIES}
FOR THE
Period From April 1, 1925, to March 31, 1927

To His Excellency,
ROLAND H. HARTLEY, Governor of Washington.
Sir: I have the honor to submit herewith in accordance with law, the Thirty-sixth and Thirty-seventh Annual Reports of the Department of Fisheries and Game, Division of Fisheries, of the State of Washington for the fiscal years ending March 31, 1926, and March 31, 1927, respectively.

Respectfully submitted,
CHARLES R. MAYBURY,
Director of Fisheries and Game.

THIRTY-SIXTH AND THIRTY-SEVENTH ANNUAL REPORTS

HON. CHARLES R. MAYBURY,
Director of Fisheries and Game, Olympia, Washington.
In January, 1925, the writer, who had been employed in the Division of Fisheries as Collector for the State Treasurer, was made acting Supervisor, to fill the vacancy left by the sudden death, by accidental drowning, of Ernest A. Seaborg, who had been the Supervisor of Fisheries since January 1, 1922.

The first matter which came under my attention for immediate consideration was to explain to the appropriation committees of the short session of the legislature that year, the budget requirements and to prepare a supplemental budget to cover the needs for one year's work. Although conversant in a general way with the entire work of the department there was not, of course, sufficient time to inspect the entire hatchery and patrol requirements in conformity with the items set out by my predecessor, in his budget for the years 1925 and 1926 ; however, the appropriation secured was ample to meet the needs in the various segregations of our work. Besides the gradual detailing and planning a program of repairing, rebuilding and extension of the hatchery system and a readjustment of the patrol and inspection service, which will be covered in detail a little farther along in this report, especial studies were made of the available reports of previous administrations bearing on flshing conditions, results of artificial propagation, present and past regulations, recommendations for additional regulations, scientific surveys, etc., to better fortify the department in whatever action it might take or recommendations it might propose, to increase its usefulness to the commercial fishermen who furnish the funds on which the department is operated; and to develop work along the proper lines for the upbuilding of the fish runs, especially salmon, in such a manner that the industry would continue to prosper and its future be more secure.

Probably no one who was ever charged with the executive work of this department, generally speaking, did more to advance the work in artificial propagation of salmon in this state than Mr. Leslie H. Darwin, who was Fish Commissioner from 1913 to 1921 , and who in addition to that most important work, introduced modern methods in handling office details, reorganized the entire departmental records of the past, brought these records up to date, and left data, properly segregated and tabulated, that will always be of the utmost value to the flshing industry of the state of Washington. This was accomplished when the funds were limited and the experiences gained provided the changes in legislation in 1921, which furnished and has continued to supply more adequate funds for further enlargements during the past two years.

The needs for stricter regulations and curtailment of excessive overflshing, which went on during and after the great war, were set out in Mr. Darwin's last two biennial reports and it seems entirely in order to quote briefly from these reports as follows:

WHAT SHOULD BE DONE TO SAVE OUR FISHERY.

(Page 37, Report of March 31, 1919)

No honest person, familiar with the facts, will attempt to deny that the flsheries of the state of Washington are being depleted. In this report I have attempted to show the various causes contributing thereto. What, then, is the remedy?

For six years as Fish Commissioner I have watched the legislative attempts to evolve a remedy. For twelve years before that, as a newspaper representative at Olympia, I saw more or less of the legislative struggles raging around our fishery.

Experience thus gained has forced me to the conclusion the greatest hope lies in the creation of a flshery or conservation commission, patterned after the Public Service Commission, to consist of not less than three persons. This commission can be elective or appointive, but the members should serve for long terms and should only be removed as elective state officers are removed, namely, by impeachment. They should say when, where and how fishing operations shall be conducted. They should have sole authority to prescribe all regulations and to enforce them.

A commission thus constituted and empowered could do that which was necessary at the time it should be done. Every action it would take would result from a personal knowledge of the members of the reason for so dolng. In the state of Washington the Public Service Commission has authority to regulate business which must involve an investment of at least $\$ 200,000,000$. They fix rates and prescribe regulations for all the rallways of the state, electric light companies, gas companies, street car and other public utilities. If three citizens of the state of Washington can be entrusted with this vast responsibility, surely there are three other persons in the state who could be entrusted with the proper conduct and regulation of our fisheries.

We have other precedent for the delegation of a commission with powers similar to this. On our statute books today, there is a law which provides that county game commissions in their respective counties may open, close or shorten the season on upland birds, with the consent of the state game warden. There is no law on our statute books that has worked more satisfactorlly than this one. Game conditions of our state have steadily improved under the operation of this statute and the demand now is to extend its scope rather than to restrict it.

Also, it may be pointed out the Federal laws give the U. S. Bureau of Fisherles somewhat similar authority in its control of Alaska fisheries.

In my judgment, it is highly important the members of this commission should be able to discharge their duties with all the freedom of a judge. Under the present system, any attempt to have the legislature pass fishery conservation measures only serves to bring to the state capitol those who oppose the measures through selfish interest. The selfish interests quickly organize and the member of the legislature, busy with the multitudinous affairs which come before him, honest though he be, may have serious doubts ralsed in his mind as to which is the proper course of action to take.

On the other hand, with such a commission as above outlined, an honest man with an honest cause should have no hesitancy in presenting it to the decision of men who are personally familar with the subject and who are in position to render honest, unblased and unprejudiced decisions.

CREATION OF THE FISHEHIES BOARD IN LINE WITH THE ABOVE RECOMMENDATIONS.

(Pages 8 and 9, Report of March 31, 1921)
During the war, the demand for salmon was so great and such intensive fishing resulted that a sufficient number were not permitted to escape to the hatchery streams and the natural spawning grounds to anywhere nearly maintain the normal supply.

With a full knowledge of this condition, I prepared a fisheries code, which would have largely curtailed fishing and have regulated fishing operations, to the end that a larger escape of spawning flsh would have occurred.

The passage of this code was bitterly opposed in the legislature by a majority of those interested in the taling of the fish. They succeeded in accomplishing its defeat.

In my last biennial report made to you, which was made within a few weeks following the defeat of my proposed code in the legislature, I pointed out to you that my experience led me to the conclusion that it would be impossible to preserve the fisheries of this state through legislative enactment. This for the reason that selfishly interested parties had always theretofore succeeded and would likely thereafter succeed in so confusing the legislature as to prevent the passage of any real conservation measures.

I, therefore, recommended to you the creation by the legislature of a state fish commission, which would be clothed with full authority to say how, when and where flshing operation might be carried on. I pointed out the necessity of the commission being given these broad powers. It was recommended that the commissioners serve for long terms, and be removed only by impeachment, as elective state officers are removed.

The 1921 legislature passed the Civil Administrative Code, which created the State Fisheries Board, clothed wlth the powers which I suggested. The power for good of a board so constituted, in the hands of honest, capable and impartial men, is almost unlimited. I recognize its equal possibilities for harm in improper hands. Unfortunately, the law does not provide the suggested safeguards as to tenure of office of the members of the board,

SIX YEARS OF FISHERIES BOARD REGULATIONS.

In the report for the biennium ending March 31, 1924 , and March 31, 1925 , some conclusions were presented, being drawn from four years of fishing under regulations promulgated by the State Fisheries Board. The life of the salmon is generally accepted as being four years, except as concerns the humpback or pink salmon, which completes its life's journey in two, and four years are not, presumably, a fair test for the activities of such a body as the Fisheries Board. Each and every year of their first four years of service brought in the completion of a different salmon cycle and the beginning of a new cycle. The past two years, 1925 and 1926 , each completed a four year cycle period following the years 1921 and 1922 respectively. In 1921 the total salmon reported being taken by all classes of gear in all four districts of the state was $7,545,790$ fish of all species, while in 1925 the next cycle year, the commercial fishermen reported a total of $10,906,873 \mathrm{fish}$, an increase of $3,361,083$ or 30%.

The total salmon caught in 1922 over the entire state was $2,922,286$, while in 1926 the total catch was $3,623,459$ salmon of all species, the increase being 701,173 fish or 19.3%.

It must be remembered that in 1921 the industry was still feeling the effects of over-financing, and over-production which caused readjustments or complete fallures and some noticeable curtallment of fishing through these causes, but all of the regulations providing reduced fishing areas and shorter seasons, not to overlook increases in size of net meshes, were not in full effect until 1922 , thus perhaps 10 to 15% of the increase in 1925 over 1921 might be chargeable to curtailment through adverse business conditions in 1921. The fact remains, however, that the new system of regulation has at least stopped the decline especially noticeable from 1913 to 1919 , although it must be borne in mind that the year 1913, especially in the Puget Sound district, showed approximately a 35% excess of fish caught over any peak year before the year 1913 or since.

The conclusions previously mentioned regarding the operations of the Board, are worth repeating, in part at least, because these conclusions to
some extent form the basis upon which much of the department's expansion program is based.

The first step taken by the Board was to make a comprehensive survey of the whole situation, the result of which survey was to force home the conviction that, notwithstanding the fact that the officials of the Department of Fisheries had been for years expending a large amount of money, time and energy in the effort to build up the salmon runs to something like their oldtime proportions, the decline of the runs had been constant, and had approached the danger point.

An intensive study of the situation resulted in the only possible conclusion, namely, that either artificial propagation was ineffective as then conducted by the state, or, that the magnitude of the operations was inadequate to meet the drain upon the annual runs. There appeared to be but two solutions, one being to enlarge the operations by erecting more hatcheries, and the other to so regulate the taking of fish, as to permit an increased escapement of mature salmon to the natural spawning areas or beds.

Numerous hearings called by the Board only emphasized the fact that the efficlency of both methods was mooted questions and as an increase in the magnitude of operations in artificial propagation necessitated the expenditure of large amounts of money not then available, the method of increased natural propagation was adopted. This method, of course, made necessary certain restrictions as to the taking of fish, and in a way lessened the operations of canneries, notwithstanding which the increased annual pack leads to the incontrovertible conclusion, that the annual runs are increasing in magnitude and while the increase has not been as marked as was the preceding decrease, the situation at the close of the present biennium must convince the most skeptical that the matter of the magnitude of the fisheries of this state lies wholly with the citizens themselves. The pack of * * 1925 , conclusively demonstrating that salmon runs can be rehabilitated.

That the present increased runs can be largely augmented can hardly be contested in the light of present conditions. The process, however, must necessarily be slow owing to the constant destruction of spawning areas by the requirements of civilization, unless the people of the state desire a rapid increase and are willing to equip the Department in a manner to make same possible. Artificial propagation under proper conditions can very greatly hasten the process, and an increase in the facilities of the Department would undoubtedly prove to be a profitable investment, * and * * * * * \quad * substantial balance in the Fisheries Fund is now available for a considerable increase in propagation work, such as the building of several additions to present hatcheries and the enlargement of rearing pond facilities.

Biological surveys have been made during the past four years, under the direction of the Board, the purpose being to determine the maximum carrying capacity of the salmon streams of the state. This work is still progressing and eventually the Department will be reasonably well advised as to the possibility of the several streams' being capable of caring for more spawning fish than are now being permitted to enter them.

The quantity that is permitted to enter the streams can only be regulated, in a manner by shortening or lengthening the period during which the fish may be taken from the water and by increasing or decreasing the present preserves or closed areas.

When the writer, as Acting Supervisor, was made Secretary of the State Fisheries Board, it was found that the data accumulated over a period of over four years was very considerable, and not sufficiently indexed and properly cross-referenced to make it quickly accessible. Beginning with April 1, 1921, the Board met almost continuously for several months, either in conferences in the preparation of regulations for fishing, or in holding public hearings in their office or in the various fishing districts over the state. To get all the data, correspondence, minutes and reports of the many hearings properly indexed permission was secured to have the entire accumulated records properly classified and cross-referenced. The chron-
ology of all these records was arranged in the order of consecutive dates and the gist of all matter prior to September 23, 1925, which included the framing of Fisheries Board Order No. 14, was transferred to cards (some 7000 all told) and rewritten for sequence. The high lights of each communication or subject or hearing were set down on the cards, in other words a complete digest of all material is ready for instant use to any one informed, from the cross references in the bound volumes of correspondence, hearings, pamphlets, Attorney General's opinions and other matter.

In checking over this exhaustive supply of information with the regulations, which gradually came to include the many more important phases of our fishery, especially the taking of and the protection and perpetuation of our salmon, it is noted that the commercial fishing areas for this class of flsh in the state of Washington through these regulations have been reduced approximately one-third. In like measure the open commercial fishing seasons for salmon have been reduced and the minimum commercial length of salmon has been increased. The 18 -inch minimum commercial length for salmon and the setting forward of the spring fishing season to May 1st, in Puget Sound, especially, have probably done as much as anything else to save the dumping of tons of small immature, young salmon on the markets, often glutting it, which caused the wastage of unsold fish not usable in any other avenue than the fresh fish trade. This annual wastage of immature salmon, called salmon trout, is reported to have existed each spring prior to 1921.

In the parts of the upper Puget Sound, southerly and easterly of Admiralty Inlet, where some of the favored feeding grounds of the immature salmon are to be found, the minimum size of the mesh in the spillers of the pound nets, or traps, and all seines has been increased to 5 inches stretch measure during the period from May 1 to July 25 each year, thus allowing the small salmon to escape and to return several years later, matured and enhanced in value many times when finally sold in the fresh markets or to the canneries and processors. Likewise the commercial fishing for salmon with set nets, gill nets and dip nets has been prohibited in all but two of the rivers entering Puget Sound, and in addition to this, three mile limits or preserves have been established off the mouths of the many tributaries of this body of water, as well as along the coast of Washington. In only two river mouths has any flishing been permitted to continue, the Skagit and the Snohomish, and although large mesh nets only are permitted, and weekly closed seasons maintained, it is still doubtful if fishing in these rivers is allowed to continue whether it will not eventually work a hardship on the parent stocks in these wonderful salmon streams. During the late summer and early fall in both the upper and lower Sound, ten day closed periods are maintained, which allow large escapements of sockeyes and pinks or humpback salmon to the Fraser River in British Columbia and its tributaries, as well as the return of spawning Chinooks, silvers, dogs or chums, and steelhead trout to their parent streams in Washington waters. The upper Columbia and Snake River flshing has been reduced and no commercial salmon fishing is allowed at all in any of the other Washington tributaries of the Columbia River, excepting a short distance up the Cowlitz during limited periods and with larger mesh nets. In Grays and Willapa Harbors salmon flshing has been restricted and seasons shortened so as to permit a more adequate escapement and it can
be said that as a whole all over the commercial fishing areas of the state a gradual increase in escapement is very apparent. This noticeable increase in the numbers of spawning salmon, while small, is indicative of right principles, based on sound conclusions made after careful study of local conditions, which, in some instances may, in time, need additional restrictions whereas in others, small reductions may be in order. No very great reductions of the restrictions should be attempted, however, until at least another four year cycle has been accomplished.

As regards the fishes which now attract a lesser demand commercially it might be remarked that they have not been overlooked, even though salmon have demanded a major consideration. Several constructive regulations are already in the Board's orders to conserve and perpetuate the present supply of these fishes, both of the bottom and surface swimming varieties, until such time as their commercial value will be increased. Even before the activities of the State Fisheries Board several extensive herring preserves were established and the regulation which now prohibits the use of nets under 5 inches stretch measure in the upper Puget Sound from May 1 to July 25, automatically provides a like closed season for smelt, herring, perch and other small surface swimming fishes. The minimum mesh of smelt and herring nets has been increased and a weekly closed season throughout the open fishing season for these varieties is now enforced, thus providing additional protection.

CONTINUED UPGRADE IN WASHINGTON'S FISHING INDUSTRY APPARENT.

The reports for the biennial periods ending with the years 1920 and 1922 respectively called attention to the sharp falling off in the flshing Industry at the close of the fiscal year of 1919 and also the lessened production in 1920 and 1921, due in part to overfishing, and also to the readjustments caused by the post-war period, which were still very apparent in the fiscal year of 1922 .

To follow up the brief comparisons shown in the 1921 and 1922 survey of conditions it was noted that the combined values of the various flshery products marketed during 1921 amounted to $\$ 9,806,931.02$ and in 1922 to $\$ 9,014,486.10$, a total of $\$ 18,821,417.12$ for the biennium, and these values were based upon the average wholesale prices received. It was agreeable to note that in 1923 the total was $\$ 12,897,208.33$ and in 1924, $\$ 10,381,204.64$, a total of $\$ 23,278,412.97$, an increase for that biennium of $\$ 4,456,995.85$. In 1925 the yearly comparative tables of all flsheries products processed or handled in Washington show a total value of $\$ 15,-$ $311,822.36$ and in $1926, \$ 10,684,187.65$. The total for the biennium being $\$ 25,996,010.01$, an increase over the biennium ending in 1924 of $\$ 2,717$,597.04, notwithstanding a considerable reduction in the average prices of some of the commodities handled.

Continuing comparisons outlined in the biennium mentioned above, we are reminded that in 1919 the total value of canneries operated in the state and their fishing appliances and capital invested amounted to $\$ 19,-$ $565,261.73$; in 1920 this figure had dropped to $\$ 11,628,080.48$; in 1921 to $\$ 14,505,320.99$; and in 1922 to $\$ 9,718,321.06$. The year 1923 showed an increase to $\$ 12,036,453.30$, while 1924 , being the off year for humpback fishing on Puget Sound, showed $\$ 8,076,215.65$. In 1925 this composite
figure had again risen to $\$ 20,116,577.81$, while 1926 was $\$ 13,893,306.23$, an advance over 1924 of $\$ 5,817,090.58$.

In the preparing of the above totals, year by year, they have never included the values of independently owned and operated traps, purse seines, gill net boats and other gear including trolling boats, which would add several millions to the above valuations. It cannot help but impress the general public with the fact that the fishing industry of Washington is slowly recuperating from the low ebb of 1920 , and this with less commercial gear operating and smaller areas open to commercial fishing than was the case in 1919 , and 1920 , and the years previous.

Although this summary of conditions prevailing during the past biennium and its comparison with previous years is necessarily brief, it would be out of order not to call attention to the gradual growth and value of the business which is done in fresh food and shell fish and the many activities in processed (other than canned) fish of all kinds. Salmon again predominates in the tonnage salted, mild cured and kippered, and the use of large quantities in this manner cut down the total salmon canned, which results in misleading comparisons by those who use pack totals only when discussing commercial fishing conditions, thus innocently advancing conclusions which are entirely unfair to the industry, and misleading to the people of the state.

FOOD AND SHELL FISH, FRESH AND. PRESERVED (OTHER THAN CANNED) AND VALUE.

YEAR	Number of Pounds	Value	YEAR	Number of Pounds	Value
1919.	16,260,964	\$1,670,756 11	1923.	31,854,259	\$3,654,512 38
1820	16,840,104	2,153,735 49	1924.	31,494,315	3,434,082 31
1921.	23,210,034	2,249, 223 67	1825	33,504,059	3,449,075 45
1922.	19,413,023	2,104,673 52	1926.	34,378,823	3,510,846 64

You will note that the biennium total for 1919 and 1920 was $33,100,468$ pounds valued at $\$ 3,824,491.60$; for 1921 and $1922,42,623,057$ pounds, valued at $\$ 4,354,497.19$; 1923 and $1924,63,348,574$ pounds, valued at $\$ 7,088,544.69$, an increase in values over the preceding biennium of $\$ 2,-$ $734,047.50$, and in tonnage $20,725,517$ pounds. The total tonnage of the 1925-1926 biennium just ended is 67,882,882 pounds exceeding 1923-1924 by $4,524,308$ pounds, while the value decreased $\$ 128,622.60$. Average prices reported were somewhat lower than in 1923-1924, which accounts for this value reduction, and the renewed activity in salmon canning in 1925-1926 may account for the lessened increase of the 1925-1926 biennium over 1923-1924 as compared to the increase of 1923-1924 over 1921-1922. From the above tables the year 1920 shows the peak in value as compared to tonnage.

In reviewing the activities in the canning of food and shell fish it would be useless to draw comparisons by including figures from the war period, where the demand for increased food stores and excessive values of same disturbed natural conditions. Although a distinct downward trend in market values is noticeable in the period from 1919 to 1926 , present conditions are still not comparable with the prewar period. The canning of
salmon and razor clams forms the bulk of Washington's fish and shell fish canning. The past four biennium packs and values show as follows:

BIENNIUM	Cases	Value	BIENNIUM	Cases	Value
1919-1920.	2,014,676	\$17,487,597 52	1923-1924.	1,615,661	\$12,506,341 45
1921-1922.	1,368,674	10,506,341 45	1925-1926.	1,801,410	15,416,912 on

The present indications for 1927-1928 based on pack returns now on hand (1927) when this report is being prepared would seem to indicate the prospects of a decided increase in pack and value over the period this report covers.

Details of the present biennium pack may be found in the detailed statistics following page 94 , but for quick reference totals for 1925-1926 are set out and compared with 1923-1924.

	1923-1924		1925-1926	
	Cases	Value	Cases	Value
Chinook salmon	242,508	\$3,402,481 72	352,504	\$4,567,258 70
Dog or chum salmon	357,559	1,610,095 44	251,543	1,084,657 69
Humpback or pink salmon.....................	478,264	2,354,149 31	559,573	2,907,538 45
Silver salmon	267,257	1,773,156 60	340,609	3,091,062 94
Sockeye salmon	165,645	2,492,845 35	166,874	2,628,209 79
Steelhead salmon	25,023	243,067 10	11,326	130,119 34
Clams and mussels	74,755	689,483 61	109,897	973,872 51
Clam nectar	3,227	12,418 49	3,293	9,716 77
Crabs (1923 only).	431	8,331 90		
Shad	983	10,131 93	5,683	22,745 21
Other food and shellish.	9	18000	108	1,730 61
Totals.	1,615,661	\$12,596,341 45	1,801,410	\$15,416,912 01

Salt Water Rearing Pond, Quilcene Bay.

EXPERIMENTS IN TRANSPLANTING PINK OR HUMPBACK SALMON.

Because of the success which has generally followed the transplanting of silver and Chinook salmon to new environments, such as the augmenting of the runs of Chinook salmon in Puget Sound waters, it was decided to secure humpback eggs from fisheries authorities in Alaska in exchange for Chinook eggs from this state. Eggs were secured in 1922 and 1924 and placed in hatcheries adjacent to the streams flowing into Puget Sound. The fry hatched from the 1922 pink eggs brought from southwestern Alaska

Salt Water Rearing Pond. Cleaning Dyke Screens.
were planted early in 1923 , and being a two-year fish, completing the life cycle in two years, some indications of results were expected in the 1924 fishing season. In this the department was not disappointed, for in 1924 the pink run came in considerably in advance of their usual time of arrival and fishermen reported a considerable majority of their catches of pinks being of the Alaska variety. It was later learned that in 1924 the traps along the west coast of Vancouver Island, which had never caught pink salmon in the even numbered, or off years for this variety, reported total catches of more than 20,000 small pinks, resembling the Alaska variety which had been transplanted.

The Washington catch of pinks reported in 1924 was a little over 100,000 which exceeded considerably the 1922 total of 32,315 and 1920 with a total pink catch of 19,716 , however, from a double amount of eggs secured in 1924 it was anticipated that in 1926 results should be more apparent, especially as the return of pinks in 1924 came so early in the fishing season that a considerable quantity should have escaped to spawn. Excess of pinks returning to spawn in the Puget Sound streams where the transplants were placed after hatching late in 1922 , were not noticeable, however, and the fishermens' reports of pink salmon taken in 1926 showed a total of only 24,489 fish.

Some of the fry of the 1924 pink transplants were placed in the salt water feeding pond, described in the last report, and several thousand were marked, but no returns of these salt water reared fish developed.

In 1926, upon the advice of the United States Bureau of Fisheries, it was thought that a larger pink could be secured from the Karluck River on Kodiak Island, where the excess of these fish in 1924 seriously impaired the sockeye run in this stream. A party was sent north to secure eggs there but very few pinks showed up and the only eggs secured for hatching and planting in Puget Sound streams came from the government. These were hatched the past winter on Hoods Canal and some of them placed in the salt water rearing pond on Quilcene Bay from which they will be liberated late in June of the next biennium. As many of these as possible will be marked and in 1928 flshermen will be notified of these markings and rewards offered on same.

The great runs of pink salmon appear in the odd numbered years in the Puget Sound District, which comprises all the tide waters of the Straits of Juan de Fuca, Georgia Straits, Washington Sound and Puget Sound, while the even numbered years, as noted above, are comparatively lean of these fishes, and if a pink run of any magnitude whatever could be developed in the even numbered years, a corresponding stabilizing of the salmon canning in Puget Sound might eventuate, but successful results of these experiments are exceedingly doubtful; in any event, this undoubtedly would take years in developing and should not be condemned after such a short period of experiment.

COMMENTS ON CHARTS.

The following diagramatic charts are designed, to give at a glance the take of salmon by gear. It is interesting to note relatively uniform heights of the columns indicating that the catch by gear is somewhat constant when taken over a period of years.

This is a vital point since any stable business must have a satisfactory, uniform supply of raw material. The diagrams also suggest that certain types of gear are particularly effective in taking certain species of salmon; but are practically useless in taking other species. A notable example is the Columbia River fish wheel; although the records show that wheels take about 35% of the sockeyes on the river, they only take about 3% of the Chinooks and $1 / 2$ of 1% of the chums.

Public opinion has been molded to receive the impression that this type of gear is particularly deadly, which the records do not seem to bear out, since in the 12 -year period, $1915-1926$, fish wheels have taken but 6.4% of all salmon caught on the Columbia River.

NL SAECIES COMEINED	-						
				160 6000 v			5
				\%N\% ${ }^{2}$			
				5N 1000 om			
				1000 के			
		1541000 है		15* 1000 है		PN838	
				54 1000 है			
				${ }_{5 N}^{5 N 8789}$			N
		SN/1000				ckose	N
Average weights-Chinook-23lbs., Chum-12lbs. Humpback 41 lbs , Silver-101bs. Sockeye-61bs. Total take all species combined during 12 years, by all gear 2464226 salm Gear used and percentages taken by each gear, 12 year period P.N. - Traps or Pound Nets 43.6% $\mathrm{H} . \mathrm{L}$ - Troll or Hook Lines 1.1 \%. G.N. - Gill Nets S.N. Set Nets 31.07 24.3%							

Unfortunately the fisheries industry feels the effect of the narrowed views of the laity from time to time since very few remedial measures suggested are broad in scope but usually concern a limited situation and with countless problems looming up, were these suggestions followed, chaos would inevitably result.

The establishment of closed areas and the curtallment of the fishing season is the most impartial solution. The wonderful increase of salmon on Puget Sound during the past 5 years is directly traceable to this policy which was inaugurated in 1921.

The maintenance of preserves, where all types of gear are prohibited from flshing, is a simple matter, and does not result in the continuous bickering between operators of various types of gear. Further than this it permits the fish to get to their spawning grounds unmolested, which is the vital point.

From a standpoint of sensible conservation it matters not how fish are taken, but the fact that they are dead certainly ends their usefulness for perpetuating their kind.

Passing from brief consideration of the commercial side of the department's work, your attention is drawn to the brief report on fish cultural operations prepared by Mr. L. E. Mayhall, General Superintendent of Hatcheries.

In checking up the fish cultural operations of the Division of Fisheries at about the time of the close of the last biennium, I had Mr. Mayhall prepare a brief historical review of salmon hatchery operations since the inception of this most important part of the activities of this department, and this review was printed on page 17 of the 34 th and 35th Annual Report for the period ending March 31, 1925.

During the first two years of the previous biennium no particular expansion work was entered into by the department, due principally, it is supposed, to a limited amount of funds. In fact some necessary repairs and upkeep were neglected. Operations were conducted at a minimum of cost for that period, but the neglect of necessary repairs and upkeep made additional expense in this line necessary during the past biennium.

FISH CULTURAL OPERATIONS.

One of the early conclusions of the State Fisheries Board was to the effect that the dumping of millions of young salmon fry in our streams without flirst increasing their size to some extent through rearing, was not giving these young fry a fair chance considering the number which were consumed by other fishes, noticeably the cutthroat and steelhead trout in the spawning streams. Experiments having been conducted at various times in different hatcheries with the common dirt bank rearing ponds of varying shapes and sizes with only partial success, it was decided that the building of standard concrete walled rearing ponds, similar in design to a rearing pond proposed by the writer as early as 1903 , would be the most economical for our needs over a long period of time and the easiest to maintain if same were constructed of concrete; built in series so that the wall of one pond would form the wall of another; that each one be provided with a separate water supply and a separate discharge; and rounding them at the ends with a center wall so that a continuous movement of the water in one direction could be had. Cuts of this type of pond
appeared in the last biennial report and are reprinted in this issue for the information of those who might be interested.

Three ponds of this type were built at the Auburn Hatchery in 1923 and in 1924 six more were constructed making a series of nine in all at this hatchery. Also, four of these ponds were under construction at the close of the biennium ending March 31, 1925, in the Kalama Hatchery.

The only other improvement undertaken was the rebuilding of the Auburn water supply system undertaken in 1924 which brings the waters of Soos Creek, in an eighteen inch main, one and one-quarter miles to the hatchery, thus providing an ample supply of water for the old hatchery then in operation and for considerable additions in hatchery equipment and rearing pond expansion.

Basing the activities of this past biennium on the recommendations of the Fisheries Board for expansion work especially along the lines of increased rearing capacity for rearing young salmon, an active construction program for this administrative period was outlined. With the increase in the annual receipts in sight for the Fisheries fund, it was possible to start construction work early in 1925 .

GREEN RIVER HATCHERY.

Six more of the standard circulating concrete rearing ponds have been completed at the Green River Hatchery making a total of fifteen and a rearing capacity of ten million, in addition to what rearing could be done in the old dirt ponds which had been in operation at this hatchery for several years.

The feeding problem at the various hatcheries has been met up to the present writing in a very convenient.manner, as the department was able to secure from the United States Government upwards of 20,000 cases of war canned salmon which were purchased for war purposes and were not permitted to be used in commercial lines on account of being around in

Green River Hatchery, near Auburn, showing warehouse (1925) and new hatchery (1926) and arrangement of standard rearing ponds.
quartermasters' warehouses under adverse conditions in some instances for a considerable period following the war. This canned salmon had been stored in warehouses in Seattle for two or three years at a cost of approximately $\$ 200.00$ per month, and it was decided that the warehousing expense for holding this fish food for this past biennium would be a sum equal to what it would cost to build a permanent warehouse at the Green River Hatchery, which hatchery is more nearly centrally located than any other in the state, as well as being the nearest to the office of the department in Seattle. Permission was secured to build a warehouse 60×100 feet which not only houses the remaining canned salmon, but provides storage and clearance for tools and equipment needed at various times in different parts of the state and for any other necessary storage.

During the summer of 1926 a new modern hatchery, 72×152 feet in size was built containing space sufficient to handle 160 hatching troughs and 72 tray troughs which makes a fry capacity of $27,000,000$ and an egg capacity of considerably over $40,000,000$ eggs. In building this hatchery, it was considered economy to build all permanent construction from the ground up to the window sills and up to the troughs themselves of concrete, thus placing all wood construction and framing above the moisture constantly caused by the circulating water used in the hatchery operations. The old hatchery was entirely wrecked and use of any salvage material was made in the erection of the new hatchery.

The egg take for the past two years at this hatchery has been in excess of $54,500,000$, which undoubtedly makes this the most important hatchery station in the state.

KALAMA HATCHERY.

Four more standard rearing ponds were built in 1925 at the Kalama Hatchery, which now has a fry capacity of $14,000,000$, and a rearing capacity of $7,300,000$, consisting of 20 rearing ponds, 8 of which are of the modern circulating type. As this hatchery has an average egg take of $23,554,000$ per year for the past ten years, additional hatchery capacity should be provided as it is necessary to transfer $9,500,000$ eyed eggs per year to other hatcheries.

SAMISH HATCHERY.

The sills, joist and floor of the Samish Hatchery were removed, concrete footing put in and all hatchery trough supports placed directly on these concrete footings, thus dispensing with wooden floor construction and enormous replacement expense attendant thereto every few years.

CHINOOK HATCHERY.

During the summer of 1925 four standard rearing ponds were constructed at the Chinook Hatchery and a part of the new flume line reconstructed. In 1926 four more standard ponds were added and the flume line, 14 inches by 12 inches inside and 1950 feet long was completed. This flume furnishes an ample supply of water for operating the eight ponds and an old rearing pond previously experimented with with doubtful results was entirely abandoned. This hatchery now has a fry capacity of $2,300,000$ and a rearing capacity of $4,800,000$.

Taking Salmon Eggs From Spawning Salmon at the Kalama River Hatchery, near Kalama, Wash.

WILLAPA HATCHERY.

A new hatchery building was completed at the Willapa Hatchery with a fry capacity of $7,500,000$. The building is 54 feet by 140 feet and contains 210 hatching troughs with concrete walls up to the window sills, as well as concrete supports for the hatchery troughs.

CHEHALIS HATCHERY.

The old residence at this hatchery was wrecked, the lumber salvaged and a new modern seven room cottage built. The hatchery floor was removed and the supports of all hatching troughs placed directly on concrete footings doing away with wooden floor construction.

NOOKSACK HATCHERY.

The residence at this hatchery, similar in construction to the one at the Chehalis Hatchery was not so badly in need of repair and was raised and a concrete foundation put under it. New floors were laid level, the inside of the house plastered and plumbing and electric wiring were added: Cedar siding was put on over the old barn siding and painted, thus making a permanent and modern hatchery residence of good appearance.

WIND RIVER HATCHERY.

As previously noted, in the historical data on Washington Salmon Hatcheries, seining operations in the Columbia River below the mouth of the Wind River, as well as logging operations which floated thousands of logs down this stream, almost destroyed the run of Chinook salmon in

Salmon Fry Shortly After Hatching.
the Wind River, and for a time cut down the take of eggs to such a point, that maintaining a superintendent at the Wind River Hatchery made the cost of taking eggs almost prohibitive. In the past administration operations were discontinued for a time. However, being close to the Federal Hatcheries at Cook and Underwood, the Wind River Hatchery has been operated the past two seasons by the United States Bureau of Fisheries.

It is reported at this writing that the splash logging operations are practically completed on the Wind River and if such is the case, with the present regulations tempering the fishing operations in the Columbia, it would no doubt be practical to replace the old hatchery at this location with a modern structure, take all eggs possible and use the balance of the hatchery space to take care of the constant overage of Chinook eggs at the Kalama Hatchery. There is no doubt that if this is done the Wind River spawning area for Chinook salmon can be built up and eventually brought back to past production records.

COWLITZ RIVER HATCHERY.

The department has known for many years of the fine run of early Columbia River Chinook salmon which go up the Cowlitz River and spawn in its headwaters and tributaries. Early investigations of conditions, however, have shown that transportation conditions would hamper development work.

With the new state highway completed to within seven miles of Lewis, it was decided to take in temporary equipment and conduct experimental operations in the late spring and summer of this past year (1926). Considerably over two and one-half million eggs were secured in the Clear Fork branch, a little above its junction with the Ohanapecosh River where these streams join to form the Cowlitz River. The results obtained and the promise of early completion of a good road to within a short distance of the site chosen, prompted the immediate construction of a complete hatchery equipment; 7 room modern residence, hatchery building and water system; with monies appropriated from the Fisheries Fund by the second-session of the 1925 legislature, and at this time the construction work is practically completed. Being in the Rainier National Forest Reserve, it might not be out of order to mention the cooperation extended by the United States Forest Reserve officers in our work of establishing this station.

Other possible locations are being investigated on the Cispus River, another tributary of the Cowlitz where salmon are reported spawning in large numbers, and it is possible that with the completion of the new highway to within a mile of the present hatchery at Clear Fork, other adjacent streams may be fished and the eggs handled at this station.

LEWIS RIVER-EXPERIMENTAL OPERATIONS.

The 1925 budget appropriations for new hatchery construction called for the building of one in the Lewis River water shed. The South Fork has never been considered much of a salmon spawning stream, and the earlier and disasterous attempts in the lower waters of the North Fork of the Lewis, prompted the Fisheries Board to approve an experimental operation along the upper reaches of this stream.

Early in April of last year (1926), the writer, accompanied by Mr. Pollock, Supervisor of Fisheries, Mr. Hugh C. Mitchell of Oregon and a
guide, drove in by car about three miles beyond Cougar, then went by trail nineteen miles up the North Fork of the Lewis to its junction with the Big Muddy Creek, where it was reported spawning beds were located and to where large quantities of the early royal Chinook migrated every year.

At that time of the year we observed in the waters of the Big Muddy a goodly number of large steelheads spawning, and it was decided to carry on operations in this neighborhood. A crew went in shortly afterwards and during the summer's work it was necessary to maintain a pack train, and to go to considerable expense to get supplies up by automobile to the end of the none too good county highway, about 40 miles from Woodland, Washington.

As it was possible to secure only 273,000 Chinook eggs after all this effort, the idea of permanent hatchery construction so far from transportation, is of course impossible, but our plan is to try out another location down the river about one-half the distance from Cougar this present summer (1927).

COMMENTS ON GRAPHS SHOWING SALMON EGG TAKE AT VARIOUS HATOHERIES.

The preceding brief survey of our salmon propagation work as outlined by the Superintendent of Hatcheries, reminded the writer of the many communications and verbal questions regarding the reasons for extending operations in some localities and the abandonment or curtailing operations in others, briefly discussed in the preceding biennial report.

Pictures tell stories quickly and more graphically than volumes of explanation and to show the growth of operations in some of our hatcheries, the following pages are devoted to graphs which roughly depict the history of the hatcheries which they represent. Graphs are not entirely satisfactory,

yet they will prove an economy for drawing comparisons and the statistics can then be consulted for details. It is well to keep in mind when scrutinizing these graphs that, since records prior to 1907 are entirely lacking or inadequate, the curves are started at the zero point at the left of the column for 1907, to establish this point, and gradually progress to the right of the column to the highest point for that year. DO NOT ASSUME THAT HATCHERY OPERATIONS BEGAN IN 1907.

Wide ranges in the curves are common and are readily explainable in most instances by one who has followed developments. The factors which tend toward radical changes are weather, stream conditions, commercial and illegal fishing, and many more minor factors which in the aggregate have very noticeable effects.

KALAMA HATCHERY.

Chinooks. It will be noticed that the tendency is toward a higher average yearly take as compared to the first years of operation. Each year this hatchery has a consistent supply of fall Chinooks, but high water conditions in the stream interfered with the taking of eggs in the years of 1914 and 1920 and indicated by the depressions on the graph.

CHEHALIS HATCHERY.

Chinooks. This hatchery takes a very negligible quantity of Chinooks since the racks are so high up-stream the Chinooks all spawn below the hatchery except in the case of very early high water.

Silvers. This is an example of the efficiency of hatchery operations in increasing the run of a species. It is to be expected that lean years will

obtain, but in most cases they are due to climatic or commercial fishery conditions.

Chums. The great variation of this curve is due to (1) policy (2) aggressiveness of commercial fishermen. Years ago it was the policy to slight chum eggs since chums were practically valueless. This was true in Grays Harbor for years. The zero depression is due to a policy under which no chum eggs were taken at all and finally a limit of about five million eggs per year was established. Commercial fishing for chums in the meantime had become quite remunerative and at present a rebuilding policy is in force. The succeeding years should show an upward curve on the graph.

NASEL HATCHERY.

During the years that it is possible to hold the temporary racks in the Nasel River the take at the hatchery is good. The yearly take is decidedly on the increase. This stream is fished by gill nets and traps and the last few years their take of Chinooks has been very encouraging.

With this increased commercial take the hatchery is steadily increasing also; showing that a judicious use of natural resources can result in the perpetuation of a fine business.

GREEN RIVER HATCHERY.

Chinooks. With increased menaces Green River Hatchery is producing annually a consistent number of eggs. The tendency the past few years is toward a substantial increase. This is especially noticeable in the take on Soos Creek at the hatchery. The bulk of eggs originally were taken from a rack in the Green River, but in recent years with no encouragement the Chinooks are entering Soos Creek indicating that planting in that stream has had its vital effect.

Silvers. Since 1922 the silvers have been greatly on the increase. The 1924 run was phenomenal with ideal
 conditions for taking. The cyclic return is awaited with interest, the hope being that with similar conditions a further increase will be noted. It would appear that 1924 's take was the result of a fair year in 1920 .

Chums. Chums appear to be uncertain. The zero depression is due to policy and only the consistent taking of chums for a continued period under similar conditions will give us any true indications.

Humpbacks. Since very few pinks are taken in the temporary racks across the Green River, this graph has little value. Pinks do not "run" in Soos Creek on which the racks are permanent, so only a few of the early pinks are stripped for eggs.

Puyallup Hatchery which is located on a pink stream shows a tremendous cyclic return of pinks.

SAMISH HATCHERY.

Silvers. This graph depicts clearly cyclic effects. Many conditions work to create considerable variations, such as water conditions, storms, commercial fishing, illegal fishing, etc., yet the indications of cycles obtain to a greater or lesser degree. The run of silvers in Samish River is phenomenal, having kept up through a period of increasing menaces with wonderful regularity.

The permanent racks were dynamited in 1917, letting the spawn fish escape and indicated by the depression on the graph.

Chums. As the graph indicates, the chums in earlier days were taken very spasmodically. Of recent date they are not overlooked, but too short a time has elapsed to prove whether Samish is suitable for their establishment in any number.

ALL DISTRICTS.

Chinooks. The general trend is upward in all districts with the exception of Grays Harbor. The lack of increase in this district is due to the location of all the hatcheries, each being so high upstream that the early Chinooks spawn far below there. This is also true of several hatcheries in other districts but time will undoubtedly see effort expended in making provisions to take Chinooks on these lower reaches also.

The peak years are the result of the combined takes of Kalama and Wind River. Wind River Hatchery was eventually closed due to excessive seining near by which practically depleted the egg supply.

STEELHEAD MADE GAME FISH BY STATE LEGISLATURE.

The extraordinary legislatíve session of 1925 in chapter 178, section 4, classifled steelhead, (Salmo gairdneri) as a game fish above a point established by the director of fisheries as the mouth of any river or stream. In some districts of the state, especially the Columbia River, the steelhead is quite a factor in the commercial fishing. In the Puget Sound area, however, especially after the promulgation of the regulations of the fisheries board since 1921, the commercial value of the steelhead became negligible, due to curtailment of stream fishing in all streams entering Puget Sound, and except for the short winter season allowed in the mouths of the Skagit and Snohomish, further curtailed by the above mentioned section 4, very little fishing for steelheads commercially has been engaged in.

Steelhead eggs have always been taken and hatched in all hatcheries of the state and since 1909 to date the records show that this department hatched a total of considerably over $150,000,000$ steelhead trout eggs. This figure does not include any eggs taken since 1921 by hatcheries which were allotted to the Division of Game and Game Fish in that year when the Fisheries Department was divided into two distinct organizations.

This past season salmon hatcheries continued taking steelhead eggs as usual and same are now being allotted by the Division of Game and Game Fish. This division in turn has taken all salmon eggs possible at game fish hatcheries located on streams which salmon frequent in their spawning migrations. I wish to take this opportunity to call to your attention the cheerful and unselfish cooperation shown by Mr. S. F. Rathbun, Supervisor

of the Division of Game and Game Fish, and his subordinates in all of the work where our operations join.

We believe that our hatchery operations including repairs, replacements, and new construction are being conducted very economically. All plans and estimates are developed and made in the department's office and all building work undertaken is under the direct supervision of the general superintendent of hatcheries. A large 2 -ton White truck is used in hauling materials, supplies, construction equipment, etc., from one hatchery to another, and the Auburn warehouse, constructed during this biennium, is available for storage of bulky hatchery supplies, concrete mixers, and other construction equipment when not in use. All purchases of hatchery supplies and materials needed in construction are made through the State Supervisor of Purchasing at wholesale rates.

The curtailment of considerable necessary upkeep repairs and replacements, through shortage of funds, in the previous administration, threw a considerable extra burden upon our operating expense the past two years. However, when reviewing the work accomplished, with the necessary reorganization and building up of our field forces, we feel that hatchery
stations, equipment and personnel are now in a position to accomplish even better results during the next biennium.

WASHINGTON'S OYSTER INDUSTRY.

For over a year the department has employed, at full time, a superintendent on the state oyster reserves in the Puget Sound District in place of local watchmen, who were not paid sufficiently to give the work any particular attention, except as concerned one reserve. It would seem that this plan, although it has its limitations, is more successful. Considerable sale of oyster seed is made every year to operators of private beds. The total received from sales of oyster seed for the years 1921-1924 inclusive in the Puget Sound District was $\$ 16,835.87$, an average of $\$ 4,208.97$ per year. In 1925 the sales were $\$ 7,241.17$, in 1926 , $\$ 5,323.07$ and at this writing the returns show that 1927 will probably exceed $\$ 5,000.00$.

The oyster industry of the state of Washington, centering in the upper Puget Sound area near Olympia and in the southerly waters of Willapa Harbor, has experienced many ups and downs. The operations in Puget Sound are decidedly on the up-grade, and seemingly on a firm basis, according to the following values reported on oysters marketed: 1921, \$212,979.00; 1922, $\$ 276,660.00$; 1923, $\$ 326,405.58$; 1924, \$339,484.80; 1925, $\$ 363,696.50$; and $1926, \$ 379,682.25$. In the Willapa Harbor oyster area the yearly sales of oysters reported are: $1921, \$ 21,217.30 ; 1922, \$ 36,-$ 539.19; 1923, $\$ 42,599.69$; 1924, $\$ 41,010.21$; 1925, $\$ 12,087.25$; and 1926 , $\$ 30,470.75$.

In Puget Sound an especial effort has been made to shuck oysters on the beds or in nearby shucking plants so as to return all shells to the beds for cultch. The shipping of oysters in the shell and failing to return the shells to the beds has been one cause of depletion. It is hoped that a remedy may be found to reestablish, in part at least, the conditions of the Willapa Harbor beds, where the most serious depletion has occurred.

STUDIES OF WASHINGTON OYSTERS AND TRANSPLANTS.

Professor Trevor Kincaid, of the Blology Department of the University of Washington, has for several years been studying the oyster resources of Washington, and following this report will be found some brief observations which he has prepared on these studies. His complete report on his research work on Washington oysters is about ready for publication, and should be published by this department.

TRADE WASTE INVESTIGATIONS.

At the annual meeting of the Olympia Oyster Growers' Association, held in Olympia, July 19, 1926, the attention of the Association was called to the necessity of protecting the fish and shellfish in the waters of the state from deleterious industrial wastes.

With the advent of pulp and paper mills in Washington, it was pointed out that scientific investigations, as well as changes in statutes, were needed in order to check such pollution from the start.

In session August 30, 1926, the State Fisheries Board met with representatives of the Oyster Growers' Association of Pacific Fisheries, the State Health Department and the College of Fisheries, for considering ways and

View Showing a State Oyster Reserve, Puget Sound.

Oyster Seed Buyers' Scows Loaded and Waiting for High Tide to Tow Away to Private Beds.
means to properly investigate the situation concerning the deleterious effects of trade wastes. Preliminary investigations of plants already established were ordered made and the preliminary work of getting samples and determining water contents from these plants was carried out by Mr. D. R. Crawford of the College of Fisheries and the results reported to the State Department of Health, Mr. H. W. Nightingale, State Sanitary Engineer, who continued more detailed investigations during the fall of 1926 , assisted by Mr. Frank R. Shaw, Associate Sanitary Engineer of the United States Public Health Service, in considerable of the fleld work.

The first investigation concerning pulp mill wastes, was completed about the middle of January, 1927, and was reported upon at a meeting in the Chamber of Commerce, Olympia, January 21, 1927. This meeting was attended by legislators, oyster growers and representatives of the fisheries interests, and a brief report of this first investigation, by Mr. Nightingale, appears in this issue.

THE CLAM INDUSTRY OF WASHINGTON.

Pacific Ocean Beaches.

The canning of razor clams (Siliqua patula) on the Paciftc Ocean beaches of this state has developed into a well established seasonal industry, employing considerable transient labor besides local diggers, during the months when commercial clam digging is permitted by the state laws, namely, March, April and May. Advertising and the taste developed for this product have resulted in apparent over-fishing at times, not to mention inroads made in the parent stock by the persistent out of season clam digging by tourists and local residents and the apparent wastage attendant thereto, due to the fact that the present law contains no restrictions on what a person may dig for his own use.

Legislative attempts to limit the daily amount of clams one may take for personal use, as well as the minimum size permitted for commercial use, have so far failed of passage, but some such regulatory measures must be secured or this valuable industry in its present magnitude is liable to be seriously reduced.

Studies of the life-history and growth of the razor clams on the Pacific Ocean beaches have been conducted by Mr. Harvey C. McMillin since 1923, and in another part of this report appears a brief memorandum of his observations brought up to and including the clam season just closing, May 31, 1927. Data concerning the packs of the past two years will be found in the statistics for 1925 and 1926 which close this report.

Puget Sound Clams.

Although the canning of clams in the Puget Sound area does not compare in magnitude with that of the Pacific Ocean beaches, a considerably larger tonnage of clams is marketed fresh each year. The yearly season extends from September 1 each year to March 31 of the following year; several varieties of clams are obtainable, and the clam beds over the Puget Sound area are quite extensive. Up to the summer of 1925 no very special study of the clam beds of Puget Sound had ever been made and a comprehensive study would necessarily cover a considerable period of time and require the services of several investigators; however, during the vacation season of 1925 , Mr. H. W. Nightingale, then an instructor in the

College of Fisheries of the University of Washington, made a launch trip covering hurriedly the better known clam areas of the Sound, and his report is contained in another section of this report.

BIOLOGICAL STUDIES AND INVESTIGATIONS.

The biological elements which pertain to the life history, habits, growth and supply of the fish and shell fish with which this department has to deal require a considerable scientific and semi-scientific knowledge of conditions which augment or deplete the marine life of the state. Some very valuable reports have been made. One which deserves mention is "The Taking of Immature Salmon in the Waters of the State of Washington" by E. Victor Smith of the University of Washington. Mention has already been made of studies by Professor Kincaid, Mr. McMillin and others. Brief mention was made in the last two biennial reports of some investigations in progress under the direction of the College of Fisheries. Except for the limited survey of Puget Sound clam beds made in the summer of 1925, reported in another part of this biennial, the following is the only additional memoranda brought to my attention:

REPORT ON STREAM INVESTIGATION.

D. R. Crawford, Sept. 25, 1925

The outstanding feature of this summer's work has been the investigation of the Cowlitz water shed. Young Chinook salmon were found in abundance in the Cowlitz river and its upper tributaries in August. Examination of the tributaries showed that the spawning grounds cover large areas, thus indicating that future development of the summer run of Chinook ealmon may proceed on a larger scale. Good roads make all possible hatchery sites in the Cowlitz Valley easily accessible by automobile. Undoubtedly, development of the summer run in the Cowlitz will contribute greatly to the supply of early Chinook salmon in the Columbia river.

Other rivers investigated include the Nooksack, Skagit and Stillaguamish. These rivers and their tributaries contain very extensive spawning grounds for all species of salmon except the sockeye, this salmon spawning only in Baker Lake. Swarms of young Silver and young Chinook salmon, have been seen in all the rivers mentioned. These little fish make up the future supply of salmon in Puget Sound and constant vigilance is necessary to protect them.

A very good run of large humpbacks in the Skagit is taking place now and mature fish have been found in the streams above Marblemount. This is rather an unusual distance from salt water for humpbacks to run. Young coho or silver salmon and steelheads were abundant in the Stillaguamish river, and no great extension of intensive fishing off the mouths of these rivers should be permitted.

The following is a condensed memorandum on general scientific investigations of the North Paciflc:

INTERNATIONAL PACLFIC SALMON INVESTIGATION FEDERATION.

One of the outstanding developments in flsheries conservation work during the past biennium was the movement started early in 1925 when the fisheries officials of Canada and the United States met in joint session with those of Alaska, California, Oregon and Washington and formed the "International Pacific Salmon Investigation Federation," their first meeting being held in Seattle with the State Fisheries Board of Washington on March 16 and 17, 1925.

The second meeting of this body was held in the office of the U. S. Bureau of Fisheries, L. C. Smith Building, Seattle, on November 24, 1925 ,
with Hon. Henry O'Malley, United States Commissioner of Fisheries, presiding. Reports from all districts were made on tagging experiments and other salmon investigations conducted during the summer of 1925 , undertaken through the preliminary plans formulated and discussed at the previous session in March, as set out in detall in the last biennial report, (pages 6, 7 and 8). Space does not permit of the detailing of the various discussions and reports, but the apparent results of starting this cooperative effort of all Pacific Coast fisheries officials with the national fisheries officials of both Canada and the United States show that work of this character is greatly needed and in the right direction.

On December 2, 1926, the third meeting of the Federation took place in Seattle at the office of the United States Bureau of Fisheries, Mr. O'Malley again presided and each state, as well as Canada, British Columbia and Alaska were all represented. The chairman of the program committee, Dr. Rich, presented an outline based on suggestions made at the previous meetings, as well as the field work experiences of those present, and a full discussion of the various points set out below, followed. The meeting adjourned, subject to the call of the chairman, and it was suggested that the various subcommittees continue their study of various phases of the work outlined and be prepared to make reports whenever another meeting might be called.

REPORT OF THE SUBCOMMITTEE ON PROGRAM OF THE EXECUTIVE COMMITTEE INTERNATIONAL PACIFIC SALMON INVESTIGATION FEDERATION.

Dr. Willis H. Rich, Director of U. S. Bureau of Fisheries Laboratory, Seattle

Abstract

The subcommittee wishes first to express its bellef that the primary purpose of any program of research should be to produce the essential knowledge needed for the proper and scientific administration of the salmon fisheries. Our desire is to effectively conserve the great salmon resources of the North Pacific, and our conception of such conservation involves the utilization of the resources to the fullest extent compatible with their perpetuation. We would like to be able to say definitely how many salmon it would be possible to take from a given region and still leave sufficient for spawning purposes so that the supply will continue year after year at a high level. It has been repeatedly brought out at both of the previous meetings of this committee that the central idea about which we should build our program is the production of the maximum yield obtainable from this fishery, and by the maximum yield is meant the greatest production of fish which may be taken for commercial purposes without affecting the future supply. To provide adequately for this we must know: (1) what natural fluctuations in the abundance of salmon occur; (2) the causes of these fiuctuations, particularly the immediate causes though the ultimate causes should finally be known; (3) the intensity with which the commercial fishery is conducted and its effect on the future supply; and (4) the relative value of various measures which may be used to prevent depletion and to build up runs already depleted. With these fundamental requirements in mind the following program is presented: 1. Collection of adequate and uniform statistics. 2. Tagging experiments. 3. Scale analysis of the adult runs. 4. Study of the adult returns from known escapements to the spawning grounds. 5. Stream surveys of the spawning grounds. 6. Study of the production of seaward migrants from known escapements of parent fish.

7. Effleiency of various methods of artificial propagation as compared with natural propagation.
8. Effect of transplantation.
9. Improvement of spawning areas and overcoming of obstacles, natural and artificial, to the ascent of spawning salmon and to the descent of the seaward migrants.
10. The life history in fresh water with particular attention to the factors affecting survival during this period of the salmon's life.
11. Life history in the ocean.
12. Study of the effect of sea fishing.

This state with Oregon and California, following the suggestion of Dr. C. H. Gilbert, jointly leased a purse seine boat and net, and employed a crew to conduct salmon tagging operations along the coast from Cape Flattery to Monterey. Although an expensive undertaking, no results were obtained worth reporting, except that it is very doubtful if wholesale tagging, even under most favorable conditions, would be productive of very valuable information, unless perhaps some data on the percentage of immature salmon taken by this method.

During the summer of 1926 , the three states mentioned above did some off-shore tagging individually and as reported in the meeting of December 2, 1926.

Studies and investigations of more or less importance are constantly under way by men in the department covering not only the salmon, but many of the other less valuable and less known fishes abounding in waters of the state of Washington, and the department is fortunate in having, as assistant superintendent of hatcheries, Mr. Arthur S. Einarsen, who besides being a science graduate of the University of Washington, has had a considerable experience in practical flshing both in Alaska and Puget Sound waters, and he has summarized briefly a memorandum on investigations conducted during the 1925-1926 biennium for this report which reads as follows:

INVESTIGATIONS CONDUCTED DURING THE 1925-1926 BIENNIUM.

The State Fisheries Board and the State Supervisor of Fisheries were very active during this period in seaching out facts relative to our less known fishery resources and studies were made of such flsheries as the Columbia River smelt (Thaleichthys pacificus), Puget Sound smelt (Hypomesus pretiosus), the Dungeness or edible crab (Cancer magister), the various representatives of the flat fishes (Pleuronectidae) such as the flounders, sole and plaice, and considerable attention was given also to the herring native to this district (Clupea pallasi).

The investigations were conducted with one chief purpose in view; namely, the establishment of real conservation policies. Incidentally, a wealth of useful knowledge was gained and resulted in changes which may be listed as follows:

1. The shortening of the weekly fishing season for Columbia River smelt and restricting the fishing area which tend toward (a) the establishment of a better working condition for fishermen and shippers, (b) give the smelt a better opportunity to perpetuate themselves, (c) provide for a better grade of fish reaching the market by eliminating spawners in poor condition.
2. The establishment of a shorter weekly season on Puget Sound smelt and the placing of an individual fishing for sport for his own use, on an
equal basis with a commercial fisherman; that is, the same seasons must be observed which tends toward (a) greater period of protection to the spawning smelt, (b) and makes this protection effective by denying everyone the privilege of fishing during the closed season. Whereas, formerly sport fishermen had fished the beaches indiscriminately during the weekly closed season and wantonly undid any benefits that might have accrued, by taking the spawning fish or tramping their spawn into the beach sand.
3. An amendment to the previous regulations for the protection of the crab, was made by the 1927 session of the legislature, which gives crabs greater protection by (a) permitting only the taking of male crabs of at least $61 / 4$ inches across the back immediately in front of the points, (b) and limits the number of crabs that an individual (not a commercial fisherman) may take in any one day for personal use, thereby limiting the wastage that so often occurs when the opportunity to take an unreasonable number of crabs presents itself even though no proper outlet for their disposal is apparent.
4. Establishment of new orders regulating the taking of bottom fish by closing certain spawning areas indefinitely, closing other areas to commercial gear but allowing individual sport fishermen to enjoy these areas unmolested, by closing certain areas seasonally and by regulating the size of mesh used to take the bottom fishes. These regulations tend toward bottom fish protection since (a) spawning fish are allowed to go unmolested, (b) the limiting of the mesh halts the destruction of immature fish, (c) the seasonal closed areas give an impetus to prospecting new grounds, therehy discouraging overfishing of one area, (d) the open season on the most frequented fishing banks is chosen to fall at a time when outside flat fish such as the halibut from off shore and Alaska is not in such direct competition, since halibut fishing closes November 15 th, each year, and continues closed till February 15 th of the next year. This has done more to stabilize a weak market than any amount of advertising.
5. The creation of new orders regulating the taking of herring by dividing the Puget.Sound District into two areas, each area being fished alternate years. This should be a good step toward conservation since it

Herring Eggs and Fry (from Incomplete Report on Puget Sound Herring Fishery).
would be impossible to over-fish an area and, should it be found to be unnecessary after being in effect for a time, it can readily be changed, although for the present it looks to be a particularly wise move to conserve a natural resource until a time arrives when its value is more appreciated.

Further investigations are under way and a continual vigilance is exercised in the fishing field with the idea of sane conservation in mind. The rights of individuals are always safeguarded, the state demanding no licenses for sport fishing or fishing for one's own use with certain types of gear and allowing continuous fishing all the year around, except in a few cases when it has been found necessary to compel everyone to observe closed periods to prevent annihilation of runs. It will be observed that all closed periods open either on Saturday or Sunday. This has been arranged so that people whose only leisure comes over the week-end will not be deprived of the opportunity to fish.

Fishermen as a class are prone to anticipate disastrous effects of any new regulations. The following excerpt from a smelt flsherman's letter at the issuance of a new Board Order in 1926 prior to the opening of the season, is interesting:
"* * * The latest ruling of the Board of Fisheries is going to put us smelt fishermen in this district completely out of business. We cannot make a living * * *, etc."

There is seldom a case where the fishermen will wait for effects or study the regulations over a season. In following through the complaint above, we find that the take of smelt in his district in 1925 was 80,359 pounds. In 1926, the year of the new regulation, the district's take was 167,613 pounds or an increase of 87,254 or more than 100% with a longer weekly closed season, thereby insuring future runs by permitting the smelt to reach the beaches to spawn.

The records of the complainant are likewise very enlightening.
During 1925 he took 7.815 pounds of smelt.
During 1926 he took 10,969 pounds of smelt.
It might be mentioned that his first complaint has not been repeated.
Among the numerous surveys and investigations carried on by the department during the biennium, we find the following:

1. A report on the Pend Oreille river and Z Canyon.
2. Introducing work on the life and habits of the Columbia river smelt (Thaleichthys pacificus).
3. Investigation of the hair seal herds as a menace to the salmon industry.
4. A study of salmon runs on Grays river, a tributary of the lower Columbia.
5. Numerous studies of reported polluted areas, trade waste effects, and stream obstructions.

In addition to the biological studies mentioned in the foregoing by Mr . Einarsen, the department received several reports on investigations in the Columbia River water shed conducted by Mr. Hugh C. Mitchell, of the United States Bureau of Fisheries, in the employ of the Columbia River Salmon Protective Association. In this work, by the direction of the Fisheries Board, this department furnished Mr. Mitchell an assistant for several weeks, Mr. J. B. Phillips; who graduated from the College of Fisheries in 1926.

The patrol inspection force of our department is under instructions to constantly report on all salmon streams visited, as to conditions of water,
value and extent of spawning beds, as well as conditions and extent of the fishing operations.

POLLUTION PROBLEMS.

The investigations on pollution or possible pollution through industrial wastes have already been mentioned under the section of the report on the oyster industry. It is a satisfaction to report some progress, and that, in the legislative session just completed (March 1927), the department secured an amendment to section 5734 of the Fisheries Code, which requires the submittal of plans and specifications for the disposal of industrial wastes of any new projected plants in the state of Washington to the State Director of Health and the Supervisor of Fisheries for approval before such plants may be constructed. The amended section 5734 is given below.

Sec. 85. Polluting Waters Prohibited.

It shall be unlawful to cast or pass, to suffer or permit to be cast or passed into any waters of this state, either fresh or salt, any sawdust, planer shavings, wood pulp or other waste, lime, gas, oil, ofl products, grease, coculus (cocculuc) indicus, or any chemical substance, except coal mine waste or drainage, in quantities sufficient in the judgment of the state flsheries board and the state board of health to injuriously affect, destroy or diminish the growth of the plankton, benthos, or algae or the flsh and shellfish inhabiting such waters or impair the supply thereof. It shall also be unlawful to cast or pass, to suffer or permit to be cast or passed into any waters of this state, either fresh or salt, any refuse or waste material, substance or matter at any time whatsoever which may be determined by the state board of fisheries to be deleterious to fish or shellfsh. The state board of health shall co-operate with the state fisheries board in the making of its said determination. The state flsheries board shall have the right to call upon the department of health for such investigation and report as may be necessary from time to time concerning the effect upon aquatic life of various kinds of refuse and waste materials, substances or matters to the end that it may from time to time, as warranted by conditions, promulgate rules and regulations prohibiting the deposit in the waters of the state, either fresh or salt, of such refuse or waste materials, substances or matters as may be deleterious in their effect upon fish and shellfish. The rules and regulations shall be promulgated and published in the manner now or hereafter prescribed for the promulgation and publication of its rules and regulations relating to the taking of food fish and they shall constitute prima facie evidence that the refuse or waste materials, substances, or materials therein declared to be deleterious are in fact deleterious to fish and shellfish inhabiting the waters. In any action or proceeding involving the validity or construction of any such rule or regulation it shall be competent to plead the same by title and number and to prove the same by the introduction of a true and correct copy thereof, duly certifled by the secretary of the State Fisheries Board. The Director of Fisheries and Game, through the Supervisor of Fisheries, with the approval of the State Fisheries Board, shall have the power to grant permits for the sawing of logs in such waters as in his judgment can be used for that purpose without injury to fish and shellfish. Before any industrial or manufacturing concern, the construction and operation of whose plant will necessitate the dumping of refuse or waste materials, substances or matters into any waters of this state, either fresh or salt, shall proceed with construction and operation, it shall submit for the approval of the Director of Fisheries and Game, through the Supervisor of Fisheries, and the Director of Health, detailed plans for the disposal of its refuse or waste materials, substances or matters, and if such plans do not in the judgment of the Supervisor of Fisheries and Director of Health make adequate and effective provision for safeguarding fish and shellfish in such waters, the said Supervisor of Fisheries and Director of Health shall disapprove the same and it shall be unlawful for the person, firm or corporation to proceed with the operation of its said plant until the plans are revised in such manner as to meet the objections of the Supervisor of Fisheries and Director of Health. Any person, firm or corporation feeling himself or itself aggrieved by any order or ruling of the Supervisor of Fisheries and the Director of Health disapproving
the detailed plans for disposal of refuse or waste materials, substances or matters submitted by an industrial or manufacturing concern as above provided, shall have the right of appeal from such order or ruling to the superior court of the county in which the plant of such industrial or manufacturing concern is situated, in the manner provided by law for taking appeals from justices' courts, and upon such appeal belng taken and perfected, the same shall be set for hearing and heard by the judge of said court, de novo without a jury and at the conclusion of the hearing the judge shall enter an order approving the plans submitted, or modifying and approving such plans, or disapproving the same, as may to the judge seem necessary for the protection of the public health and the fish and shellfish inhabiting the waters of this state. (Sec. 1, Chap. 299, Laws of 1927.)

Old statute prohibited the owner of a swamill or employe from casting sawdust, etc. Held that any mill that makes sawdust is contemplated by the statute, as the primary object is the protection of fish: State v. Kroenert, 13 Wash . 644 ; State v. Botchford, 71 Wash. 114.

In compliance with the provisions of this section, the following skeleton form of rules and regulations prepared by the State Department of Health were read and approved by the State Fisheries Board under date of Aprll 15, 1927 :
"All manufacturing and industrial plants proposed for establlshment on or adjacent to the waters of the state shall submit plans and specifications to the State Department of Fisheries showing:
"1. The character and quantitles of materials used in the manufacturing or industrlal processes.
" 2 . The character and quantitles of waste materlals arising therefrom which might enter the waters of the state.
'3. If recovery processes, patented or otherwise, are proposed for use in connection with the wastes arising from such plants, a statement regarding the name of the process if it has any, and the character and probable percentage recovery of the wastes should likewise be submitted.
"4. If such plants are operated only during certain seasons of the year, mention should be made thereof."

PROBLEMS IN MAN-MADE MENACES TO FISH LIFE.

1. Irrigation and Reclamation Projects.

The screening of the irrigation ditches is still an unsolved problem, and the destruction of young salmon and trout is enormous, and it seems at this time proper to call attention to the reports that have been made on the subject from time to time in the past, and during the past year, especially as concerns the Yakima River, a tributary of the Columbia.

John L. Riceland, State Fish Commissioner, in a biennial report of 1911 and 1912 , page 110 , shows a photograph with the following caption:
"Seven hundred salmon fry taken from one lateral irrigation ditch within a distance of 200 feet."

Dennis Winn, Field Superintendent, U. S. Bureau of Fisheries, in an article reporting a visit to the Yakima River ditches and printed in the "Pacific Fisherman" of February 1920, says in part as follows:

[^0]WHEREAS: The Wapato Irrigation Canal, of the Yakima Indian Service and the Sunnyside Irrigation Canal of the Reclamation Service, both located in the Yakima County, being the largest of their kind in the county, if not in the state of Washington, the former using 15,000 second feet of water and the latter 20,000 second feet of water, and

WHEREAS: Said ditches or canals, operating to capacity for seven months of each year, and during parts of said period, taking fully 90% of the water out of the Yakima River.

WHEREAS: SaId ditches or canals, taking said amount of water out of the Yakima River and being protected in no way whatsoever, are taking, during their operating period, a large amount of the food fish as well as the game fish from said Yakima River.

WHEREAS: The Yakima River, with its tributaries, is positively known to be one of the best natural salmon streams in the Pacific Northwest.

WHEREAS: This loss of salmon each year amounts to millions of dollars In food to the people of the states of Washington and Oregon.

Extract from L. E. Mayhall's report dated June 8, 1922:

Abstract

The destruction of spring Chinook salmon in these two irrigation systems is enormous. As a result of the large percentage of the Yakima River fiow being diverted, there is very little opportunity for the small salmon migrating down stream to avold passing into these canals.

Extract from report made by J. B. Phillips, dated September 11, 1926. Mr. Phillips was working under Hugh C. Mitchell, Field Representative for the Columbia River Salmon Protective Association:

The larger irrigation canals of the Yakima District tend to divert the main current of the river into the canal, they might be called down stream flsh traps. The Sunnyside Canal leaves no alternative whatever but for the young fish to go down the canal.

Briefly stating the conditions on the Yakima River where the greatest loss is occurring: The Sunnyside Canal, a Reclamation project and the Wapato Canal, an Indian Service project, are diverting at times, and especially at a time when the young salmon and trout are migrating down stream, practically the entire flow of the Yakima River.

It is inconsistent to screen the privately owned irrigation canals above these projects for the reason that the salmon would be diverted, by these two canals, to the flelds to die.

It is also impractical to insist on screens in the canals below these projects for the reason that the young salmon have already been diverted from the river and killed by the Federal owned and operated canals.

The larger responsibility for this waste and loss to the sportsmen, commercial fishermen and the state in general, rests with the Federal Government; on the other hand this department is also at fault, for in the past it should have attempted in'some way to bring about corrective measures.

It is one of the dark spots in National Government that one department spends enormous sums of money to build up a natural resource, in this instance the propagation and protection of fish life, while another department of the Federal Government, through its activities in another field just as important economically, unnecessarily destroys fish life by the millions.

2. Construction of Power and Storage Dams.

The building of any dam in a stream, whatever the height of same, at once changes the natural conditions of the stream, and as a general thing,
dries up spawning beds below a canyon where the dam is usually built, and likewise above the dam covers up by flooding the spawning beds above the dam site.

Salmon or trout in their natural upstream movement, for the purpose of spawning on beds farther upstream than the dam location, and, stopped when green or unready to spawn, must be taken over the obstruction or their economic value for reproducing the species is lost. Salmon of the early runs, in some instances travel hundreds of miles upstream before they are ready to spawn. Detention by impounding in limited spaces has not proven satisfactory for reproduction purposes, as is witnessed by the memorandum on the Elwha Hatchery in the last biennial report.

The North Fork of the Skokomish River which enters Puget Sound at the head of Hoods Canal, is also a good example of the destruction of spawning beds. In this case the power and storage dam for the city of Tacoma, Lake Cushman Project, is more than 200 ft . high. It has no flsh ladder. The storage is large and the generating installation is greater than the water flow and is operated in a hook-up with other power plants. During periods of the day when demand for power is low this plant is shut down and the water is conserved which leaves the river dry for miles below the power house. As the entire water flow is conserved, there is no overflow to enable the young migrating fish to pass down over the dam or to furnish water for the constant operation of a fishway. Besides the above mechanical difficulties the owners of the power development secured a supreme court decision reversing the decision of the lower court, to the effect that the power is of more importance to society than the salmon. Thus we see a very important salmon stream going down before the advance of commercial development.

It is hoped, in this instance, to eventually secure aid under the provisions of section 6 , chapter 90 , Laws of 1923 , which provides for the erection of a hatchery where a fishway is impracticable. The mouth of the North Fork of the Skokomish may possibly be racked in such a manner as to direct the upstream migrants into the other forks of this stream, but a practical hatchery location with ample water supply enters into the problem, and so far owners of the only location, seemingly feasible for hatchery operations, did not receive the advances of a representative of the department very cordially.

Mention was made in the last biennial report concerning the proposed power project at Priest Rapids on the Columbia River, wherein the Federal Power Commission granted a permit without, seemingly, any special consideration of the reports of a hearing held by Col. W. J. Barden of the United States Engineers in January, 1924, and the brief submitted by representatives of the fisheries interests, the United States Bureau of Fisheries and the Fisheries Department of Oregon and Washington, entitled, "Save the Columbia River Salmon."

Article 18, of the Federal license, or permit to the Washington Irrigation and Development Company reads as follows:

Article 18. The Licensee shall, without cost to the United States, construct, In connection with said dam, a fishway, fish hatchery, or such other structure or structures as may be determined by the Secretary of Commerce and in accordance with plans which shall be prescribed or approved by said Secretary: Provided, that the financial responsibility herein imposed on the Licensee for the construction of
such structure or structures shall not exceed an aggregate of three hundred thousand dollars $(\$ 300,000)$.

Early in 1926 the proposed site of the Priest Rapids dam was visited by a committee composed of representatives of the United States Bureau of Fisheries, Oregon and Washington Fisheries Departments and the Priest Rapids power permit holders' engineer. Tentative plans of the proposed development were shown to the committee and the area where the proposed dam is to be built was looked over.

It would seem from the magnitude of this proposed development that construction would cover a period of from four to six years and in turn menace the runs of salmon over the corresponding number of cycle periods. The great fluctuation in water levels at varying periods of the year adds another matter for serious consideration.

From the standpoint of the fishing industry this immense construction project, if and when it is consummated, will seriously deplete the salmon run in the Columbia River, which goes above the Priest Rapids to spawn, even though some flshway may be developed that will pass fish over this proposed obstruction. Whatever plan is made must not only handle the upstream and downstream migrations after completion, but must provide each year an unobstructed passage of each year's run of salmon during construction.

Out of the hearings on the Priest Rapids fishway problem in 1924, came the formation of a general committee on fishways formed by flsheries and power interests.

At the session of the committee in May, 1924, an executive committee was chosen to have immediate charge of the work for the general committee, consisting of J. E. Yates of Portland and W. D. Shannon of Seattle, representing the hydro-electric interests, and Professor John N. Cobb, and on June 12th this committee directed that the research work undertaken should be under the direct supervision of Professor Cobb.

Funds to the amount of $\$ 5,000.00$ were provided on the following basis: one-fourth each from the Oregon and Washington Departments of Fisheries and one-half by the power interests.

The permit for the Baker River Power dam near Concrete was granted by the State Hydraulics Department during the previous administration, (1921-1924) and in the late spring of 1925 construction was well under way. Upon investigation it was learned that at the time the permit was up for consideration, protests had been filed by both the Federal Bureau of Fisheries and the State Department of Fisheries, but upon a promise to comply with certain conditions, set out in a letter from the U.S. Bureau to the State Department of Hydraulics, permit was granted. It could not be found, however, where any mention of these conditions had been stipulated in the granted permit.

With the Baker River dam fifty per cent completed in 1925 and the practical destruction of the sockeye run for that year in sight, this department proceeded as best it could under the above mentioned permit conditions. Investigations of the dam under construction and a survey of proposed fishway plans of the project engineers by the representatives of this department, were made. Tentative changes and concessions were agreed upon by both interests, and tentative plans developed for a fishway
in the limited area permitted along side of the power house site, a considerable distance below the dam.

The chairman of the State Fisheries Board then called a meeting of the fishway executive committee previously mentioned for a report on their investigations during the preceding year. It was found that experiments costing a considerable sum had been made with hoists, but that no particularly pertinent knowledge had been gained except that it would first be necessary to corral the fish to operate a hoisting device with any degree of success.

In view of the necessity of immediate action on the Baker River project, the tentative plans prepared by the Stone \& Webster engineers, including certain requirements asked by this department, were presented to the committee, and under the circumstances approved as being probably the most feasible in this emergency.

With minor changes and adjustments, made necessary to fit conditions which arose as construction developed, the fishway was built, but too late to save the sockeye run of 1925 to Baker Lake. When completed the fishway consisted of pools 6 feet by 10 feet with a rise of 2 feet from pool to pool to an elevation of 42 feet. Next came 700 feet of flume that reached to an upper pool at which point a submerged tank car was so arranged that the salmon entered it voluntarily. The car was hauled up an inclined track by an electric hoist to the crest of the dam, where the salmon were dumped into a receiving tank and passed through a flume to the water above the dam. Of the 1926 sockeye run 3,500 fish were put over the dam with a loss of 25%. Of the silver salmon run 8,219 fish were put over, and 175 Chinook salmon.

An arrangement at the entrance to each pool, required by this department, which would not obstruct salmon from entering the fishway or from passing up from one pool to the other, but which would prevent fish from retreating down the fishway or out of it once they had entered, was installed, but we failed to get an arrangement of an adjustable gate at the foot of the fishway properly provided to cause a waterfall to attract fish, no matter what the stage of water. These two items, it is believed, are most important items in fishways of any considerable height.

The results obtained in 1926 although not sufficient to warrant the department giving the Baker River fishway complete approval, contained considerable promise of better results this present season (1927).

Downstream migrants during the 1926 season were passed through the spillways with very little apparent loss, as observed by representatives of this department and the U. S. Bureau of Fisheries.

During the recent freshets considerable movement of debris in the canyon below the dam and above the power house has moved or been washed downstream, which constantly changes stream bed conditions and to prevent upstream migrants going past the entrance to the fishway a permanent rack is now being constructed, to divert these upstream spawning salmon to the entrance of the fish ladder.

At the close of this biennium (1925-1926), the 700 feet of flume and incline hoist are being dispensed with this season. A standing cable is being used which reaches from a tower on the crest of the dam to the upper end of the fishway which is about 700 feet distant. A travelling tank is swung on this standing cable which is operated by an electric
hoist. The fish enter the tank as before mentioned at the head of the ladder and are disposed of on the crest of the dam as before. The destructive action of the freshet water passing over the dam, the rock slides down the walls of the canyon and the ice forming from the spray of the dam made successful operation and maintenance of the flume and incline hoist impossible in this 700 feet of canyon.

With the transferring of the responsibllity on this operation from the construction company to the power plant operating company, it is hoped that further progress will result, and that any new developments, requiring radical changes, will have very serious consideration before being put into operation, and such matters should of course be submitted to this department as they were during the construction period.

The safeguarding of the salmon spawning streams is most important, and as far as the provisions of the Fisheries Code permit, the department will attempt to see that proper safeguards for unrestricted migration are provided.

The laws under which applications for water diversions, or the erection of obstructions of any nature in streams, are made should of necessity require first consideration for the protection of all flsh life contained therein.

Several new power projects have been mentioned in press dispatches during the past year and nearly every one requires the building of dams in many of our best salmon streams. The department does not desire to unnecessarily obstruct state development, but suggests cooperation of all interests involved in solving these problems so that all may live and prosper.

EDUCATIONAL.

At several of the meetings of the Fisheries Board, and in conversation with those intimately connected with this state's fishery in its many ramifications, the information was brought to light that the people of the state generally know but very little concerning the value and extent of the flsheries and the work which the Division of Fisheries is constantly undertaking to perpetuate and, if possible, increase the value of this most important food resource of Washington.

During the biennium at various times talks have been given to school children and chambers of commerce, bearing especially upon the need of protecting the salmon on the spawning beds, discouraging gaffing, shooting and snagging; also calling attention to the value of one pair of salmon to the state if allowed to complete their natural functions. It was found that talks, no matter how well delivered, were not productive of results unless accompanied by pictures or models to bring home the points desired and at the direction of the Fisheries Board a little case showing the development of the young salmon fry from the egg through about a dozen stages was prepared. This actual partial life-history told the story quickly and brought home the need of conservation at once, and at this writing permission has been received from the Director of Fisheries and Game to have a large number of these cases prepared next year for the schools and with the cases will be included brief, pertinent facts and general information pertaining to Washington's fishery.

During the summers of 1925 and 1926 this department was afforded the opportunity to participate with exhibits at the annual Sportsmen's shows
which were conducted at the Green Lake playfield. Each year arrangements were made for refrigeration, and displays of frozen food fish were put on display. Besides the several types of salmon, specimens of other lesser known food and shell fish were exhibited, together with fishing gear and an exhibit of the day to day growth of the salmon egg from the time it is taken into the hatchery until it becomes a free swimming fry and ready for the rearing pond. Each year little folders were prepared by this office to distribute telling of the fishing industry and the work in which this office is engaged, through funds furnished entirely by the fishing industry in the nature of license fees and taxes on fish caught.

FISHERIES PATROL SERVICE.

The work of the Division of Fisheries has two main lines of endeavor, propagation and protection. The protection, or patrol service, consists of the apprehension and arrest of poachers, fishermen operating without licenses and in areas closed to fishing, and the inspection of gear and equipment used in fishing for taking various classes of fish. In addition to these activities, which require the necessary moving of our small force of inspectors from one part of the state to another, depending upon local fishing conditions, we have required a constant check on fish movements not only in salt water but in the streams. Reports are required on local stream conditions, fiood and low water stages, obstructions, spawning beds, weather conditions, etc., which all have a more or less controlling influence in the maintaining of the salmon cycles.

The use of both floating and road equipment is absolutely necessary and the care and upkeep of patrol boats require considerable attention. A new patrol boat, the "Governor John R. Rogers," was built in the summer of 1926 for use in the lower Columbia River and the cabin of the older Columbia River patrol launch, "Governor John H. McGraw," was rebuilt and a new engine installed. Appropriations were allowed at the last session of the legislature for the installation of a new Diesel engine in the Puget Sound patrol boat, "Governor Elisha P. Ferry," as well as appropriations for new and faster small launches for Puget Sound, Grays and Willapa Harbor. At this writing, however, these boats have not as yet been secured.

Permission was received to have one of our fisheries inspectors act as Chief of Patrol, which centers responsibility in this section of our work, and the results shown in added arrests and total fines during 1925 especially and the greater respect shown for the fisheries laws and the Board's regulations, generally speaking, lead us to believe that as far as humanly possible the inspection force have carried out their duties impartially and with more lasting results.

It might be said, however, that clarifying and amending some of the conflicting statutes would in a large measure assist in making out more convincing complaints for offenders and secure more convictions.

DEPARTMENTAL EXPENDITURES FROM THE FISHERIES FUND.

Considering the status of the finances of this department, I believe I am safe in saying that the Division of Fisheries is on a sounder flnancial basis at this time than at any other period in the history of the department. The cash balance in the Fisheries Fund as of March 31, 1927, reported by the State Treasurer showed $\$ 212,509.90$ and the Oyster Fund, a net total
of $\$ 7,665.09$, and at the start of this past biennium the cash balances as of April 10, 1925, gave the Fisheries Fund $\$ 157,989.30$ and the Oyster Fund $\$ 3,695.17$.

Section 5700 of Remington's Compiled Statutes directs as follows:
The Director of Fisheries and Game is directed to expend such funds, as nearly as may be, in the localities from which they are collected.
and early in July, 1925, a request came from Olympia for a recheck of the receipts and expenditures for the past administration to determine how much of the monies collected in each district had been expended therein. The actual collections handled through this office showed at that time a total of $\$ 715,622.27^{*}$ and in a report of the expenditures of this department during the past administration (1921-1924) made at your request, on August 1, 1925, a complete detailed statement of my investigations and distributions of the expenditures was made and it was shown that $\$ 415$,959.96 was collected in licenses and taxes from the fishermen and dealers in the Puget Sound District; from the Columbia River District, $\$ 232,868.93$; from the Grays Harbor District, $\$ 44,188.27$; and from the Willapa Harbor District, $\$ 22,605.11$; the percentages of collections being, Puget Sound .5812 per cent, Columbia River . 3254 per cent, Grays Harbor . 0618 per cent and Willapa Harbor 0316 per cent.

The appropriation for the biennium ending March 31, 1923, was $\$ 285$,285.00 and there was expended $\$ 259,964.85$, leaving an unexpended balance of the appropriation of $\$ 25,320.15$. For the biennium ending March 31, 1925 , the appropriation was $\$ 292,305.00$ and there was expended during the biennium $\$ 268,475.00$, leaving an unexpended balance of $\$ 23,830.00$, the total appropriations for the four years being $\$ 577,590.00$, the total expended, $\$ 528,439.85$ and the total unexpended appropriation amounting to $\$ 49,150.15$. According to the percentages of the collections the appropriations should have been expended as follows: Puget Sound $\$ 335,695.31$, Columbia River $\$ 187,947.79$, Grays Harbor $\$ 35,695.06$, Willapa Harbor $\$ 18,251.84$, total $\$ 577,590.00$. As no accurate record had been kept during the past administration of the district expenditures, it was necessary in making the recheck to distribute all expenditures which did not definitely designate in what district the expenditures were made on a basis of the collection percentages and this recheck showed that the Puget Sound District actually received in expenditures from the Fisheries Fund $\$ 324,758.09$, the Columbia River District, $\$ 121,748.58$, the Grays Harbor District, $\$ 43,669.34$ and the Willapa Harbor District, $\$ 38,263.84$, the percentages being Puget Sound .6146, an excess of . 0334 per cent in actual expenditures over the collection percentage; Columbia River . 2304 per cent or .095 per cent under; Grays Harbor .0825 per cent or .0207 per cent over; and Willapa Harbor . 0725 per cent or .0409 per cent over the collection percentages. The expenditures of the Collection Department under the supervision of the State Treasurer were not tabulated in the above.

[^1]The total appropriations for the $1925-1926$ biennium were $\$ 465,000.00$ and as compared with the total appropriations of the previous blennium of $\$ 304,805.00$ show an increase of $\$ 160,195.00$. The appropriations for this past biennium, however, included therein for new hatchery buildings, repairs and replacements, additional patrol service and estimates for additional expense in operating new hatcheries a total of $\$ 185,090.00$, which, when deducted from the total appropriations of $\$ 465,000.00$, would leave a balance of $\$ 279,910.00$ for regular operating expenses, which shows a reduction under the 1923 and 1924 biennium of $\$ 23,895.00$.

During the past biennium the actual expenditures from the Fisheries Fund for operations, capital outlays, repairs and maintenance of hatcheries, patrol, biological and sundry expense, destruction of seals, etc., show a total of $\$ 353,621.64$ and adding the $1925-1926$ biennial expenditures of the Fisheries Board amounting to $\$ 4,269.92$, we have a total of $\$ 357,891.56$, leaving an unexpended balance of $\$ 107,108.44$ of the appropriation for the years 1925 and 1926 . Due to conditions which made it impracticable to carry out some of the construction plans for new hatcheries, approximately $\$ 40,000.00$ of this appropriation was requested as a reappropriation for the next biennium. The actual district expenditures for the four districts of the above total of $\$ 353,621.64$ are as follows:

	1025		1026	
	Percentages	Expenditures*	Pcrcentages	Expenditures*
Puget Sound	. 6004	885,090 35	. 4344	\$91,411 37
Columiola River	. 2411	34,529 66	. 3787	78,631 96
Grays Harbor	. 0847	12,128 09	. 0905	19,047 80
Willapa Harbor	. 0738	10,566 66	.1014	21,315 76

Abstract

*Note: The above figures are net expenditures, and do not include a $\mathbf{\$ 2 , 0 0 0 . 0 0}$ revolving fund for 1925 and a $\$ 2,000.00$ revolving fund for 1926 charged to the office and also a $\$ 2,000.00$ revolving fund for 1926 used for a short period for Alaska operations.

The total collections on license fees and taxes on fish caught and other miscellaneous items including reciprocal taxes received from the State of Oregon for the years 1925 and 1926, as well as monies sent direct to the State Treasurer for fines, the sale of state property and miscellaneous items, are shown in the following, together with the percentages for the various districts of the total receipts:

	1925		1926	
	Percentages	Collections	Percentages	Collections
Puget Sound	. 5709	\$155,556 45	. 4839	\$98,706 64
Columbla River	. $\sin 9$	90,750 66	. 4126	84,164 47
Grays Harbor	. 1330	8,40773	. 0473	9,64399
Whllapa Harbor	. 0102	10,252 22	. 0562	11,459 36

During the biennium just closed it seemed advisable to make some adjustments and increases in salaries, especially in the hatchery department. It was found that many superintendents were receiving the same compen-
sation as their helpers, and this was changed by giving every superintendent at least a slight advance over helpers' wages and the new rates of pay were based upon the size and output of each hatchery, the number of men employed and the responsibilities of each particular station. These adjustment advances in salaries, coupled with improvements in handling equipment and the close check of pay rolls for extra, or seasonal labor, have not increased operating costs, but have developed better interest in the work, a more contented and cooperating personnel.

In concluding this report on the activities of the Division of Fisheries, of the Department of Fisheries and Game, for the blennium ending March 31, 1927, I wish to take this opportunity to express for all employed in the department, in whatever capacity, our appreciation of your helpfulness and confidence in the discharge of the various requirements and ramifications of our work.

Respectfully submitted,
CHARLES R. POLLOCK, Supervisor of Fisheries.

THE OYSTER INDUSTRY OF WASHINGTON.

BY PROFESSOR TREVOR KINCAID University of Washington.

The oyster industry of the Pacific Coast does not compare in magnitude with that of the Atlantic Seaboard, since the areas suitable for oyster culture on the western side of the continent are limited owing to the general conformation of the coastal areas. For hundreds of miles along the coast the shoreline consists of broad sandy beaches separated by rocky headlands against which a violent surf continuously beats. Only in Puget Sound and Willapa Harbor on the north and San Francisco Bay to the south do we find any considerable development of that embayed and estuarial condition which favors the production of oysters. Similar but less extensive areas of the same type occur on the coast of Oregon at Yaquina Bay and Coos Bay, and in the more protected interior waters of British Columbia.

Only on Puget Sound and in Willapa Harbor has the oyster industry attained any considerable dimensions, although a few areas in British Columbia and on the coast of Oregon support small but locally important oyster producing centers. To the southward San Francisco Bay has been for a long time an important area for the production and distribution of oysters, but activities there have been largely limited to the growth of transplanted eastern oysters brought across the continent either as seed or partially matured oysters.

The species of oyster indigenous to Mexican waters, considerable beds of which exist in the Gulf of California, has recently been introduced into the markets of some of the California cities through concessions granted to the American promoters by the Mexican government.

The possibility of growing this species in certain of the estuarles of southern California has been called to the attention of those likely to be interested, but as yet little has been done to determine the practicability of the suggestion.

Unlike the industry of the eastern coast, which is based upon the production of a single species of oyster (Ostrea virginiana), the Pacific area
supports at least four types of oyster life. The species which has formed the basis for commercial production is the small indigenous oyster known to science as Ostrea Iurida, but commonly known as the "native" or Olympia oyster, the latter name arising from the fact that the city of Olympia has been the clearing house for the industry since its inception. This species formerly existed in large quantities in Willapa Harbor, but these beds were seriously depleted in early days before the importance of conserving the supply had been grasped and at present the production of native oysters in the Willapa region has been reduced to negligible proportions.

The relatively small oyster industry of British Columbia is also based upon the "native" oyster and the same is true of the several indentations of the coast line of Oregon, notably Yaquina Bay, where oystering is still being carried on upon the remnants of beds once quite extensive but now greatly depleted. The native oyster is reported to exist in certain areas in Southeastern Alaska but those, if they exist, have no commercial importance. To the southward the indigenous oyster ranges to the Mexican boundary but it is of little economic importance on the coast of California.

The oyster industry of Puget Sound was originally conducted by the Indians who brought the molluscs to the early settlers directly from the natural beds. With the development of systems of transportation the demands upon the supply became greater and a period of depletion approaching a state of exhaustion ensued with a corresponding rise in price. The restoration of the beds was brought about through the utilization of methods which were partly the result of a study of practices discovered in Europe, especially on the coast of France, but mainly through empirical observations made by the more progressive and intelligent oystermen. As a result there has been devised a system of culture which is unique and yet remarkably well adapted to its purpose, and the area under tillage has been constantly increased as the demand warranted larger investments in the industry. Notwithstanding its small size the Olympia oyster is unequalled in certain phases of oyster cuisine, especially for cocktails, pan roasts and soups.

Second in importance is the eastern oyster (Ostrea virginiana) which is consumed in large quantities on the Pacific Coast. Most of the product utilized is shipped in from the great oyster centers of the Atlantic region. Considerable effort has been put forth in attempting to produce eastern oysters on a commercial scale by bringing over the small seed oysters from the Atlantic and bedding them in western waters. This industry was initiated many years ago in San Francisco Bay and was later conducted on a considerable scale in Willapa Harbor and in Puget Sound, but never has been a complete success owing to a number of factors, the most serious drawback being the fact that the Atlantic species will not propagate when removed from its normal habitat except under very unusual conditions, and again because the shallow water areas in which it was cultivated did not represent the normal environment of this type of oyster. As a result the transplant industry has not attained the magnitude which was hoped for when the plan was first brought into effect. Few transplants are now grown in Puget Sound, while in Willapa Harbor, where the conditions seemed more favorable, the industry was maintained on a considerable scale till recent years when difficulties arose which caused this branch of the business to suffer a decline and most of the companies operating in this field went into liquidation. In one section of the Harbor, the estuary of the Nasel

River, the cultivation of the eastern species has continued successfully for the reason that in this area the oyster propagates on a large scale and occasionally produces a set of young oysters which thrive in the relatively deep channel of the river. By initiating the proper measures for collecting the spat it seems highly probable that the present crop might be multiplied many times. It is an established fact that these naturally spawned oysters produce a product that is unsurpassed for size, shape and flavor.

The third species of oyster to assume commercial importance on the Pacific Coast is the Japanese species (Ostrea gigas). A number of attempts to acclimatize this mollusc in our waters were made during the past twenty years. Sufficient was learned from the earlier experiments to determine that the Oriental species will thrive in our waters and to warrant the attempt to introduce it on a commercial scale through the importation of seed oysters from Japan. The first consistent effort in this direction was made in 1905 by a group of Japanese who acquired control of an area of oyster land on Samish Bay to the southward of the city of Bellingham. The initial shipment survived the journey across the Paciflc and the young animals readily adapted themselves to the mid-tide flats on which they were bedded out and grew with great vigor. They matured into oysters of surprizing size and many of them reached a marketable condition two years later. Difficulties were encountered by the Japanese company in marketing their product, owing to the unfamilarity of the public with the oriental species, and about this time the legislature of the state of Washington put into effect a law which greatly restricted the ownership of land by aliens. As a result of these conditions the Japanese company was forced out of business and transferred their plant and stock to a corporation known as the Rock Point Oyster Company, which entered upon the business of importing and maturing the Japanese oysters on a much larger scale. The enterprise has proven most successful and has been greatly expanded during recent years. The young oysters are brought over in wooden cases having a capacity of about four cubic feet in which the cultch consisting of bamboo brush or oyster shells is closely packed. The cases are carried as a deck-load upon the transpacific liners and the young oysters come through with surprisingly little loss. It would seem likely that the Japanese oyster may supplant the eastern species in local markets owing to the fresh condition of the product brought directly from beds within easy reach of our oyster consuming public. The principal limitation upon the expansion of this branch of the industry into other areas is the danger of importing with the young oysters dangerous pests. Several of these have already appeared in the Samish region and have established themselves by breeding. The introduction of these oyster enemies into the regions where the native oyster is grown would be a serious matter and it is suggested that for the present no plantings of Japanese oysters be made at points south of Deception Pass.

As in the case of the eastern oyster there is no indication of a set of young oysters derived from the maturing transplants although the eggs and sperm mature in a normal manner and are perfectly viable as they readily unite when brought together artificially. Experiments have been conducted to determine the feasibility of producing the spat through a system of controlled operations after the manner of a fish hatchery. Some very interesting results were obtained and promise ultimate success along these lines

but further experimentations will be necessary before a system can be devised that will be commercially practicable.

The fourth species of oyster utilized on the West Coast is the type grown in Mexican waters. On account of its southern range it is not likely to grow successfully in our waters. Several attempts have been made to bring up small quantities from the Gulf of California but the experiments have not been well planned and up to this time all have perished in transit.

A more detailed account of the oyster industries of the state of Washington is in preparation by the writer which will be published by the State Supervisor of Fisheries in separate form in the near future.

TRADE WASTE INVESTIGATIONS.

1926, Aprll 1, 1027.
By H. W. NIGHTINGALE, State Sanitary Engineer.

Abstract

A Preliminary Report on the Present Physical, Chemical, and Biological Conditions of the Sea Water In the Vicinity of Shelton, Which Will Have a Bearing Upon the Probable Effect of Sulphite Pulp Waste On Adjacent Oyster Growing Areas.

INTRODUCTIION.

In the interest of the Olympia Oyster Growers Association, the State Department of Fisheries requested the State Department of Health to collect such data and make such observations as are pertinent to the probable effect of the discharge of sulphite pulp waste at Shelton on the oyster beds in Oakland Bay and adjacent waters.

Since October 22nd the State Department of Health has devoted as much time as possible to this problem. During this period, Frank R. Shaw, Associate Sainitary Engineer of the U. S. Public Health Service, was present in the state in the interest of interstate shipments of shellfish, and rendered aid on the fleld work in connection with the report.

The present Physical, Chemical, and Biological Conditions:

1. Physical.

A pulp mill is now being constructed at Shelton on the south side of the extreme southwest end of Oakland Bay. It is understood that this mill will have a capacity of one hundred tons of sulphite pulp daily.

Recent investigations in Wisconsin have revealed that a sulphite mill produces three gallons of diluted waste liquor per pound of pulp. Therefore, on this basis, it may be presumed that this mill will discharge approximately 600,000 gallons of diluted waste liquor dally.

Oakland Bay is approximately 27,000 feet long and 3,000 feet wide. It is comparatively shallow, being only one-and-one-quarter feet to eight fathoms deep at the deepest portion at mean low tide, gradually lessening to a feather edge at the shore. The only outlet to this Bay is Hammersley Inlet which is a very narrow passage running due east to Pickering Passage. Hammersley Inlet is approximately 33,000 feet long, averages 1,200 feet wide, and has a depth varying from $1-1 / 2$ feet to 9 fathoms at mean low tide. The point at which this inlet takes off from Oakland Bay is 4,800 feet from the mill, thus placing the discharge of the liquor into a pocket. It would be expected that with ebbing tide the waters of the

Exhibit A. Study of Tidal Flow, Hammersley Inlet.
upper part of Oakland Bay would rush into Hammersley Inlet forming a water dam tending to hold back the water and waste in the pocket referred to above. At least the water in the pocket would flow out only gradually, as the water level lowered, and there would not occur the complete emptying or rush and scouring as would occur if the hydrography was different. These features may be clarifled by reference to Exhibit "A."

It was readily seen that factors of primary importance were the probable direction and extent of travel of the waste during the ebb and flow of the tide. In other words, where would the waste be likely to flow to under varying conditions of tide? For this purpose, floats were constructed of sealed oil cans of one gallon capacity, weighted so as to draw them below the surface of the water and thus prevent drifting due to wind action.

On the morning of October 22nd, two floats (Nos. 1 and 2), were placed in the bay near the pulp mill, at 8:20 A. M., approximately one hour after the beginning of ebb tide. At $10: 20 \mathrm{~A}$. M. float No. 3 was liberated by the mill. Floats Nos. 1 and 2 reached the upper end of Hammersley Inlet at $8: 50$ A. M., thirty minutes after being placed. At 9:45 A. M. float No. 2 became lodged in an eddy below Point " 6 ," and, after moving it out into midstream, it, together with float No. 1 became lodged in a large eddy just above Church Point Light.

For this trial test we had believed that the proper procedure was to consider the test concluded when the floats ceased traveling, and for this reason, together with the fact that we were not available to transfer them to midstream at the moment they became lodged in the eddy, we did not get further data on the extent of travel. This showed, however, that we could not expect all of the waste to proceed directly down the mid-current. Some of it may drift over into these eddies. Float No. 3 was found at a stand-still in the middle of the bay opposite Hammersley Inlet at 12:45 P. M., two hours and fifteen minutes after it had been placed by the mill-apparently in a huge eddy.

At 1:45 P. M. the afternoon of October 22nd, four floats were placed at the upper end of Hammersley Inlet for the purpose of studying the currents during the flow of the tide. Float No. 2 revealed a back-current close to the south shore. Float No. 1 revealed a direct coastwise current along the east shore towards Swindel (Chapman) Cove, where oyster grounds are located. Floats Nos. 3 and 4 revealed a large eddy in the Bay directly opposite Shelton on one side and Hammersley Inlet on the other side. We reset float No. 2 just above the effect of this eddy, and by $4: 30 \mathrm{P}$. M., two hours and sixteen minutes before the completion of flowing tide, it was within one-fourth mile of the oyster growing areas in Swindel (Chapman) Cove, and traveling slowly in the direction of said areas. It was impossible to observe the floats further because of darkness.

The study shows, however, that a large eddy is developed in the center of the Bay opposite the "pocket" (and possibly in the pocket), and that outside of this area there are direct currents flowing in the direction of the oyster grounds. It is reasonable to suppose that if the reset float No. 2 traveled 5,000 feet in one hour and ten minutes, it would have traveled the remaining 1,320 feet in the remaining two hours and sixteen minutes, thus placing it over the oyster beds.

On October 23rd four floats were placed at the upper end of Hammersley Inlet, at 9:05 A. M., forty-flive minutes after the beginning of ebb tide. This lapse of time was to allow for the travel of the floats from the mill. It was believed that no purpose could be served by starting them at the mill, but by placing them in the manner we did a uniform distribution at that point was insured. From this we hoped to determine whether or not there was a direct current mid-stream. On this study we kept in close touch with the floats, as far as possible, and as soon as one would become lodged in an eddy it was moved out into the main current.

Throughout the upper half of the Inlet the floats frequently became lodged in eddies, but throughout the lower half a fairly continuous passage was realized. Float No. I did not become involved after Skookum Point and reached Pickering Passage before meeting the turn in the tide. When picked up at 2:50 P. M. it was floating towards Hope Island, which tends to verify our boatman's statement that any floatage coming out of Hammersley Inlet into Pickering Passage never returned to the former but, rather, floated up Totten Inlet, Budd Inlet, or Peale Passage. Floats Nos. 2 and 3 reached Cape Horn, where, seemingly, they met the turn of the tide, as did No. 4 at a point higher up.

On November 5th, an additional study of flowing tide was made. Profting by the experience of our first test, the floats were placed above the huge eddy. At times these floats seemed to be held back by local eddies or calm areas, but when it became necessary to pick them up, on account of darkness, floats Nos. 1, 2, and 3 had closely approached the Chapman Cove oyster grounds. It is believed that Nos. 1, 2, and 3 would have certainly entered Chapman Cove, whereas it is extremely likely that float No. 4 (in the lead, but lost after 3:46 P. M.) went well beyond the point where last seen and in the direction of the Narrows. The boatman concurred in this opinion, and at the outset had stated that the current to the Narrows was well towards the north side of the bay. At 5:00 P. M., fifty-one minutes before flood tide, the floatage-logs, bark, etc.,-had practically reached the oyster grounds in Chapman Cove.

Oil from the mill fouled the shore directly opposite Chapman Cove oyster grounds when a scow containing oil was wrecked some years ago. This observation was made by a number of residents of Shelton.

2. Chemical Observations.

A series of chemical tests of the present condition of the sea-water in Oakland Bay and Hammersley Inlet were made on November 3rd, 4th, 5th and 6th, 1926, to ascertain the amount of dissolved oxygen and the salinity now existing. These tests were made at certain stations, the locations of which are shown on Exhibit "A." The results are appended in Exhibit "F."

The amount of dissolved oxygen in the Bay and Inlet was found to be normal for a Bay and Inlet of this configuration. The actual quantity of oxygen which sea water is capable of dissolving is somewhat less than fresh water under like conditions. An average of 84% saturation of oxygen was found in the samples from the Bay and Inlet.

The salinity of the sea-water was also ascertained at the above stations. The salinity of the water near the Shelton docks and in Chapman Cove
was lower than at the other stations, showing the admixture of fresh creek water.

In order to obtain the necessary information as to the oxygen destroying qualities of sulphite waste liquor as it is discharged from pulp mills, samples of this red liquor were obtained directly from the blow pits of the digesters at the Anacortes and Port Angeles mills. Samples of the waste liquor were taken from the blow pits in order to obtain the liquor in its original concentrated state. It is evident that samples taken from the outlet pipe are not representative, owing to the fact that throughout a period of discharge the concentration varies continuously as the liquor is washed from the digesters.

Preliminary analyses of the sulphite liquor were made by Mr. A. Jacobson, Analytical Chemist of Seattle, Washington, and by the Sanitary Engineer, State Department of Health. Exhibit "G," appended, shows the results of these analyses. The total dissolved matter in the sulphite liquor from Anacortes shows a concentration of 11.2%; that of Port Angeles, 8.2%. These concentrations are average for the undiluted sulphite liquor, as shown by results from pulp mills located in other sections in the United States. The acidity of the liquor from both plants was slight, averaging $.14 \%$. Since the figures indicate a waste liquor of average concentration, the results concerning oxygen destroying power or "Oxygen Demand," may be compared with results of experiments conducted elsewhere in the United States.

OXYGEN DEMAND.

The undiluted sulphite liquor as described above was diluted with water containing a known amount of dissolved oxygen. The standard methods of water analysis were followed in making the Oxygen Demand tests. Dilutions of $1 / 100$ up to $1 / 10000$ were made and the sealed bottles incubated for varying periods of time at $20^{\circ} \mathrm{C}$, from a few minutes up to five days.

The dilution method of analysis was employed for the reason that it is a recognized procedure. Furthermore, it offers a direct comparison with the actual dilutions obtaining where trade wastes are dumped from mills into adjacent bodies of water.

Exhibit " H " shows the result of the Oxygen Demand analyses. The demand is high, being many times greater than that of sewage. The immediate oxygen demand for Anacortes and Port Angeles sulphite liquor ranges from 2,000 to 2,200 parts per million. The five-day demand ranges from 9,800 to 25,000 for the Anacortes liquor and from 7,400 to 20,000 for Port Angeles, depending upon the dilution.

The oxygen demand data show that the waste liquor immediately uses up a portion of the oxygen in water containing this liquor. The extent of immediate oxygen demand of the sulphite liquor in Oakland Bay will therefore depend upon the volume discharged and the volume of sea water with which it comes in contact. The oxygen demand of the waste is higher if it is in contact with the same water for a longer period. Consequently, if there is an accumulation of the waste liquor in Oakland Bay, depletion of the oxygen will be greater. It has been observed that the waste liquor is soluble in all proportions with water and diffuses very rapidly.

From the Wisconsin data of February, 1926 , it is stated that sulphite pulp mills produce approximately one gallon of undiluted sulphite liquor
per pound of pulp. On the basis of these figures, a 100 -ton pulp mill would discharge approximately 200,000 gallons of the undiluted sulphite liquor daily.

On the basis of our data the immediate oxygen demand of the undiluted sulphite liquor averages 2,100 parts per million. The one-day demand from the W isconsin data is 8,200 ; the five-day demand is approximately 15,000 , as derived from our data and that of Wisconsin. The immediate oxygen demand from these figures is approximately one-quarter of the one-day demand and one-seventh of the five-day demand.

Assuming that the mill begins discharging its waste liquor at the beginning of ebb tide, it is shown by our float studies, that the quantity of liquor discharged during the ebbing of the tide will probably be distributed throughout Hammersley Inlet. Upon the turn of the tide the water of Hammersley Inlet, now charged with the waste will be pushed upstream into Oakland Bay, where it will likely receive additional quantities of waste liquor.

A full day's discharge from a 100 -ton mill would introduce into Hammersley Inlet sufficient waste to cause a concentration of approximately 1 to 4,700 of liquor to sea water.

It is logical to assume that this concentration will be materially diluted with water from Pickering Passage, but as the whole mass travels up and down Hammersley Inlet and into and out of Oakland Bay it will receive additional charges of the liquor. It is reasonable to anticipate that the concentration will increase to a point where it would be harmful to fish life. As granted from various authorities, when the dissolved oxygen is reduced to below 2 parts per million or from $25-30 \%$ saturation, major fish life is endangered.

The above figures transposed into terms comparable with our statement of concentration, would be 1 to 2,000 . It can be observed that this concentration is only about twice as great as our initial concentration of 1 to 4,700.

3. Biological Observations.

A tow net was employed at the various stations in Oakland Bay and Hammersley Inlet at which the sea water samples for chemical analysis were taken.

The microscopic organisms or plankton, as they are called, were found to be abundant at all stations except in the neighborhood of the sewer outlet near the Shelton docks. These organisms, which form the basic food supply for the shellfish, consisted of diatoms largely of the genus Coscinodiscus, with smaller numbers of Chaetoceros, Melosira and Pleurosigma. It therefore appears that the oyster food was developing normally in the bay and inlet at the time the observations were made.

From observations made by the State Board of Health of Wisconsin, also by Marsh and Knight, as cited in Report on Stream Pollution by the New York State Conservation Commission, sulphite liquor is known to be destructive to fish life.

It is known to investigators who are now studying artifical propagation of oysters that the oyster larvae are very susceptible to adverse changes in their environment. Although no experiments have been made to date concerning the effect of this waste on oyster larvae, it is reasonable to
suppose that it will have a deleterious effect on them. The flavor of the adult oyster might be changed, thus affecting their market value.

Concerning the effect of the waste liquor on marine fish life, it was stated by the Superintendent of the Anacortes mill that ship-worms were not destroying the new piling on the lumber wharf to the extent they formerly did.

CONCLUSIONS.

1. From this preliminary investigation it is concluded that the mill is so located with respect to shellish growing areas that the discharge of its waste will create a potential danger.
2. The volume of waste which is likely to be discharged by a mill of 100-tons capacity compared to the volume of sea-water available for aeration, together with local tide effects, suggests the likelihood of the concentration reaching the point where it would be destructive to fish life.
3. From a standpoint of the chemical determinations on the sea water in Oakland Bay and Hammersley Inlet, the conditions now appear to be normal for the support of marine life. The samples of sulphite liquor from Anacortes and Port Angeles show the waste to be of a similar character to that discharged from the Wisconsin mill. Its oxygen demand is similar.
4. In view of the factors suggestive of potential danger, it is recommended that steps be taken by the mill company to so handle the waste as to reduce its possible effect upon shellfish. Satisfactory results might be secured by hauling in tank-barges a certain portion of the discharge to Pickering Passage, below Salmon Point. The dissolved oxygen in the water of Oakland Bay would then be more nearly able to oxidize the remaining waste.
5. We have reason to belfeve from the Wisconsin studies that the oxygen demand of this waste can be materially lessened by efficient aeration. However, we do not recommend aeration at the present time as a substitute for tankage of the liquor. It is our recommendation that tankage be instituted at the start of operation of the mill and that an experimental aerator be installed at the plant in order to ascertain the efficiency of this method of treatment, together with the extent to which it need be carried.
6. The quantity of waste that should be hauled to and deposited in Pickering Passage will be dependent upon the variation in the concentration of the liquor and the ability of the water in the Bay to oxidize the remaining waste. These factors are indeterminate until the mill is operated, but it is considered reasonable to request the Company to provide for the tankage of sixty per cent (60%) of the waste liquor at the start of operation. If the operation of this plant permits the withdrawal of concentrated liquor before wash water is applied, as seems to be the case in the Wisconsin mills, it will be possible to economize considerably on the size of the tanks used to haul off this liquor.

Fghibit H.
OTYGEN DRMAND DETKRRMINATIONS.
Flve-Day Incubation at 20° C. Expressed In Parts Per Million.

	SOURCE	Water Blank 92\% Saturated			OOMPLTATIONS					Notes
1	Anacortes........................ .	8.4	7.1	1.3	. 01	3.8	2.5	10,000	25,000	
2	8.4	7.1	1.3
3	Anacortes.	1.3	. 02	4.6	8.3	5,000	16,501
4	Anacortes........................	8.4	7.1	1.3	. 03	5.3	4.0	3,383	13,352	.
5	Anacortes.		1.3	. 04	5.7	4.4	2,500	11,000
6	Anacorter.	8.3	7.0	1.3	. 06	8.2	4.8	2,000	9,800
7	Port Angeles..	8.4	7.2	1.2	. 01	3.2	2.0	10,000	20,000
8	Port Angeles..	8.4	7.2	1.2	. 02	4.0	2.8	5,000	14,000
9	Port Angeles.	8.4	7.2	1.2	. 05	4.9	8.7	2,000	7,400
10	Anacortes.......................	8.4	7.2	1.2	. 1	\ldots				Oxygen exhausted
11	Anacortes.......................	8.4	7.2	1.2	. 2					Oxygen exhausted
12	Port Angeles..	8.4	7.2	1.2	. 1					Oxygen exhausted
13	Port Angeles.................... .	8.4	7.2	1.2	. 2					Oxygen exbausted

Exhlbit H．
OXYGEN DEMAND DFTERMINATIONS．
Immediate Demand Expressed In Parts per Million．

	SOUROE	Water Blant 80\％Saturated			OOMPUTATIONS					Incubation Period
		Initial 02 P．P．M．	$\begin{aligned} & \text { aid } \\ & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \frac{1}{6} \end{aligned}$	Depletion P．P．M．					$\text { pusued }{ }^{\cdot \mathrm{R}^{\prime} \cdot d^{\prime} d}$	
						昌	畧営			
1	Anscortes．	5.8	5.8	0.0	． 1	2.1	2.1	1，000	2，100	15 minutes
2	Anacortof．．．．．．．．．．．．．．．．．．．．．．．	5.8	5.8	0.0	． 1	2.2	2.2	1，000	2，200	3／hour
3	Anacortes．．．．．．．．．．．．．．．．．．．	5.8	5.8	0.0	． 1	2.1	2.1	1，000	2，150	1 hour
4	Anacorteg．．．．．．．．．．．．．．．．．．．．．．．	5.7	5.7	0.0	． 1	2.2	2.2	1，000	2，200	5 hours
5	Port Angeles．．．．．．．．．．．．．．．．．．	5.7	5.7	0.0	． 1	1.5	1.5	1，000	1，500	15 minutes
6	Port Angeles．．．．．．．．．．．．．．．．．．．．	5.7	5.7	0.0	． 1	1.8	1.8	1，000	1，800	1 hour
7	Anacortes．．．．．．．．．．．．．．．．．．．．．．	5.8	5.8	0.0	1	5.8	5.8			1 hour all On used up
8	Port Angeles．．．．．．．．．．．．．．．．．．．．	5.8	5.8	0.0	1	5.8	5.8		．．．．．．	1 hour all On used up

Exhibit F．
CHEMICAL AND BIOLOGICAL DATA OF SHELTON BAY AND TRIBUTARIGE．

COPY OF LETTER:

EXHIBIT G.
Mr. H. W. Nightingale,
Seattle, Wash., January 11, 1927.
State Dept. of Health, Seattle, Washington.
Dear Sir: Please find below, the results of the following tests on samples of water from "Anacortes" and "Port Angeles" Pulp Plants:

Following the Shelton investigation, an inspection of Chambers Creek at the mill site near Steilacoom was made on March 16 th, 1927.

Chambers Creek is a small stream which enters the Sound near Steilacoom. The creek broadens considerably just prior to its entrance into the Sound and the tidal influence is considerable to a point above the mill. On flood tide the fresh water is backed up-stream. A small spit just above the mouth near the railroad trestle tends to prevent a free egress of the creek water on the ebb tide. The creek is shoal above the mill, having a depth at low tide of only about two feet.

There were four classes of waste visible near the mouth of this creek:

1. A soapy discharge from the outlet pipe of the mill into forebay of the creek.
2. An accumulation of black ash (carbonaceous matter) adjoining the bank of the creek, above outlet pipe.
3. An accumulation of white sludge apparently waste lime.
4. Waste fibers of pulp and sawdust.
5. The soapy discharge proved to be warm and slightly alkaline pH 7.6. A white cloud of this matter was observed moving up-stream with the pressure of flood tide against it. Owing to the small volume of water with which it was mixed the visible effect was considerable. The liquid proved to have a density of 1.001 or essentially the same as fresh water. No free caustic alkalinity was present. Whether this discharge represents an average density can only be determined by samples taken at different times of the day and night.
6. The accumulation of black ash is considerable. This ash is produced as a waste substance from the lime soda process in the manufacture of wood pulp. There were no evidences of this black ash on the creek bottom, though a portion of it was in contact with the creek bank. The substance is heavier than water and has been known to smother shell fish
beds. There is no evidence of carelessness in the handling of this solid waste at present.
7. The solid white waste, apparently lime sludge, from its chemical reactions, is also located in a pile which is not at present washing into the creek. This waste proves to be nearly insoluble in water.
8. Waste fibers were not numerous and no evidence was found to indicate a deposition on the creek bottom. Sawdust was being fed into conveyor as a raw material. None was found in the creek. This process is apparently the lime-soda method of manufacturing wood pulp from short fibered material such as sawdust and fragments of wood.

Conclusions.

If the fish, after liberation, remain for any length of time near the outfow or pass through it slowly, there will no doubt be a deleterious effect upon them.

In order to overcome such an effect, the outlet pipe should be moved downstream and connected with a pipe line leading outside of the trestle.

OBSERVATIONS ON THE PACIFIC RAZOR CLAMS (Slliqua patula) OF THE STATE OF WASHINGTON.

From April 1, 1925, to March 31, 1927.

By HARVEY C. McMILLIN, Scientific Assistant, U. S. Bureau of Fisheries.

It is believed that the best foundation for future protection of the razor clam industry can be obtained by publishing an annual resume of the conditions existing on the beds. In this way a permanent record of consecutive years is available, which, with the system of statistics already in use by the state, will give a reliable guide for regulation in years to come. To this end the present paper is offered.

April and May of 1925 were a sharp contrast to the preceding month. During March, clams were quite plentiful, and the success of the diggers was advertised and many men went to the beach to dig. It is probable that fewer clams were taken in April and May of 1925 than during the same time of any previous year in the history of the clam beds. The beach would not "hold up" during a whole run of tides. During the flrst few days of a series of low tides quite a few clams would show, but during the best tides the beach appeared to be almost entirely depleted. A few small clams on the high beach were taken.

During the 1926 season the digs were regular but not large. The 1923 class, which was one of the largest resulting from any spawning that has been observed, started to come into the commercial catch in appreciable numbers. Many of them were less than four and one-half inches long and their destruction will prove a serious loss to the industry.

Size Limit Is Needed.

Analysis of Table No. 1 throws some interesting light upon the general condition of the beds. Nearly 45% of the number of the clams taken had never spawned. They belonged to the classes of 1923 and 1924 , and if left to grow for another year would produce four times as much cleaned meat as when taken. The next 26% belonged to the 1922 class, and had spawned but once; one out of every eight in this class was less than four

Figure 1.-Typical low tide scene. Fig. 2.-Showing width of Beach. Fig. 3.-Steamer Alice sunk in sand. Fig. 4.-Smooth
and one-half inches long. Thus we see that the present method of fishing is a direct economic loss which greatly injures the clam beds, and, as we shall show later, gives but a small return.

The average size of the catch has steadily decreased since actual records have been made. At present the clams are so small that it is nearly impossible for the canneries to operate. Since clams mature at two years of age and have an average span of life of about nine years, the present condition on the Washington beds may be compared to a cattle ranch. A rancher cannot operate permanently when 70% of the stock he sells each year is less than three years old, and half of the number is immature. In order to maintain a resource, a breeding reserve is necessary and such animals as are taken should have produced offspring. When it becomes necessary for him to sell every animal that he can corral, regardless of age and size, he is rapidly approaching the end of his resources.

Regulation which protects clams less than four and one-half inches long is in force in Alaska, and is proving very satisfactory. It has materially reduced the drain on the small clams, and is beneficial, not only to the beds, but to the diggers and cannerymen as well. Such protection applied to the Washington beds would curtall the pack for the first two or three years. The beds would be improved by the increased number of spawning clams, and subsequent years would show an improvement. While it is evident, as we have just stated, that a regulation which prohibits the taking of one-half the clams now found in the commercial catch, would reduce the pack when first applied, this regulation is not so serious as it might seem. The under-sized clams are very much smaller than the older ones, and when cleaned, produce a small amount of meat. The proposed restriction would result in a reduction of not over 20% of the pack. A pack of 25,000 cases under the present condition would be reduced to $\mathbf{2 0 , 0 0 0}$ cases. This is a material reduction, but future years would more than balance it, and the resource would be perpetuated. If it is necessary to over-dig the beds in order to maintain the industry at the present level it seems wiser to reduce the scale of operation rather than completely exhaust the supply of clams, which would in turn destroy the industry. The future of the clam as a resource, both from the tourist and commercial standpoint, depends upon the protection of the small clams. Other animals are protected until they reach maturity or attain certain size. Such limits are in force on trout, salmon, and crabs. There is immediate need for comparable protection for the razor clam. Tourists dig mostly in the summer time when tides are low, and would be little affected by such a size limit. It would apply in main to commercial diggers.

A Bag Limit Is Urgently Needed.

The attention of the writer has been called, repeatedly, to the large number of clams wasted by tourists. One auto camp owner stated that a conservative estimate of the clams allowed to spoil in his place was about fifteen hundred pounds per month from June 15 to September 15. Digging clams, especially razor clams, is a very enjoyable recreation, indulged in by every one without regard to age or sex. They are a rich food, and the amount which can be consumed by a person is limited. A bag limit for unlicensed diggers which would give them all they can enfoy would

prevent a great drain on this heavily exploited resource. A bag limit of four or five dozen clams seems advisable.

In late months the bag limit has become more necessary for another reason. Under the present law it has become very difficult to prevent illegal canning. Since it is not profitable to can clams in small quantities a bag limit would help to stamp out this unlawful enterprise which is fostered by the present clam code.

In recent years the number of diggers employed by the razor clam canneries has greatly increased. For comparison one may cite the figures for the years 1916 and 1926 in which 347 and 1449 licenses respectively were issued. In table No. 3, it is seen that in spite of the four-fold increase in diggers during the ten years, less than one-half as many clams were reported. In graph No. 7, line B, is graphically represented the decrease in the average weight of clams per digger reported by the canners.

In the construction line B of Graph 7, the total catch was divided by the total number of diggers to obtain the average catch per man. This procedure is open to criticism due to the large number of new diggers coming in each year. In order to obtain a more accurate picture of the success of the effort expended by the diggers the records of 19 Individuals were taken. Each of these were men whose digging records covered a period of ten years or more. If the beach were equally productive, each year would show a slight increase over the former due to the greater experience of the diggers. The results are shown in Table 4 and graphically in Graph 7, line A. There is an annual fluctuation due to the weather conditions but the trend of the whole obviously indicates a great decrease in the success of the effort put forth by men engaged in digging. It is evident from Graph 7 that the experienced diggers secure more clams than the general average. This is especially noticed during the poorer season when the average catch for the selected group of experienced men is twice that of general average. One other observation is apparent; regardless of experience, no one is able to dig as many clams now as in former years. There is regular decrease in the annual catch of each digger which indicates a reduction in the clam population of the beach. The increased number of diggers has prevented a great decrease in the clam packs. This steady rise in the number of diggers shows conclusively that the clam population of the beach is decreasing at a rapid rate. Although the clams appear to be quite numerous the figures show that, compared with former years, only a few are taken. Since the amount of digging effort for any given area of beach is increased every year, small clams are taken in larger numbers until more than one-half of those taken during the last two years have not spawned.

Up to a certain limit the pack may be maintained by the employment of more diggers but there will obviously come a time when an increase in the number of men will not offset the decreased abundance of clams and the pack cannot be maintained. Such a state of affairs is being rapidly approached on the Washington beaches.

The real effect of the 1923 set showed up in March, 1927, when they formed the bulk of the commercial catch. It is the success of this one year's set which has maintained the catch during the present biennium. In Table No. 2 is shown the relative number of clams of each age found

in a large sample of shells taken from the cannery shell piles. About one-half of the total number (49.1%) are from 1923 class. This illustrates how heavily this class has contributed to the commercial catch, and the condition of the industry without this one successful spawning season can be imagined.

TARLE NO. 1.

- Including all older specimens, also.

Table 1. Table showing the size and age of the clams taken in the commercial catch at Oopalis Beach in the month of April, 1925. (Figures given in percentages of total catch.)

TABLE NO. 2.

YEAR CLASS	Per Cent of Total Catch
1928...	0
1925..	8.3
1924..	22.0
1923.	49.1
1922.	11.4
1921.	2.9
1920.	5.0
1919.	0.9
1918.	0.9

TABLE NO. 3.

YEAR	Number Licensea Issued	Clams Reported By Diggers Pounds	Olams Reported By Oanners Pounds	Olams Per Digger Pounds
1916.	347	1,396,355		
1917.	294	825,556		
1918.	904	1,685,733		
1919.	470	2,903,218		
1920.	418	3,040,759		
1921	608	661,883	3,6320,484	5,855
1822.	1,222	2,196,613	4,208,241	3,444
1923.	1,002	783,991	1,622,787	1,019
1824.	823	451,259	2,060,272	2,503
1025.	1,093	633,123	1,718,771	1,573
1828.	1,449	656,891	2,542,600	1,754

Figure 1.-Three weeks old spat. (xL.P.). Fig. 2.-One month old spat. (xL.P.) Fig. 3.-One and one-half months old spat.
(xL.P.) Fig. 4.-Small clams: 3 clams $0.4 \mathrm{~cm} .$, age 2.3 months. 3 clams $0.60 \mathrm{~cm} .$, age 2.5 months. 3 clams $0.84 \mathrm{~cm} .$, age 2.7
months. 3 clams 1.10 cm ., age 3.3 months. 3 clams 1.55 cm ., age 6.0 months.
(From McMillin Report, 1924)

TABLE NO. 4.

	YEAR	Average Dig Per Man Pounds	$\begin{gathered} \text { Smoothed } \\ \text { Value } \\ \text { Pounds } \end{gathered}$
1919.		12,153	10,505
1920.		12,346	9,177
1921.		3,093	7,712
1922.		7,698	4,894
1923.		3,890	5,457
1924.		4,782	3,543
1925.		1;957	3,578
1926.		3,995	

EXPLANATION OF GRAPH 7 .

The smoothed values of Table No. 4 are plotted in line A. These smoothed values are the averages of three years; that is, the smoothed value for 1924 is the average of 1923,1924 , and 1925 . This process removes the minor fluctuations and indicates the trend more exactly.

EXPLANATION OF TABLE NO. 4.

Nineteen experienced diggers were selected and their average catch per year was determined. The years 1919 to 1926 are shown. The catch for 1918 was used to obtain the smoothed value for 1919 as indicated in the explanation of Graph 7.

THE CLAM RESOURCES OF THE PUGET SOUND REGION

By HAROLD W. NIGHTINGALE

The clams of the Puget Sound region are represented by several bivalves, which occur in varying abundance on the beaches and flats of this area. In this report only those clams which are found in commercial quantities are discussed. The following outline indicates the subject headings to be treated:

1. Description of the Genera and Species of Clams.
2. Distribution of the Clams on Beaches and Flats.
3. Local Occurrence and Abundance.
4. The Clam Industry of this Region.
5. Maintenance of the Clam Supply.
6. Conclusions.

GENERA AND SPECIES OF CLAMS.

Scientific Name	Local Name
Saxidomus giganteus Deshayes	Butter, Hardshell and Little Neck clam
Paphia staminea Conrad	Rock, Ribbed or Sweet clam
Schizothaerus Nuttalli Conrad	Horse clam
Mya arenaria Linnaeus	Mud, Soft, or Softshell clam
Cardium corbis Martyn	Cockle (an allied form) associated with
	the clams

The butter clam, Saxidomus giganteus, Fig. 1, possesses a thick shell and resembles the eastern quahaug in outline of the valves. The siphonate extremity of the shell is slightly gaping, permitting the retractile siphons to be seen. The growth lines of this clam are relatively fine and in adult specimens are often eroded. The valves vary in thickness depending in

part upon the age and locality. Wentworth (1921), notes the presence of shells of this species in Bodega Bay, California, $1 / 2^{\prime \prime}$ thick by $9^{\prime \prime}$ long. In the present investigation specimens from an old Indian shell mound near Birch Point, Washington, measured $1 / 4^{\prime \prime}$ thick by 6 " long. Enormous quantities of shells of Saxidomus were found in this mound which was $5-6$ feet thick and 50 yards long. The color of the valves varies in living specimens in this region from white to a bluish grey, owing to the influence of the soil.

The foot is quite strongly developed thus enabling the clam to burrow away from wave action even on gravelly shore. The siphons are not long, in specimens measured, they extended for about $6-8^{\prime \prime}$. This length is sufficient to enable the clam to adjust itself to diverse environments.

Although Saxidomus is capable of closing its valves quite tightly, it does not hold its fluids well enough to stand exposure out of water for more than a very few days. The valves soon gape open, causing the meat to dry out and to subsequently spoil. Packers of butter clams will not

Four Puget Sound Clams Commonly Found, Also Cockle.
risk holding an oversupply for more than a day or two during the canning season on account of this fact.

The rock clam, Paphia staminea, Fig. 2, is a smaller clam than Saxidomus. The length of the valves of adult specimens is not usually over $21 / 2^{\prime \prime}$. The shells are readily distinguished from the butter clam by the presence of radiating lines, which are clearly defined even in young specimens. In certain localities brown markings called chevrons appear on the shell of the rock clam. The rock clam is very frequently confused with the butter clam by the uninformed.

Owing to its small size it is more expensive to handle for canning than is Saxidomus. Since both species often occur together on the beaches and flats, it is sometimes the practice to buy mixed stock and after separation
from the butter clams, Paphia is canned at the same time. The rock clams though' small, possess a sweet flavor, while their nectar is especially appetizing. The valves of Paphia are capable of being tightly closed, thus enabling the clam to hold its juices for a few days out of water. For this reason, packers can hold over rock clams for several days before canning, if necessary.

The siphons of this species are short and as would be expected, this clam is found near the surface of the ground.

The horse clam, Schizothaerus nuttalli, Fig. 3, attains a much larger size than does either Saxidomus or Paphia. Shells 7 to 8 inches in length have been observed. The valves of this species are relatively thin and easily broken. In color they are white, sometimes stained bluish by muddy soil, and are covered with a brown periostracum in many specimens. The siphonate end of the shell gapes widely, permitting the large muscular siphons to be seen. Since the valves cannot be tightly closed at all points the horse clam does not retain its moisture well enough to withstand exposure for more than a day or so out of water. To be utilized for canning purposes it would have to be handled without delay. If this species is used in the future for canning purposes, it is probable that live boxes or wells will be useful to keep the clams alive for a few days before canning in the event of an oversupply.

The foot of the horse clam is not large in proportion to the body parts and does not appear to be utilized to any extent by the adult. The siphons of this clam are very active and permit the clam to attain a depth of from 2 to $21 / 2$ feet in the burrows examined during this investigation. When the water has covered the flat it is a common occurrence to observe the siphons extended for a height of an inch or more above the level of the ground.

The eastern soft clam, Mya arenaria, Fig. 4, is locally known in the Pacific Northwest as the "Mud Clam" although it is not as a rule found in muddy soils in the Puget Sound region-hence the name is a misnomer.

The shells or valves which are thin and somewhat fragile, possess a relatively oval shaped outline. They attain a length of over 5 " occasionally, although sizes of $3^{\prime \prime}$ are by far the most common in this region. The siphonate ends of the valves slightly gape, permitting the retractile siphons to be seen at all times. The ends of the valves at the anterior extremity of the clam are also somewhat gaping. The outer sides of the shells vary in color from white to a bluish grey. Occasionally the thin periostracum which partly covers the outside of the shell is stained a rusty brown. Soil action through acids and other components accounts for a considerable portion of the color of the outside of the shell.

The siphons are capable of sufficient extension to enable the soft clam to burrow down to a depth of about one foot, (the depth of course being governed by the tenacity of ground-the presence of rocks, etc.,) by the time that adult size is attained. The young soft clams possessing very short siphons are found close to the surface. The siphons are covered with an epidermis in both the young and adult stages of life. In the adult the siphons are very muscular and are black in color at their unattached extremities.

The soft clam is a hardy species and ships well. When shipped in the shell care must be taken not to break the valves by rough handing, since the clam spoils rapidly if its fluids are lost. This clam is not yet used commercially in the Puget Sound region, although canned soft clams are shipped from New England to Seattle at the present time. The meat of the soft clam is appetizing and nutritious. It is highly esteemed on the New England coast where a large and increasingly important canning industry now exists.

The cockle, Cardium corbis, Fig. 5, although not strictly speaking a clam, is closely related to them. It is an active bivalve of very common occurrence in the Puget Sound region.

The shells are characterized by numerous radiating ribs and when observed from the anterior and posterior extremities, possess a heart shaped outline. The color of the outside of the valves is variegated but esentially brown. The valves are capable of being tightly closed, enabling the bivalve to hold its fluids when out of water. The cockle has no siphon tubes.

The foot is well developed and powerful, thus enabling the cockle to withstand tidal action in somewhat unstable soil, even though the valves lie close to the surface of the ground. The valves are often scarcely covered by the sand. The sign or siphon hole in the sand which identifles the presence of the cockle is often double, and is surrounded by a saucer like depression. The cockles' presence on the bare flat can often be spotted by the spouting which occurs when they eject sea water.

The cockle is not utilized for food in this region, it being claimed by local residents that it is tough and strong in flavor. Indians locally use a few when other species are not available for food purposes. If properly cooked the cockle has a good flavor and should be utilized for food purposes in this region. According to Weymouth, Bulletin of California Fish and Game Commission, dated 1921, page 28, "An excellent food mollusk, commanding a good price in the market, it is not handled commercially in California because of its scarcity." For the same reason there is little local use made of it.

Distribution of the Clams on the Beaches and Flats.:

The clam species outlined in this report usually show a deflnite zonal distribution on the beaches and flats. A typical clam beach exists at Indianola Beach, Kitsap, Puget Sound. The soil varies from gravel to sand.

The zone on the beach line from high water $(+11$ to +12$)$ down to the line corresponding to +4 tidal elevation is rocky gravel with an admixture of silt and clay. At +4.5 , the highest point on the beach at which clams occur, is found the soft clam, Mya arenaria. Between +4.5 and +3.8 , rock clams exist in some places mixed with the soft clams. The width of the gravel zone in which clams occur is very small not being over about 20 feet in most places.

The sand zone which begins abruptly at about +4.0 and extends beyond - 3 tidal elevation, is composed of sand containing an admixture of cementing clay and silt. This soil is less stable than that of the gravel zone since no pebbles nor gravel are present. During southerly winds of the rainy months the sand may shlft under the action of waves upon the shore.

Horse clams and cockles are generally distributed throughout all elevations in this sandy area.

Arranged in the order of their occurrence on this beach the clams appear as shown in the following elevation data.

The clams in both zones have become adapted to stable or unstable soil conditions depending upon the species. The conditions observed at Kitsap are modified in certain localities in the Puget Sound region by the presence of outlying gravel bars and fiats. On such areas butter clams as well as rock clams which often occur together, may extend from +2.5 tidal elevation down to - 3 on the lowest run out of minus tides. The soft clam occasionally occurs down to +2.5 but as a rule ranges high up on the beaches. This fact was observed by Kincaid in 1917-18 in a clam investigation made for the State Fisheries Department.

In localities where no sand zone occurs between the highest and lowest or minus tides, the gravel zone is often of a relatively sharp or steep slope. On such a beach butter and rock clams often occur at the lower levels between - 2.5 and -3.0. A diagram of such a beach is shown below; it is typical of Hoods Canal.

Beaches of coarse sand with an admixture of pebbles acting as a stabilizer sometimes support butter and rock clams.

Local Occurrence and Abundance on the Beaches and Flats.

The following Table 1 , indicates the local occurrence and relative abundance of the clam species discussed in this report, during the summer of 1925.

Relative abundance is expressed by 4 numbers. Absence (0) indicates that observations failed to show the presence of the clam in question in the area examined. Scarcity (1) indicates that an occasional clam was found within the area. Present (2) indicates occurrence in isolated or restricted areas. Moderately abundant (3) signifies considerable numbers not completely covering the area. Abundant (4) denotes larger numbers of clams over an extensive area.

Owing to the fact that the actual abundance of any one clam in terms of its presence in numbers per square foot varies greatly with the several genera and species-it has been found more satisfactory to show relative instead of actual abundance throughout the large region inspected. Furthermore, intensive studies in limited localities would be necessary before the numbers of clams per acre could be ascertained.

Observations concerning the usual rate of actual numerical occurrence have been made in portions of all the localities examined. The purpose of the figures given in Table 11, is to furnish a working basis for later studies and to indicate the usual numerical rates. These figures are given both for the adult and market sizes of clams as well as for seed clams. The term "seed" signifies young clams ranging from an age of a few months up to one year, depending upon each particular species and its rate of growth.

TABLE 11.

Variety of Clam	Usual Rate of Occurrence Adult and Market	Seed
Butter.	0-3 per sq. ft..	0-6
Rrocir..	0-5 per eq. ft...	0-10
Horse.	$0-2 \mathrm{per}$ sq. yd.	$0-5$
Soft.	0-60 per eq. ft.	0-100
Oockle.	0-3 per sq. yd	0-6

TABLE 1.

The figures indicate that the seed and adult sizes of the soft clam occur numerically at the highest rate per unit area. The horse clam and cockles show the lowest rate, with butter and rock clams occupying an intermediate position. It is also to be observed that on the basis of the above figures a much greater acreage would be required to support an equal number of horse clams and cockles than would be necessary under natural conditions of setting, for an equal number of soft, butter or rock clams.

With the information contained in tables 1 and 2 at hand, the local occurrence and abundance of clams in each of the localities will be discussed.

Puget Sound.

Kitsap-The beach from Miller Bay to Jefferson Head was inspected and found to contain considerable numbers of horse clams and cockles in the lower or sand zone. In the upper or gravel zone rock clams occurred in abundance together with small numbers of butter and soft clams. This beach appears to be ideal for horse clams and cockles on account of the location and broad expanse of sand fiat at low tide. The gravel zone is narrow and offers but a limited area for the establishment and growth of other varieties. Upon screening the soil of the sand zone, a small number of soft clam seed was found. It is probable that these seed were washed inshore until they reached the more stable ground in the gravel zone. A few adults of this species were found in the sand zone, the shells of which were closely similar to the soft clam when found under like soil conditions in eastern waters. The beach at Kitsap and vicinity would be ideal for culture studies of the several clams observed there.

Rolling Bay: Bainbridge Island.

In this locality the gravel zone contains isolated areas in which rock, butter and soft clams are found. A projecting gravel bar extending for a considerable distance on minus tides contains butter clams. Horse clams are found in limited numbers.

Port Madison, Bainbridge Island.

Butter clams were found occurring in moderate abundance on the gravel beaches of Port Madison. Rock clams were less abundant.

Dogfish Bay, Poulsbo and Vicinity.

The gravel beaches of this bay were found to contain butter clams in moderate abundance with lesser numbers of rock clams and somewhat smaller numbers of soft clams. On account of the proximity to Seattlea shipping business of fresh clams is carried on by boat during the open season.

Other points in Puget Sound south of Port Madison and Poulsbo were not examined on account of lack of time.

Port Susan.

Camano Head-The southern end of Camano Island and Port Susan contain gravel beaches which show the presence of considerable quantities of butter and rock clams. When viewed from the south at low tide, Port Susan's large flats give an observer the impression of extensive clam beds.

Large areas covered with sea grass and soft sandy mud constitute the greater part of the flats. This mud is exceptionally soft and no clams are found in it. The only marine organisms inhabiting the soft mud are marine worms whose burrows occur in enormous numbers. A considerable portion of Port Susan is influenced by silt and mud from the Stillaguamish River which empties into it near East Stanwood.

Near the eastern shore of Port Susan the seaweed disappears, but the sandy mud persists until about +3 tidal elevation is reached. Near Birmingham the sandy mud at +2 to +4 was found to contain considerable numbers of seed of the soft clam. As many as 25 per sq. ft . were observed in the screen. The size of this seed on July 9th was from $1 / 16-1 / 8^{\prime \prime}$ indicating that the soft clam in this locality had probably spawned about a month prior to this date. This opinion is based on growth data in waters of similar temperatures in New England. Further studies would throw more light on this matter. The seed clams became more numerous as the gravel bars at Warm Beach (Birmingham at +5) were reached. As high as 100 seeds per sq. ft . were observed. The soil on these bars consisted of a gravel mixed with sand clay affording a stable foundation and foothold for the young soft clam. The seeds were observed during several flood tides to be washed inshore from the soft soil onto the gravel bar.

In the gravel zone, considerable numbers of adult soft clams were found ranging as high as 50 per square foot. No other clam species occurred on the gravel bars close to Warm Beach.

Proceeding southerly from this town towards Kayak Point there are gravel zones on the beach at about +3 tidal elevation for a considerable distance along the beach. Butter and rock clams are numerous, in many places occurring at the rate of $2-3$ to a square foot.

Above Warm Beach toward East Stanwood soft sandy mud exists, and as a consequence, no clams are found in this part of Port Susan. On the opposite side at Livingston Bay and near South Pass a few butter and rock clams are found.

Saratoga Passage-Whidby Island.

Several points on this island were examined. At Oak Harbor, flats of a considerable acreage prevail. A large portion of these flats are composed of a loose, watery, sandy mud, dotted with the burrows of worms. No clams were found in this unstable soil.

The gravel zone about the harbor contained a few soft clams, while inside the spit butter and rock clams prevailed. In general, conditions were somewhat similar to those obtaining at Port Susan. Near Penn Cove and Coupeville the gravel beaches contained appreciable quantities of butter and rock clams. On the west side of Camano Island in Saratoga Passage considerable rocks prevail, and there are very few clams of any species on the beach.

Skagit Bay.

Proceeding northward from West Pass into Skagit Bay, shoal water and soft mud prevail on the eastern shore; the influence of the Skagit River in this bay is considerable. Few, if any, clams exist on the eastern side. On the west side, along the shores of Whidby Island, gravel and sand beaches again prevail, with scattering beds of butter, rock and soft clams. In the direction of Swinomish Slough a moderate quantity of butter and
rock clams occurs at Oak Island. The soft mud and unstable sand prevail through Swinomish Slough and very few clams of any species exist near or in the Slough. The tidal currents cause shifting bottom conditions over a considerable territory in Skagit as well as in Padilla Bay.

Padilla Bay.

This bay is also shallow and possesses soft muddy soil over the eastern portion. Padilla Bay in the portion east of a line between Hat Island and Swinomish Slough is not suitable for the development of clams. In the event of the completion of the proposed dyke most of this ground will become dry land.

On the western shore of this bay and adjoining Fidalgo Bay, moderate quantities of butter and rock clams occur at March Point where stable soll conditions prevail. Near and at Anacortes, soft soil and pollution undoubtedly accounts for the lack of clams. Across to Guemes Island at North Beach, butter and rock clams are found.

Proceeding to the northeastern end of Padilla Bay, on the south side of Samish Island, a few soft clams exist as well as a limited number of butter clams at the extreme end of a spit projecting from Samish Island towards Hat Island. The butter clams may be obtained on this spit when the tide runs below +3 .

The several islands in Padilla Bay, Hat and Saddlebag are very rocky and have practically no beach line.

Samish Bay.

This bay is shallow and much seaweed and soft sandy mud prevail; the influence of the Samish River is marked throughout the bay. On the eastern side near Edison, Blanchard and Samish Station few clams of any species prevail. The flats in the middle of the bay are also of soft ground.

At the western end of the bay the flats on the north side of Samish Island contain a variety of clams in considerable abundance. A projecting gravel bar on the northeast end of this island between +1 and +3 contained considerable soft and butter clams. The gravel contained an admixture of blue silt which stained the shells of all these clams a bluish grey. As many as 20 soft clams and 2 butter clams per square foot were found on this bar. Proceeding along the beach towards Point William, large sand flats occurred between - 2 and +3 tidal elevation on which horse clams and cockles were found in varying abundance. This beach is exposed to northerly winds in the winter which no doubt cause the sand to shift. The gravel zone of the beach towards Point William contains a considerable number of rock clams with a smaller quantity of butter clams. These clams exist between +2 to +4 . The gravel zone in which rock and butter clams occur widens at and near Point William and considerable numbers of these species are found.

On account of the number of varieties of clams found on the north side of Samish Island this locality is of considerable interest and would undoubtedly be a useful locality for more intensive study.

Chuckanut Bay.

Chuckanut Bay which lies north of Samish is an example of an enclosed area having deep water and very little beach line at low tide. Scattering
clams may be found at the northern end but the findings in this bay are negative as would be expected from the rugged rocky formation.

Bellingham Bay and Channels.

The clam findings at and near North and South Bellingham are negative for all species. Between Marietta and the southern end of Lummi Indian Reservation the Nooksack River influences the soil and considerable soft mud exists. The muddy flats on the south side of Lummi Indian Reservation contain moderate quantities of the soft clam. An interesting observation was made during the inspection of this locality. Hogs were observed rooting after the soft clams embedded in the ground.

On the west side of Lummi Reservation bordering Hales Passage, the gravel beach and spit near Gooseberry Point contain on low tides a considerable number of butter and rock clams.

Lummi Island.

The eastern shore of this island which lies across Hales Passage contains gravel beaches. In fact the shoreline from the southeastern end of Lummi north to Beach contains at low tideline varying quantities of butter and rock clams. Indians formerly procured butter and rock clams in considerable numbers on this beach line for the Bellingham market.

Georgla Straits.

Proceeding north towards Sandy Point scattering numbers of butter and rock clams exist. Here gravel beaches are found. On the west side of Sandy Point butter and rock clams occur in considerable quantities. In localities somewhat inaccessible to clam diggers and the public, the clam beds are very well stocked.

North of Sandy Point to Point Whitehorn the beaches are rocky and exposed. Inspection shows the absence of clams.

Birch Bay.

This bay is an open bight extending from Point Whitehorn on the south side to Birch Point on the northwestern. The bay is exposed to northwest winds but is protected by Point Whitehorn from southerly winds. The bay is shoal and contains a considerable expanse of flats at low tide. A large variety of soll exists here in which many clams of all varieties mentioned herein are found.

Birch Bay is somewhat semicircular in outine and on minus tides exposes nearly a mile's width of flats between +2 and -3 tidal elevation. This width occurs at about the middle of the semicircle and narrows considerably as the points at the extremities of the bight are approached. The slope of the beach near and at the points is sharp.

The sand zone of the flats extends from about - 3 to +2.5 except at Cottonwood Beach where the sand is replaced by clay. This zone narrows markedly as Whitehorn and Birch Points are reached until only a narrow strip exists at their extremities. The gravel zone extends upward from +3.5 in many places, although gravel bars in some parts of the bay extend as low as +2.0 .

The lower sand zone contains a considerable number of horse clams and cockles. The horse clams have been somewhat thinned out during the
past few years by transient diggers and although conditions for the growth of this large clam are apparently ideal, they are found only in patches. The horse clam occurs in portions of the sand zone exposed only on minus tides to the extent of $1-2$ to a square yard. The cockles which are not dug as a rule, are more abundant, in some places ranging from $2-3$ to a square yard. In certain parts of the sand zone the seaweed covering has apparently checked the digging, since all transients are not equally adept in finding the clam signs or burrows. A large area of stable sand, containing enough clay to act as a cementing substance, exists in Birch Bay.

The gravel bar in about the center of the arc of the semicircle and extending upwards from about +2.5 contains large numbers of butter clams at the lowest point, that is, +2.5 . Above the butter clams are found rock clams and higher up at about +3.5 are found large numbers of soft clams. On days showing a slack low tide say +4 or more only soft clams can be dug unless underwater digging be resorted to. The seeds of the soft, rock and butter clams were numerous throughout the bar. As many as 50 per square foot of the soft clam seed and 5 or more for the rock and butter clams were observed in screening experiments. The seed of all species were very small, the inspection having been made in July, not long after spawning. The gravel zone toward Point Whitehorn contained large numbers of butter and rock clams covering in length a mile or so of beach line between about +1 and +3 . The butter and rock clams near Point Whitehorn are embedded in very firm gravel studded with pebbles. The gravel beach near Point Whitehorn is not frequented by as many transient diggers as is that near the two summer resorts and apparently has not been dug over to any great extent. Several butter and rock clams per square foot inhabit the beach near the above point.

On the opposite shore near and at Birch Point, coarse sand interspersed with pebbles occurs. Rock and butter clams occur in considerable numbers in this firm ground. Very few clam diggers visit this point. The enormous shell mound at Birch Point, of Indian origin, appears to indicate that large numbers of butter, rock and horse clams have been dug on this bay in the past.

Since the acreage of Birch Bay is large and clams are numerous in certain portions of it, an intensive study concerning methods of maintaining a future supply by restriction or by cultivation would undoubtedly yield interesting and valuable results. It appears that ideal conditions for the existence and growth of clams in this bay obtain. Temperature measurements indicate water as warm as $22.0^{\circ} \mathrm{C}$. or $71.6^{\circ} \mathrm{F}$. during the summer months and microscopic life in the water is especially abundant.

Blalne: Semiahmoo Bay.

In this bay, which is located near the boundary, a sand spit extends out from the lighthouse and on minus tides moderate quantities of horse clams are found. On the eastern side of this bay at Blaine a muddy soil prevails and no clams are found in appreciable quantities.

Drayton Harbor is largely composed of mud flats covered with seaweed and for this and other reasons few, if any, clams are to be found there. Creeks enter this harbor and although in the past oysters existed there, it has not been a clamming region as far as the writer can ascertain.

Hoods Canal.

This territory is of particular interest both on account of its size and variety of soil conditions. Large numbers of butter, rock, horse and soft clams occur within the Canal.

The beach directly inside of this strip of sand is composed of gravel and sandy clay. The gravel zone contains rock and soft clams in small quantities. Below the gravel, mud occurs in which no clams apparently occur.

Shine (A Small Settlement)

Proceeding down the Canal for several miles, the beaches at Shine contain a few rock and butter clams but the lower or sand zone contains considerable cockles and horse clams.

Lofall and Viniand.

On the opposite bank of the Canal gravel beaches obtain from Port Gamble south to Lofall and Vinland in which at low tide, from - $3,+2$, commercial quantities of butter and rock clams are dug. The beach line is relatively short and steep along the canal at these places.

Bangor.

The beach line at Bangor is similar to that above Lofall-gravel and rocks prevail. This region contains considerable numbers of butter and rock clams. The beach in places is littered with empty shells of both these varieties. The beach for about a mile in length at and near Bangor has been bought from the state by a resident of Bangor. This purchase covers the beach down to extreme low tide and is used as one source of clams for the cannery. At the present time this portion of the beach is somewhat depleted but may possibly reseed itself within a few years. Butter clams are especially numerous in certain localities at the northeastern part of the Canal.

Dabop Peninsula (East Side).

On the opposite bank of the Canal on line with Bangor, gravel beaches containing butter and rock clams in moderate abundance occur. These clams were dug by the writer at a low tide of +1.9 . The range of these clams appears to be from - 3 to +2.5 . For this reason slack tides would not permit digging. During most of the winter months night digging must be resorted to here in the Canal as well as in other localities of the Puget Sound region.

Quilcene.

This bay contains a large expanse of flats which are of a dangerously soft sandy mud in certain parts. This mud contains many burrows of worms, as well as a mat of seaweed at low tide levels. The big and little Quilcene Rivers empty into this bay and undoubtedly have caused the considerable deposition of silt and clay. At the northern end of the bay a few soft clams inhabit the gravel zone which lies above the soft mud. No other clams appear to exist at this end of Quilcene Bay from the mouth at Foulweather Bluff to Belfair in Lawson Cove at the southeastern end.

Directly inside Foulweather Bluff gravel and sand beaches occur. Moderate quantities of butter and rock clams occur at the gravel zone while large quantities of horse clams and cockles are found in the sand flats below. The flats at the mouth of the Canal have apparently been very little
dug over in recent years at least, possibly due to their relative inaccessibility to clammers.

Port Gamble.

The shoreline within this bay is relatively steep and at low tides especially minus tides, horse clams are found in moderate numbers in the sand zone. Above the sand a few soft clams occur.

Hoods Head.

This promontory which appears as an island from the mouth of the canal is connected by a strip of low ground to the mainland. Towards the mouth of the bay on the eastern side gravel beaches occur at Harmon Point in which butter and rock clams are found in moderate abundance.

Jackson Cove.

This cove which lies south of Quilcene Bay contains a broad expanse of flats in proportion to the size of the cove. The gravel zone is broad and at the highest elevations, about +4 to +2 , a considerable number of soft clams, about 10 per square foot are found. The seed of this specie is also abundant. The soil appears to cause little or no coloration to the shell of these soft clams which are white in color. Occurring at the same elevations large numbers of seed rock clams were observed. Their rate of abundance usually ran from about 5 - 10 per square foot. This set of rock clams was unusually abundant. At the lower line of the gravel zone a few butter clams existed but not in commercial quantities. Residents of the cove ascribe this condition to the dug out condition of the bed of clams. Difliculty was experienced by a clammer in procuring one 120 pound sack of butter and rock clams per tide on this cove at the time of the writer's visit. On minus tides horse clams are found in moderate quantities.

Brinnon.

The flats about this town are considerable in extent varying from gravel to sand at the lower levels. The lower or sand zone contains horse clams which are widely scattered throughout the flats. Near Brinnon the narrow gravel beach at Duckabush yields moderate quantities of butter and rock clams.

Seabeck.

Beds of butter and rock clams are found generally distributed between Seabeck and Bangor.

Triton Cove.

This cove which lies down the Canal from Duckabush contains moderate quantities of butter and rock clams within the gravel zone and a few scattering horse and soft clams as well as cockles. Its area is not, however, sufficient to yield very large quantities of these bivalves.

LIlliwaup.

At this town the gravel beaches contain largely rock clams with a smaller number of butter clams at the lower margin of the gravel zone. On minus tides scattering horse and soft clams as well as cockles are found. As a clamming ground, Lilliwaup is a small producer.

Dewatto.

At this town a somewhat larger area of fiats obtains than across the Canal at Lilliwaup. At Dewatto clammers obtain moderate quantities of rock clams and a smaller number of butter clams.

Hoodsport and Potlatch.

The gravel zone at Hoodsport contains only scattering clams while at Potlatch practically none are found. A silty mud, derived no doubt from the Skokomish River, influences conditions at Potlatch and renders them unsuitable for the existence of clams.

Union City.

Both gravel beaches and muddy flats obtain at and near this town. At the southwestern end of Union City considerable silt and clay derived for the most part from the Skokomish River renders conditions unfavorable for the growth of butter and rock clams; however, a limited quantity of soft clams occur here.

Próceeding about easterly from Union, gravel beaches containing rock clams in moderate abundance exist. Butter and soft clams are of less common occurrence.

Happy Hollow.

At and near this settlement which lies on the Union City side of the Canal, gratel beaches occur. The lower elevations of these beaches contain rock and butter clams in appreciable quantities. The soil is quite free from river silt in this vicinity.

Lawson Cove: Belfair.

After leaving Happy Hollow the water becomes progressively shoaler until in Lawson Cove at the end of Hoods Canal considerable soft mud is encountered. On the shore about Belfair, the flats are of considerable width. The mud is not deposited to any considerable extent on this side of the Canal and gravel sand fiats are in the majority. The gravel is deposited in bars near low tide level. Soft clams occur in these fiats in considerable quantities. Moderate quantities of rock clams occur at points lower on the beach than the soft clams. Isolated patches of butter clams are found but in small numbers.

Aside from the oyster farms at this point, the soft clams are by far the most numerous shellfish present. These clams also occur on Lawson Cove along the beach opposite from Belfair. The seed is very numerous throughout the gravel zone. Examination of these flats shows the presence of a closely related species to the common enemy of soft clams in eastern U. S. waters. It is called the snail in this region but is misnamed the cockle in eastern waters. The extent of its depredations on oysters in this part of the Canal is well known, but not in connection with the destruction of clams.

Observations on the conditions of life of the soft clam in Lawson Cove show the presence of dwarfed and deformed specimens where the soil is intermingled with dense aggregates of small pebbles. Such clams if located in a more suitable soil would undoubtedly attain a larger size in a shorter time. In the loose gravel-sand soll near Belfair much better conditions for larger sized soft clams obtain.

The extreme end of Lawson Cove is an area composed wholly of soft mud and marshes, which conditions are not suitable for the existence of clams.

Taken as a whole the Hood Canal region with its long line of gravel beaches contains many acres of clam beds. On slack low tides very few clams of any variety can be procured. This condition, however, does not materially interfere with the industry since at certain times night digging is resorted to.

The butter clams in the Canal are most numerous at points above Seabeck, while below the Dabop Peninsula and towards the end of the Canal, rock clams take the lead in numbers.

The Clam Industry.

The clam industry of the Puget Sound region comprises both the fresh and canned trade. The butter and rock clams are the only species occurring in commercial quantities that are sold in the markets.

Fresh Clams. Aside from transient digging of butter and rock clams during the summer months for local consumption by campers and tourists these clams are shipped in the shell during the fall, winter and spring from the clam beds to nearby cities. As would be expected, this trade is largest in and out of Seattle. Butter and rock clams are often sold mixed and are most commonly shipped in burlap sacks. The clams in each sack usually weigh about 115 pounds- 120 pounds. The unit of measurement appears to be a 5 gallon oil tin, 3 of which full of clams would equal about one burlap sackful. Two 5 gallon oil tins are said to make one bushel but this unit is not at all common in the Pacific Northwest.

The fresh clams are not shucked out until after reaching the wholesaler or retailer in the city. Near Port Orchard a live car is used to hold clams prior to shipment to Seattle as shell stock. This method of holding clams alive is of common occurrence on the Atlantic Coast but is very uncommon in this region. Small quantities of fresh shell stock are shucked and shipped in tins surrounded by ice or in parchment containers.

Table 111 shows the extent of the clam industry in the Puget Sound district. Figures on the total catch which include a few mussels are given between dates of 1917-1924, inclusive. Statistics on the pack of clams are given for the period between 1905-1924, inclusive.

Total Catch.

The total catch of 1917 shows an unusually high return with a correspondingly large number of licensed clam diggers engaged. War conditions, no doubt, played an important part in the demand for clams at that time. During 1918 the catch dropped off as well as the number of clammers, only to rise again during 1919 . The 1920 catch and the number of clammers engaged shrunk nearly one-half below the return of 1919 . Since 1920 the catch has slowly risen as well as licenses issued.

CLAM STATISTICS.
State of Washington Figures-Puget Sound District.

Key-Catch expressed in pounds. Canned in terms of 48 lb . cases. Bait in pounds.
Since 1922 an appreciable number of clams have been used for bait purposes. In comparison to total catch, however, the poundage is small. The number of licenses for bait clamming has increased during the past few years.

Canning. Data on the quantities of clams which have been canned in the Puget Sound district covers the period from 1905-1924 inclusive.

In $1905,3,500$ cases (48 pounds each) were packed. During the next year this figure rose to 8,850 . Between 1906 and 1916 , this industry showed considerable fluctation but no definite increase. In 1917 a big increase to 19,956 cases took place only to be followed by a slump to 3,524 cases in 1920. Since that date the return has slowly increased to 9,366 cases in 1924.

The quantity of clam nectar packed is small but it is of recent development and shows a probable future increase.

Since 1917 the number of clam canneries in this district has not materially increased. Four canneries were operated during 1918 and also in 1924. There is nothing to indicate any increased investment by the canners.

It is apparent that the packing of clams in the Puget Sound district has not showed a rapid growth since 1905 . In fact the figures in Table III indicate a small but somewhat stable industry.

There are, of course, many factors which enter into the present and future status of the clam packing industry of this region. Among these factors may be mentioned competition from the sale of another variety of clams not found in the Puget Sound district, as well as eastern clams which are now shipped (canned) from the New England states. The cost of producing canned clams is of course also a large factor.

It would appear, however, that future expansion of the clam packing industry in the Puget Sound region will take place.

Attention should be directed towards the utilization of the soft clam, the cockle and horse clam for canning purposes.

Clam canning in this region according to state figures is carried on at present in four canneries.

During the present survey the writer visited a clam cannery located on Hoods Canal. This cannery had just started on the fall pack for 1925.

Both butter and rock clams are procured and shipped to the cannery in burlap sacks. In each sack is placed about 65-70 pounds of clams usually mixed butter and rock clams. Although the clams are sold by weight, the diggers put into each sack two five gallon oil cans full of clams. This volume is said to be equal to one bushel. The present cost to the canner is $\$ 1.00$ per sack of $65-70$ pounds plus a state tax of 9 c for each 100 pounds of clams in the shell purchased.

The clams are usually picked up by a boat that delivers them to the cannery. Upon arrival at the cannery the sacks are opened and the clams dumped into a large rectangular wooden tank containing fresh water. They remain in this water for two hours or more during which time a considerable portion of the grit, sand and mucous is "spit out" through their siphons.

During this period their valves are tightly closed since the clams are not accustomed to fresh water.

The butter clams are then separated from the rock clams after being removed from the fresh water. A layer of clams of either variety several inches deep is then placed in a galvanized iron tray provided with a large number of openings through which the steam will enter. Several such perforated trays are superimposed upon a water tight tray of similar size. The trays covered with clams are then wheeled to the retort, which is of the salmon canner's type. The clams are then steamed in this particular plant for 20 minutes at $240^{\circ} \mathrm{F}$. Three or four of these nests of trays are steamed at once. The valves of the clams open up during this rather rigorous treatment and at the same time the juice or nectar is deposited in the water tight tray at the bottom of each nest.

The trays of clams after removal from the retort are placed upon the tables and the meats at once removed from the shell. This is readily accomplished since the meats have shrunk during the steaming operation. The gills and black siphon tip are sometimes cut off and the clams are packed in No. 1 oyster cans together with hot nectar. The cans are then placed in the double steamer without previous exhausting. Since a cut out weight of 5 ounces of clam meat in No. 1 oyster cans is required by the Dept. of Agriculture standard, a somewhat greater weight of steamed meat must be put into each can, on account of later shrinkage during processing.

The clams are then processed for one and one-half hours in the retort at $240^{\circ} \mathrm{F}$. This cooking is undoubtedly severe and must cause considerable shrinkage in the meats.

Both butter and rock clams are canned whole at this cannery. The nectar especially from the rock clam is also canned separately in tins as well as in glass. This nectar is very appetizing and its sale is increasing.

Small packs of clam chowder are put up at present by a cannery in the Port Townsend district. In making chowder very small quantities of clams are required, for this reason when weather conditions are adverse and clams are scarce it is customary in some localities to pack in this manner. This
business though undeveloped in this region is extensive in the New England states.

Maintenance of the Clam Supply.

Broadly speaking, a considerable surplus of clams must remain unmolested in the beds, each and every year above the demands of an ever increasing future consumption-if the supply is to be maintained. The following methods of maintenance must now be considered:
a. Closed Season.
b. Cultivation.
a. Closed Season. A strictly enforced closed season for clams during and for a period after the spawning season is of unquestionable value. It is evident that the spawning period of all clams under consideration must be definitely known before the limits of a closed season can be fixed to best advantage. The present law in the Puget Sound region closes commercial clam digging each year between April 1 and September 1. According to Kincaid the breeding season of the butter and rock clams begins in March and April. The reproductive elements are not apparently discharged at once but rather gradually. By the time the summer season has arrived, the young of these species have begun their lives as minute shelled organisms on the beaches and flats after a period of free swimming or larval development. The minute clams are at the mercy of the elements since they are close to the surface of the ground. If the beds are dug over during the summer months, these small clams are frequently buried under considerable quantities of soll, a condition that results in smothering them, with a great loss of life. It should be borne in mind that the young clams cannot extend their siphons for respiratory and feeding purposes unless they are very close to the surface of the ground. They are not capable of again reaching the surface if buried under several inches of soil. This condition is not peculiar to these species but has been observed by the writer in connection with several attempts at soft clam culture in which the seed clams were plowed under-and subsequently died.

During the present investigation large numbers of very small butter and rock clams mostly $1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ in length were screened from the surface of the soil in many localities during July, August and September. There is no doubt that the present closed season is very necessary and beneflial.

The spawning period of the horse clam has not been studied in this region. During the present investigation the writer observed that during the latter part of August the horse clams in Hoods Canal were in a watery con-dition-the reproductive organs being of greatly reduced proportions. During the month before this at Birch Bay and vicinity the visceral mass of a considerable number of these clams was in every case distended-indicating that the reproductive elements were ripening preparatory to spawning. It is obvious that a thorough study of the breeding habits of this species must be made before the limits of the spawning season can be ascertained. It is probable, however, that the horse clam spawns during the summer months and that the present closed season is effective. A thorough enforcement of the closed season is needed in localities wherein campers and other transients dig, during the summer months, since in a number of places-Birch Bay, Samish Bay and Kitsap, the clams are undoubtedly being
depleted. In some observed instances these clams were dug and then discarded by the diggers.

The soft clam spawns in New England waters during the summer months and since the summer water temperatures in the Puget Sound region are similar it was believed that this clam would show a somewhat similar spawning period. During July at Port Susan, great numbers of very small soft clams were found on the surface of the flats. These seed clams were only $1 / 16^{\prime \prime}$ to $1 / 8^{\prime \prime}$ in length and were not probably over a few weeks old. At Birch Bay soft clams of similar sizes were observed during July. These observations indicate that the spawning season of the soft clam takes place in the early summer. Further studies are essential. Undoubtedly the present closed season is beneficial towards perpetuating this species. Even though the soft clam is not yet commercially utilized, the turning over of the clam beds during the closed season to procure other closely associated species, must cause a considerable loss of life in the young for reasons already discussed.
b. Cultivation. Clam culture has not been practiced in the Puget Sound region. The soft clam which occurs in this region has, however, been cultivated elsewhere-chiefly in the New England states. The methods of soft clam culture are extensively treated in the writer's research on "The Culture of the Soft Clam, Mya arenaria," available at the University of Washington library.

In general, the feasibility of clam culture of any species depends primarily upon the cost of procuring large quantities of seed and upon the adaptability of the young clams to their new environment. It is probable that the cost of procuring seed clams of all species except the soft clam would be high, on account of their relatively scattered distribution in this region (Table 2). Since the methods of clam culture now in practice involve screening the soil to procure the seed for planting it is evident that the soft clam is apparently most adaptable to culture in this region. If artificial propagation eventually becomes successful for all kinds of shellfish, it will be a very useful means of increasing the clam supply.

It should also be borne in mind that the growth of the butter and the rock clams is slow (Kincaid 1919), consequently losses of the young would take place over a period of several years. With the eastern soft clam, market size may be obtained from seed in 1 to 1.5 years. It has been observed in eastern waters that relatively thick shelled bivalves like the quahog and oyster attain market size after a longer period of growth than do the thin shelled soft clam and scallop. Further investigations on the practicability of clam culture in the Puget Sound region should be made in the future.

Conclusions.

1. The clam resources of the Puget Sound region are extensive and cover a large territory.
2. The clam species discussed in this report usually show well defined vertical distribution between high and low tide lines on the beaches and flats.
3. The soft mud clams and the rock clams usually occur at the highest tidal elevations above low water mark, and in the gravel zone.
4. Butter clams also occur in the gravel zone but often below the rock clams.
5. The horse clams and cockles occur in the sand zone near low tide lines.
6. The width of the gravel zone is often greatly less than the sand zone.
7. Soft mud and unstable sandy mud, usually identified on sight in this region by the presence of many worm burrows, are not suitable for the existence of the clam species treated in this report.
8. These clam species are not found in close proximity to large volumes of fresh water, from rivers.
9. The clam industry of this region, both fresh and canned, appears to be stable and shows no large increase during an 8 year period for the fresh and a 20 year period for the canned.
10. Further and intensive investigations are needed to ascertain the effectiveness of the closed season alone as a means of maintaining or increasing the present natural supply of clams under an increased utilization or consumption.
11. The methods of canning clams with particular reference to the processing time and shrinkage should be investigated and some standard procedure adopted.
12. The feasibility of clam culture in this region should also be investigated. Birch Bay, Kitsap or points in Hoods Canal would be most suitable for such a study.
13. The use of butter clams and rock clams for bait purposes should be discontinued.
14. The species of clams other than rock and butter clams should be utilized for food purposes. Utilization studies should be made.
15. Transient clam digging during the spawning season should be stopped.

The office has had many requests for information on rack construction and details of the standard rearing ponds now in use by the department since the supply of the 1924-1925 Biennial Reports was exhausted and the following descriptions and cuts are included with this biennial to meet this demand.

RACK CONSTRUCTION.

One of the most important items in the operation of the hatcheries is the designing and construction of the racks across the streams for the catching of the salmon as they ascend the streams preparatory to spawning. When the high water condition of our mountain streams with their floods, driftwood, sawlogs, bowlders, and gravel fiows are considered, much has been accomplished in the past ten years along this line.

Time has proven the wisdom of the accompanying type of construction. The concrete piers rest on the gravel bed of the river with a few small piling to prevent them from moving down stream. Well driven toe-piling in front prevents the water from getting under the foundation. The apron fioor carries the water over and beyond the foundation. Coarse brush and rock are used to keep the back lash from undermining the lower end of the apron. The wings are deeply trenched back into the shore and reflled on

the upper side with gravel and well brushed on the lower side to prevent the back lash from washing away the shore.

Racks of this type of design have stood for eleven years. At practically all of our hatcheries where permanent racks can be used, this type of construction is resorted to and with very few exceptions they have been found to be entirely satisfactory.

STANDARD REARING PONDS DEVELOPED BY THIS DEPARTMENT.

In 1898 the department began the first experiments in rearing salmon in out-door ponds, and as the results were very encouraging, the work has been gradually extended. In 1922 the department started serious studies of the construction problem as well as feeding, with the idea of standardizing these branches of the propagating work. In pond construction the result was the adoption of a pond as shown in the accompanying sketch. It is economical to build, permanent, of practical operation and is self-cleaning as a result of the circulating current. The current passes parallel with the screen at a greater velocity than the discharge current through it, which prevents trash and sediment from lodging on the screen and obstructing the discharge, thus requiring very little care to keep it in operation. The circulation also gives the fish their natural exercise and prevents there being a first and second class condition of young fish as in a pond that receives its water supply at one end and discharge at the other.

These ponds are built in batteries side by side. The size of the water supply main in each hatchery is governed by the head of water available, the length of the main, and the number of ponds to be supplied. The hatchery operations in each locality are governed to a certain extent by the amount of water available and therefore at some of the hatcheries it is not possible to maintain as great a number of ponds as are desired. The greatest development of rearing ponds is located in districts where the hatcherles are not situated great distances from the salt water, the idea being that hatcheries located on extreme headwaters of our larger rivers give the fingerlings an opportunity to develop and acclimate themselves when released at the hatchery, as their trip to the sea covers a long period of time; whereas, at the hatcheries located on the lower waters, the fingerlings quickly reach the sea where conditions are entirely different from the hatchery conditions and therefore fingerling salmon are perhaps not as well equipped to maintain themselves.

In building these ponds side by side as shown in the accompanying sketch, the department has developed what seems to be the most economical method of construction, at the same time providing easy access for feeding and a maximum capacity in each pond. These ponds are not so deep that dead water and filth accumulate to interfere with the rapid growth of the young fish, and the results of the last five years' experience in operating these ponds seem to have fulflled the department's expectations.

STATISTICS

FOR

FISCAL YEAR 1925

April 1, 1925, to March 31, 1926

DIVISION OF FISHERIES

Department of Fisheries and Game

STATE OF WASHINGTON

Appropriations, Receipts and Disbursements; Output of Salmon Hatcheries and Costs; Licenses Issued; Take and

Value of Food Fishes; and Other Information
Regarding the Food Fishing Industry.
APPROPRIATION AND EXPENDITURES OF FISHERIES FUND.

FUND	Appropris. tion for One Year	$\begin{aligned} & \text { Expended } \\ & \text { Fiscal Year } \\ & 1925 \end{aligned}$	Balance April 1, 1820
Salarles of director, supervisor, inspectors and employes; traveling expenses of director, supervisor, inspectors and employes; rent and incldentals; construction, repalr and maintenance of salmon hatcherles, construction of new hatcherles; patrol service; improvements, replacements; destruction of seals; printing and other necessary expenses of the office of the	8170,000 00	* ${ }^{\mathbf{8 1 4 3 , 2 1 4}} \mathbf{7 6}$	\$28,785

ITEMILATION OF EXPENDITURES OF FISHECRIES FUND.								
	Salaries	Labor	Mleage	Subsistence	General Expense	Mainte	Improve- ments	Total Oost of Operation
Office expense	00,287 00		\$828 24	0513 35	\$5,802 51	1208	1, 1,888	\$18,124 68
-Reparis and maintenance of hatcheries.	21,81881	(29,901 54	${ }^{119} 71$	${ }_{7}^{688} 17$	5,783 28	2,431 83	7,870 32	68,078 14
Patrol service -.........	16,4768 1,802	6,614 873	6,655 12588	7,67413 806	6,988 1,821 75	3,027 401 41	1,208867 ${ }^{68}$	$47,702 \%$ 0,10500
\dagger Destruction of seals					2,863 00			2,88800
Sundry expense ...	11290		2980	4325	10487			29090
Totals	\$4,146 50	887,890 48	6e,750 42	\$9,489 86	223,368 50	\$5,980 81	\$11,085 60	\$148,214 76

${ }^{*}$ Includes cost of pond construction.

APPROPRIATION AND EXPENDITURES OF STATE OYSTER RESERVE FUND. Fiscal Year 1925.

FUND	Appropriation for One Year	$\begin{aligned} & \text { Expended } \\ & \text { Fiscal Year } \\ & \text { 1926 } \end{aligned}$	Balance April 1. 1828
For the improvement and protection of the state oyster reserves	\$9,000 00	\$5,086 61	83,918 38

ITEMIZATION OF EXPENDITURES OF STATE OYSTER RESERVE FUND.

Patrol Improvement of oyster bede.	$\begin{gathered} \$ 2,824 \\ 2,282 \\ 20 \end{gathered}$
Total.	\$5,008 81

RECEIPTS OF THE FISHERIES DEPARTMENT,

CREDITED TO THE FISHERIES FUND	Puget Sound District	Columbla River District	Grays Harbor District	Willapa Harbor District	$\begin{aligned} & \text { Entire } \\ & \text { State } \end{aligned}$	Totals
LICENSES-						
5,672 Fishing	\$22,550 28	$\$ 13,57435$ 8800	82,90570 1800	$\$ 2,38225$ 1400 1800	841,502 58 23500
235 Buyer's at \$1,00.......	11500 584 00	83900 839	1400 4400	1800		93000
124 Wholesale dealer's ..	55000	44000	17000	8000		1,24000
5 Brokers	2000	2000		1000		5000
25 Freezer's	18000	5000	2000			25000
36 Halibut dealer's	18500	4500				18000
1 Codfish, canning and curing	500					500
4 By-products manufacturing	10000				10000
as Private hatcheries	22500	350 1500 1500	57500 2250
9 Private hatchery product dealer........ 5 Hotel serving private hatchery product	750 400	1500 100			2250 500
5 Hotel serving private hatchery product 14 Permit to collect blrds.................	400	109			1400	500 1400
14 Permit to collect birds	60000	22500	20000	7500		1,100 00
27 Clam canneries	9000		19500	12000		40500
1001924 licenses .t.	4100	$56(0)$	10800	3400		23900
7,353 Total						846,853 08
TAXES Catch tax recolved.	\$111,8806	\$69,633 75	8,234 39	\$8,896 92		\$192,643 00
SALES- Spawned fish						1,270 35
Confiscated gear	5000	10 100				1.27000
Conflscated flsh	55183	20427	1731	14656	...t+,........	91997
Total						\$2,250 32
MISOELI.ANEOUS Transfers	85400	33700	8600	8400		\$101 00
Miscellaneous	60908	8980				78888
${ }^{*}$ Refunds	21358	3306				24724
\dagger Refunds	73766	11216	1900	782	, +r.-.......	87673
toregon suspense						-4,114 32
gTax paid Oregon		15,519 96				15,519 96
Totals	\$139,350 96	\$106,228 61	\$8,027 49	\$0,773 56	\$1400	$\begin{array}{r} \$ 01,64812 \\ \$ 263,20461 \end{array}$

RECEIPTS OF THE FISHERIES DEPARTMENT-Concluded.

OREDITED TO THE FISHERIES FUND	Puget Sound District	Columbia River District	Grays Harbor Distric	WIllapa Harbor District	Entire State	Totals
Interest earnings						2,987 65
Salo of public property						26380
§Refunds						1000
Total						\$12,088 45
CREDITED TO THE STATE OYSTER RESERVE FUNDOysters sold (direct to Treasurer) 						
Total	87,276 17					\$7,276 17
Total				874787
Total crediled to Oyster Reserve Fund.						88,023 54
Totnl Receipts						\$283,506 60

[^2]Fiscal Year 1025.
LICENSES ISSUED.
Fiscal Year 1925.

	$\begin{aligned} & \text { PUGET SOUND } \\ & \text { DISTRIOT } \end{aligned}$		$\begin{aligned} & \text { COLUMBLA RIVER } \\ & \text { DISTRIOT } \end{aligned}$		GRAYS HARBOR DISTRICT		WILLAPA HARBOR DISTRIOT		$\begin{aligned} & \text { ALL DISTRIOTS } \\ & \text { COMBINED } \end{aligned}$	
	Number Licenses	Amount Collected	Number Licenses	Amount Collected	Number Licenser	Amount Collected	Number Licenses	Amount Collected	Number Licenses	Amount Collected
FISHING LICENBES-										
Pound net 850.00 First class ponnd net	225	\$11,000 00							232	
		91,00 (10	140	\$3,500 00					140	$\begin{array}{r}811,000 \\ 3,500 \\ \hline\end{array}$
			158	2,370 00				158	2,370 00
Ptationary fish wheel......... 85.00		,	16 ${ }^{\text {' }}$	500 01.	59	\$885 00	47	\$70500	106	1,500 00
Scow fish wheel.............. 25.00			10	${ }_{250} 50$					16	56000
	17	6375	259	97125	125	46875	141	528 75.	10	25000
Gill net, $\$ 7.50$ and lc ea. add. foot Drag seine	31	3,134 00	535	4,012 50	51	52715	71	568	1,048	
Drag seinese per foot Purse seine 27.50	144	1,005 80	45	1,31160an....	1	450	1, 190	$\begin{aligned} & 8,28725 \\ & 2,39196 \end{aligned}$
Purse seine 27.50 Reef net 5.00	154	4,235 00		-1/1010.	,			450	154	4,23500
	10	5000	'r.7.')	,			10	50 +100
Set line .wit............. ${ }^{1.00}$ Hook and line............ 2.00	86	8609	00	10000			2	200	148	14800
Hook and line............. Dip bag net............... 2,00 Dio	438	87000	95	19000	4	800	1	200	538	1.07600
Dip bag net.................) 1,00	4	400	116	11600					120	12000
Smelt drag bag net, \$1.00 first $40 \mathrm{ft} ., 3 \mathrm{e}$ ea. add. foot............ Brush weir	08	40682			1	500			64	4110
Brush weir 25.00	12	30000							12	31000
Beam trawlt. . 10,00 Olams and mussus......... 1.00	38	880 (8)							18	38000
	160	16000			1,003	1,008 00	511	51100	1,764	1,764 00
Clam bait ${ }_{\text {Crabs }} 1.00$	10	1000			3	300	24	2400	37	13700
Crabs ${ }_{\text {Gill }}^{\text {net bost priller.............. }} 1.00$	117	11700	1	100	5	580	35	3500	158	15800
	cc........		187	18700					187	18700
Drag seine extension....3e per ft .		2415	$45 \dddot{00}$,		700		${ }^{41} 000$
Smelt drag bag net exten-										6915
sion - ${ }^{\text {che fer ft. }}$		1410								1410
Totals	1,876	\$ 22.500028	1,622	\$13,574 35	1,341	\$2,905 70	833	\$2,882 25	5,672	\$41,502 58

LICENSES ISSUED-Concluded.

	$\begin{gathered} \text { PUGET SOUND } \\ \text { DISTRICT } \end{gathered}$		$\begin{gathered} \text { COLUMBIA RIVER } \\ \text { DISTRIC'S } \end{gathered}$		GRAYS HARBOR DISTRICT		WILLAPA HARBOR DISTRRICT		ALL DISTRICTB COMBINED	
	Number Licenses	Amount Colleeted	Number Licenses	Amount Collected	Number Licenses	Amount Collected	Number IIcenses	Amount Collected	Number Licenses	Amount Collected
DEALERS AND MISCELIANEOUS LICENSES-										
Buyer's $\$ 1.00$	115	$\$ 11500$	88	88800	18	\$1800	14	\$1400	235	223500
Retail dealer's 1.00	534	53400	339	33900	44	4400	13	1300	930	93000
Wholesale dealer's 1000	55	55000	44	44000	17	17000	8	8000	124	1,24000
Broker 10.00	2	2000	2	2000		$\cdots{ }^{10}$	1	1000	5	5000
Freezer 10.00	18	18000	5	5000	2	2000			25	25000
Halibut dealcr 5.00	27	13500	9	4500					36	18000
Codish eanning and curing. 5.00	1	500						1	500
By-products manufacturing. 25.00	4	10000							4	10000
Private hatchery 25.00	9	22500	14	35000					23	57500
Private hatchery product dealer 2.50	3	750	6	1500					9	2250
Hotel serving private hatch- ery product 1.00 Permit to collect birds...... 1.00	4	400	1	100			$14{ }^{\prime}$	1400	5	500 1400
Totals	772	\$1,875 50	508	\$1,348 00	81	\$252 00	50	\$131 00	1,411	83,606 50
CANNERY LIOENSES- Salmon Shell flsh	24 6	$\$ 80000$ 9000	9	\$225 00	8 13	820000 19500	8 8	87500 12000	44 27	$\begin{array}{r} \$ 1,10000 \\ 40500 \end{array}$
Totals	30	$\$ 89000$	9	\$225 00	21	\$39600	11	\$196 00	71	\$1,505 00
1924 LICENSES	32	$\$ 4100$	34	\$5600	89	$\$ 10800$	34	\$34 00	190	023900
Fishing licensee ...	1,876	\$22,550 28	1,622	\$13,574 35	1,341	\$2,995 70	833	\$2,382 25	5,672	\$41,502 58
Dealer's miscellaneous licenses.....	772	1,875 50	508	1,34800	81	25200	50	13100	1,411	3,606 50
Oannery licenses	30	69100	9	22500	21	39500	11	18600	71	1,50500
1924 licenses	$\mathbf{8}$	4100	34	5600	99	10800	34	3400	180	23900
GRAND TOTAALS	2,710	\$25,156 78	2,173	\$15,203 35	1,542	\$3,750 70	928	\$2,742 25	7,353	\$46,853 08

		8888888， 8888888 $\%$	g88888888늑 $\stackrel{-}{ }$		8 8 8 80 80
$$	婁总				会
WILLAPA HARBORDISTRICT	号岩		$\begin{aligned} & 888: 8 \\ & \hdashline \text { N1 } \end{aligned}$		18 08 80 80 80
	呂里		污		
			$\begin{array}{c:c} 8 & 888 \\ \text { in } & 0016 \\ \vdots & \end{array}$		星
	点总		－${ }_{\text {coss }}^{\text {onco }}$		$\stackrel{\text { 析 }}{\sim}$
落	呂岂		$\begin{array}{l:l} \vdots 8: 8 \\ \vdots & \vdots \\ -6 \end{array}$		令
		路			鹪
			安 $58888: 519$ 	$\stackrel{?}{=}$	81 88 88 88 8 8
	出号				号
 淢					

LICENSES ISSLED-Concluded.

	$\begin{gathered} \text { PUGFT SOUND } \\ \text { DIS'FRICT } \end{gathered}$		COLUMBLA RIVER DISTRIC'		GRAYS HARBOR DISTRIOT		WILLAPA HARBOR DISTRICT		ALL DIS'FRICT'S COMBINED	
	Number Licenses	Amount Collected								
DEAIERS AND MISCELIANEOUS LICENSES-										
Buyer's $\$ 1.00$	115	\$11500	88	\$8800	18	\$1800	14	\$1400	235	$\$ 23500$
Retail dealer's 1.00	534	53 ± 00	339	33900	44	4400	13	1300	930	93000
Wholesale dealer's 1000	25	55000	44	44009	17	17000	8	8000	124	1,240 00
Broker 10.00	2	2000	2	2000			1	1000	5	5000
	18	18000	5	5000	2	2000			25	25000
Hallihut dealer 5.00	27	13500	9	4500				36	18000
Codilsh canning and curing. 5.00	1	500	...						1	500
By-products manufacturing. 25.00	4	10000							4	10000
Private hatchery 25.00	9	22500	14	35000					23	57500
Private hatchery product dealer 250	3	750	6	1500					9	2250
Hotel serving private hatchery product 1.00 Permit to collect birds...... 1.00	4	400	1	100			14	1400	5 14	500 1400
Totals....................	712	\$1,875 50	508	81,348 00	81	\$252 00	50	813100	1,411	\$3,606 50
OANNERY LIOENSES-Salmon Shell flsh $\ldots \ldots .$.	24 6	$\$ 60000$ 9000	9	822500	8 13	220000 19500	5 8	87500 12000	44	81,10000 40500
Totals	30	\$690 00	9	\$225 00	21	839600	11	\$18500	71	81,505 00
1924 LICENSES	32	$\$ 4100$	34	\$5600	99	\$109 00	34	83400	190	223900
Fishing licenses	1,876	\$22,550 28	1,622	\$13,574 35	1,341	\$2,985 70	833	\$2,382 25	5,672	\$41,502 58
Dealer's miscellaneous licenses....	772	1,875 50	508	1,34800	81	25200	50	13100	1,411	3,008 60
Cannery licenses	30	69100	${ }^{9}$	22500	$\stackrel{21}{99}$	39500	11	18000	71	1,505 00
1924 licenses .	32	4100	34	6600	99	10800	34	3400	189	23900
GRAND TOTALS..........	2,710	\$25,156 78	2,173	815,208 35	1,542	\$3,750 70	928	\$2,742 25	7,353	\$46,853 08

CATCH OF SALMON AND VALLE.
Fiscal Year 1925.

DISTRICT AND GEAR WITH WHIOH TAKEN	Number of Ohluook Salmon	Number of Dog Salmon	Number of Humpback Salmon	Number of Silver Salmon	Number of Sockeye Salmon	Number of Steelhead	Totals
PUGET SOUND DISTRICT-							
Pound nets	235,138	67,204	1,954,771	432,115	928,960	6,152	3,624,346
Set nets Gill		${ }_{20}^{242}$		2,464			2,710
Grag nets ..	34,810	29,246	37,443	85,513	10,885	2,085	199,982
Drag seines .	4,165	9898	23,605	8,790 291	11,931	20	44,479
Purse seines . ${ }^{\text {Peef }}$ nets	9,238 10	436,408 744	$4,602,188$ 47,236	321,352 2,80	287,329	101	5,656,616
Hook and lines..	1,126		$\begin{array}{r}17 \\ \hline 88\end{array}$	20,977	2,747 962	2381	23,509
Totals	284,496	534,812	6,665,345	809,013	1,242,820	8,594	9,605,080
Value	\$625,891 20	\$213,924 80	\$1,319,738 31	\$486,647 28	\$1,052,668 54	87,734 60	\$3,706,604 78
COLUMBIA RIVER DISTRICT- First closs pound nets.							
First class pound nets.	101,389	49,167		76,497	2,850	48,479	278,382
Second elass pound nets	23,384	12,286	,	19,867 6,868	1,270	11,541	68,348
Scow flsh wheels.......	12,028 8,816			6,868	14,008 4,522	11,508 2,943	50,002 11,311
Sct nets	2,976	1,310	,	857	1,171	2,743	11,067
Gill nets	222,030	50,294	26.226	5,229	46,866	260,541
Drag seinus	24,844	1,871		1,408	2,300	10,856	41,279
Hook ant lines	1,386		4,020	,	1	5,367
Dip bag nets.	82	38	18		138
Set lines	19	27				8	54
*Totals	393,840	123,993		185,761	31,350	149,035	833,479
Valueertorverterate...ex.e.	81,085,615 40	\$11,150 37		\$88,244 65	\$15,675 00	\$184,131 50	\$1,334,828 92
GRAYS HARBOR DISTRICT-							
Set nets ...	6,193 973	71,258 13,679	…址,	37,808 8,313	1,012 705 1	116,271
(ill nets	5,464	41,587		18,091		184	
Hook and line.	11		.		, , +t,		11
Stuelt drag big nets.	34	1,035		445			1,513
Totale	12,672	127,500	50,657	.,..............	1,901	201,799
Value	\$14,227 80	\$19,126 35		\$47,725 60	\$3,421 80	\$84,501 55

*These Columbia River totals of different species of salmon secured by using average weights on the total tonnage reported in the district, as
all fish in Columbia River is purchased on a tonnage basis.
CATCH OF SAIMON AND VALUE-Concluded.

DISTRIOT AND GEAR WITH WHIOH TAKEN	Number of Ohinook Salmon	$\begin{gathered} \text { Number of } \\ \text { Dog } \\ \text { Saimon } \end{gathered}$	Number of Hunpback Salmon	Number of Silver Salmon	Number of Sockeye Salmon	Number of Steelhead	Totals
WILLAPA HARBOR DISTRIGT- Pound nets Set nets Gill nets Hook and lines							
	3,854 1,162	153,212 34,629		19,514 4,136		283 454	176,863 40,381
	6,625	35,427		7,156		123	49,331
						
Totals..Value	11,641	223,268	30,803	860	266,575
	\$13,387 15	\$32,150 59		\$24,64480		\$1,54800.	\$71,730 54
Pound nets	309,978	353,127	1,954,771	585,801	983,096	67,467	4,284,210
Scow flsh wheels.......	-				4,522	2,943	11,311
Sot nets	5,109	49,800		15,770	1,171	3,902	75,816
Gill nets	269,825	165,504		131,096			670.130
Drag seines	29,009	2,839	23,605	5,198	14,231	10,876	- ${ }_{\text {85, }}$
Purse scines	9,238	436,408	4,602,188	321,352	237,329	101	5,856,616
Reef nets ${ }^{\text {Hook and }}$ jine	19 2,483	744	47, ${ }^{48}$	24,997	2,747	237	28,777
Dip bag nets..	82	38					138
Smelt drag bag mets	33	1,035		445			1,513
Set lines	19	27				8	
Totals	702,149	1,009,582	6,660,345	1,095,237	1,274,170	160,390	10,906,873
Value	\$1,739,124 55	\$276,361 11	\$1,319,738 31	\$647,262 33	81,068,343 54	\$146,835 90	\$5,197,665 74

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE.

DISTRICT AND GEAR WITH	Pounds of Clams and Mussels	Number of Crabs	$\begin{gathered} \text { Pounds of } \\ \text { Cod } \end{gathered}$	Pounds of Devil lish	Dog Fish Pounds of Dog Fish	Pounds of Dolly Varden Trout	Pounds of Flounders	Pounds of Halibut	Pounds of Herring	Pounds of Perch.
PCGET SOUND DISTRICT- Pound nels			8,306	102			5,796	242	140	
Set nets			5,161	1,223	36,673					3,467
Gill nets			(1x)	470						1,225
Prag seines			19.87	18	2,096		9,(8)		180,900	64,800
Purse seines li....			1,037							
Hookt and tines....			53,146	18,303		261		4,520	123,4:33	2,400 7,160
13 rush weirs									359,200	
Berm trawls			- $\begin{aligned} & 36,06 \\ & 2600\end{aligned}$	88.081	2,740		24,772	3,621		437
Set lines $\ldots .$. Clams	235, 5 28									
Clam balt	10,357									
Crabs ${ }_{\text {dip }}$ bag nets.		3T3,744							200	
Dip bag nets						-				
Totals	245,845	3ヶ3,744	151,553	106,570	41,549	201	260,333	8,391	663,803	79,748
alue	\$4,916 90	\$46,718 00	\$7,557 75	\$5,278 50	\$106 20	(*) 15	\$3,005 00	21,000 83	\$3,319 47	\$3,987 40

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE-Continmed.

DISTRIOT AND GEAR WITH WHICH TAKEN	Pounds of Red Snspper	Pounds of Sand Dabs	Pounds of Sea Bass	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Skates } \end{aligned}$	Pounds of Sbrimp	Pounds of Smelt	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Sole } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Sturgeon } \end{gathered}$	Pounds of All Other Food Fish	Total Value
PUGET SOUND DISTRICT-										
Concluded-	354		32	1,050			22		
Set nets			150				392			
Gill nets	2,900	179...			
Drag seines	570	86	116	146,104	17,839		31
Purse scines			403			219	47 850		1,261	.
Hook and lines..............	22	98	403			$\ldots 7.541$	300		1,201
Smelt drag bag nets...........		760			3, 6 ¢71	75,54...	204,669		5,321	
Set lines	252	68	362	120		\cdots	100			
Dip bag nets.						900	
Totals	1,198	926	1,033	1,256	35,671	225,664	224,207	22	7,113	
Value	$\$ 4792$	\$7408	\$123 96	\$25 72	\$3,567 10	\$27,079 68	\$0,72891	$\$ 8800$	$\$ 3557$	8114,770 14

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE-Continued.

distriot and gear with which taken	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Oarp } \end{gathered}$	Pounds of Clams and Mussels	$\begin{gathered} \text { Number } \\ \text { ot } \\ \text { Orabs } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Perch } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Sturgeon } \end{aligned}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Shad } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Smelt } \end{gathered}$	Pounds of All Other Food Fish	Total
Second class pound net					57 160	7,431 15,975			
Scow fish wheels.......					245	15,975			
Set nets					247	$7{ }^{194}$.		
Gill nets ...					1,419	142,834	.		
Dip hag nets.	294,787					92,847	1,194,314		
Set lines					210	1,10n,si4		
Totals.	294,787	2,567	283,424	1,194,314	
Value.	\$17,687 22				\$10,268 00	85,668 48	\$35,829 42		809,453 12
	λ								
CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE-Continued.Fliscal Year 1825.									
DISTRICT AND GEAR WITH WHIOH TAKEN	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Carp } \end{gathered}$	Pounds of Clams and Mussels	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Crabs } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Perch } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { ol } \\ & \text { Sturgeon } \end{aligned}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Herring } \end{aligned}$	Pounds of ofelt	Pounds of All Other Food Fish	Total Value
GRAYS IAARBOR DISTRIOT-									
Gill nets					3	5,9\%0			
Smelt drag bag nets.			4,056	513					
Clam		533,123							
Totals.	533,123	4,056	513	25	5,850			
Value		231,987 38	\$507 00	\$25 65	\$100 00	\$29 75			832,649 78

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE-Continued.

| DISTRICT AND GEAR WITH WHICH TAKEN |
| :--- | :--- |

DISTRICT AND GEAR WITH WHICH TAKEN	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Oarp } \end{gathered}$	Pounds of Clams and Mussels	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Crabs } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Cod } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { Devil Fish } \end{gathered}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Dog Fish } \end{aligned}$	Pounds of Dolly Varden Trout	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Flounders } \end{aligned}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Hallbut } \end{aligned}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Herring } \end{aligned}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Perch } \end{gathered}$
ALL DISTRIOTS OOMBINED-											
Pound nets				8,306	102	40		5,796	242	140	
Set nets				\%,051	1,225	36,673				3,467
Drag nelies	294.787				470 18					5,950	1,225
${ }^{\text {Purge seines }}$	29,isi			10,907						180,900	
Hook and llaes				53,146	18,303		261		4,528	20	2,400
Dip bag nets..											
8 8melt drag bag nets.,										123,433	7,673
Brush welrs				36,0e	881			244,772		350,200	437
Set lines				26,000	85,071	2,740			3,621		
Clam		1,177,147									
Clam buit		15,906									
Crab			519,460								
Totals	294,787	1,193,052	519,400	151,555	105,570	41,549	201	260,333	8,391	669,343	80,456
V	\$17,687 22	861,749 32	\$64,902 50	\$7,57\% 75	\$5,278 50	\$166 20	839 15	\$3,905 00	\$1,000 83	\$3,349 22	\$4,022 80

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE-Concluded.

DISTRICT AND GEAR WITH WHIOH TAKEN	Pounds of Red Snspper	Pounds of Sand Dabs	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Sea Bass } \end{aligned}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Shad } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Skates } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Shrimp } \end{gathered}$	Pounds Smelt	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Sole } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Sturgeon } \end{aligned}$	Pounds of All Other Food Fish	Total Value
ALL DISTRICTS COMRINED-Concluided-											
COMBINED-Conclided- Pound nets	854		32		1,060						
Stationary fish wheels				15,975	1,00				100		
Scow fish wheels.......							245		,
Set nets Gill nets			150	142,834			2,900	392	${ }_{2}^{247}$		
	570		81	92,847	116		146,104	17,920	2	531	
Purse seinesi.. Hook and lines							219	47			
Dip bag nets..		98	403		1,105,214	850		1,261	
Smelt drag bag nets..	22						75,541				
Beam trawls Set lines		760				35.671		201,009		5, e2	
Set lines	252	68	382		120			100	210		
Totals.	1,198	926	1,03s	283,424	1,286	35,671	1,419,978	224,207	3,400	7,113
Value.	84702	\$74 08	\$123 96	\$5,668 48	\$25 72	\$3,567 10	\$0, 200 10	36,728 m	\$13,840 00	8355	
Grand Total Value											62,819 38

DISTRICTS	$\begin{gathered} \text { Number } \\ \text { of 48-Lb. } \\ \text { Oases } \end{gathered}$	Value
PUGET SOUND DISTRIOI-		
Ohinook salmon	29,083	\$810,479 85
Dog or chum galmon.	42,75	139,911 28
Humpback salmon	557,088	2,803,984 09
Bilver salmon	172,00'	1,615,587 07
Sockeye salmon	104,973	1,604,501 16
Steelhesd salmon	2289	1,78820
Olams and mussels.	2,281	56.5592
Clam nectar	782	3,334 40
Other food and shell flsh	45	31500
Totals.	910,111	(6,628,408 78
OOLUMBIA RIVER DIETRICT-		
Chinook salmon	170,181	\$2,382,832 54
Dog or chum salmon.	30,228	133,184 59
Humpback salmon	84 0078	278000
Silver salnon ..	20,732	218,510 56
Sockeye salmon	2,900	52,967 00
Steelhead salmon	3,308	47,604 50
Shad	687	2,856 40
Other food and shell fish	14	73361
Totals.	228,202	\$2,818,767 19
GRAYS HARBOR DISTRIOT-		
Ohinook salmon ...	9,187	\$20,430 00
Dog or chum salmon.	23,338	99,239 38
Silver salmon	7,661	49,777 20
Sockeye salmon	3,313	53,713 45
Steelhead salmon	300	1,800 00
Clams and mussels.	20,940	283,76756
Clam nectar ...	490	1,470 00
Totals.	88,219	\$510,191 57
WILLAPA HARBOR DISTRICT- $\quad 13$		
Ohinook salmon	18,500	
Dog or chum salmon. Silver salmon	19,561	58,74040 7200
Clams and mussels.	9,103	77,15100
Totals.	42,264	\$203,463 40
Dog or chum salmon.	115,842	431,069 63
Humpback salmon	557,170	2,894,262 09
Silver salmon	200,400	1,883,807 32
Sockeye salmon	111,186	1,711,181 61
Steelhead salmon	3,925	51,190 70
Clams and mussels.	41,414	417,477 78
Clam nectar	1,282	4,80443
Shad	667	2,656 40
Other food and shell flsh.	69	1,048 61
Totals.	1,248,796	\$10,158,830 94

FOOD AND SHELL FISH CANNED.
Fiscal Year 1925.
FOOD AND SHELL FISH，FRESH AND PRESERVED（OTHER THAN CANNED）AND VALUE．

	$\begin{aligned} & \text { PCGET SOUND } \\ & \text { DIS'RICT } \end{aligned}$		COLUMBIA RIVER DISTRIO＇T		GRAYS HARBOR DISTRICT		WILLAPA HARBOR DISTRICT		ALL DISTRIOTS OOMBINED	
	Number Pounds	Value	Number Younts	Value	Number Pounds	Value	Number Pounds	Value	Number Pounds	Value
FRESH－										
Chinook salmon	5，170， $3: 30$	\＄5517， 133800	（x），520	\＄6，219 90	176，441	\＄17，64400	64，515	\＄6，451 50	5，476，806	\＄517．348 40
Dog sulmon ．．．．．		51，5ict s）	115，311	1，055 10	378，900	12，030 00	186，418	6，214 00	1，967，799	71.77790
Humphack salmon ．	（，		147，284	9，3040	861，050	63，884 00	37，600	3，009 00	9，019，754	4,620 219,449
Sockeye salmon ．．．	15，3：4；	1，（xis） 15							15，306	1，809 15
Steelhead ．．．．．．	30， 3,30	3，（123）（0）	142，576	12，47＊ 00	12，370	2，226 60	5，$\times 00$	1，04400	191，078	18，781 60
Cary ．．．．．．．．．．．．．．．．	8，（6，\％	519 （0）	286，1：37	12，876 17					204，787	13.30517
Clams and musseis．．．．	30，	5			74,655 5,200		J，219 476,477		$1,019,229$ 912,525	22,77960 124,060
	4	88.012							178，243	124.060 8.93 8.915
Devil filsh	10t， 10,	5， 20515							107， 103	5，355 15
Dog fisl ．．．．．．．．．．．．．．．．	1107								1197	
Doily Varden trout．．．．．	151								151	2567
Haditut．	170，6， 8 ，	$1 .(10434$							17，4，48	$2.5 \times 8)$ 1,094 34
Herring	74，649	37325			5，950	2975			80，599\％	40300
Mackerel	Nio	12900								12900
${ }_{\text {Preh }}$ Preh	92.172				938	4690			93，010	4，（\％） 50
Red suapper	2，（x）${ }^{2}$	83 50 504 60							2，0\％	㐌 80
Ser bass	2，052	24i： 24							2，052	24624
Shad ${ }_{\text {Skates }}$ ．	131	$7{ }^{7}$	43.426	2，605 56					43，557	2，613 42
Skates	377	754							377	754
Shrimp	34,46	3.444 （0）							34，440	3，444 00
Smelt Sole	219，心．	26，	6St， 289	12，306 50	550	6600			904，821	38，758 34
Sturgcon ${ }^{\text {S }}$ ．．．．	－	5，26i120	1，120	8875	120	1200	294	2940	－ 54,146	8，392 $\mathbf{5 , 3 5}$
Other food f	5，183	2592							5，183	2592
Totals	11，1：11，416	\＄556，400 06	1，475，963	\＄57，019 38	1，516，164	\＄106，923 00	770，353	\＄86，568 58	14，950，876	\＄1，105，001 02
$\begin{gathered} \text { PRESERVED- } \\ \text { Frozen } \end{gathered}$	9，021，031	\＄1，119，145 47	501，513	\＄08，818 50	4，400	\＄70000			10，327，004	\＄1，188，744 03
kippered	3，14，1it	311，500 67	43， 6140	5，ito so	1，000	27000			3，158，834	${ }^{317,50147}$
Mild cured		668.51113	212，－40	46，750 00	1，（199）	27000			4，143，249	715，531 13
Sulted	边	41,24693 74,507 81	17， 23	2,14370 2,844	3，200	51500			357,322 5×67.774	43,90663 77,39217
Smoked	634，607	74，507 81	23，167	2，884 36					507.774	77，382 17
Totals	17，736，308	\＄2，214，802 01	798，055	\＄120，517 42	9，820	\＄1，755， 00			18，544，183	\＄2，343，074 43
GRAND TOTALS．	28，927，724	\＄3，071，292 o7	2，274，018	\＄183，53680	1，525，984	\＄107，678 00	776，333	\＄38，568 58	33，504，060	\＄3，448，075 45

FISH BY-PRODUCTS.
Fifeal Year 192.3.

OUTPUT		Quantity		Value
On		97,890	gal.	\$35,257 20
Fleh meal		628	tons	24,517 00
Fertilizer			tons	22,565 00
Poultry food			tone	3,619 00
Salmon eggs		136,508		6,846 29
Total value				\$92,804 49
APPROXLMATE	E PRICF-			
Oll			.	36 per gal.
Fish meal	 3	04 per ton.
Fertilizer			.	42 per ton.
Poultry food			.	04 per ton.
Salmon eggs				05 per lb.

HALIBUT HANDLED BY DEALERS.
 Fiscal Year 1925.

 Approximata average price... $\$ 0.12$ per pound be*marketed.
CODFISH HANDLED BY DEALERS.
 Fincal Year 1925.

Total cured ...460,000 pounds, valued at $\$ 100,000.10$ APPROXIMATE AVERAGE PRICE- Cured \qquad $\$ 00.04$ per pound	

SEED OYSTERS SOLD FROM STATE RESERVES.
 Fiscal Year 1925.

DISTRICT AND RESERVE	County	Number of Sacks	Value
PUGET SOUND DISTRICT-			
Oakland Hay Reserveat 2.00	Mason	3,467.4	\$6,934 80
Cliftod Reserve8t . 75	Mason	408.5	30637
Totals.		3,875.9	\$7,241 17

Number of licenses issued to take oysters from state reserves, 7..................................... 83500

OYSTER INDUSTRY.
 Fiscal Year 1925.
 (Compiled from reports received from 37 companies or individuals in Puget Sound District, and 5 in Willapa Harbor District.)

	OYSTERS MARKETED	
	No. Sacks	Value
PUGET SOUND DISTRICT-		
Native.	27,322	\$347,606 50
-Eastern.	2,000	16,000 00
Totals.	29,322	\$363,696 50
WILLAPA HARBOR DISTRICT-		
Native..	${ }^{295}$	\$2,737 25
Eastern.	706	9,350 00
Totals.	1,001	\$12,087 25
BOTH DISTRICTS COMBINED-		
Native...	27,617	$\begin{array}{r} \$ 350,433 \\ 25,350 \\ \hline 00 \end{array}$
Totals	30,323	\$375,783 75

- Includes transplanted Japanese Oysters.

AVERAGE VALUE OF OYSTERS PER SACK. Fincal Year 1825.

	Puget Sound District	Willapa Harbor District
Native.	$\$ 1273$	5928
Eastern.	8	1324

oxsterr lands.
Fiscal Year 1925.

DISTRICT	NUMBER OF ACRES AND VALUE											
	Owned	Value	Leased	Value	Total Lands	Total Values	Native Producing	Value	Eastern Producing	Value	Total Producing	Total Values
Puget Sound. . .	1,971.86	181,335,750 00	21.33	20,132 29	1,903.13	\$1,337,822 29	529.63					
Willapa Harbor.	4,571.00	244,325 00	230.00	23,000 00	4,801.00	267,325 00	730.00	$47,60000$	644.00	\$115,850 00	1,374.00	$163,45000$
'Totals.	6,542.86	\$1,580,075 00	251.33	\$25,132 29	6,794.19	81,605,207 20	1,259.63	\$769,250 c0	644.00	\$115,850 00	1,903.63	\$885,100 00

[^3]
*VALUE DF FISHERLES PRODUCT.
 Fincal Year 1925.

PRODCCT

* Value based on average wholesale price. The halibut and codflsh are not strictly Washington products, as these fish are talen mostly in the waters of Bering Sea and Alaska and brought to Puget Sound to be marineted.
OUTPUT OF SALMON FROM THE STATE HATCHERIES.

[^4]$* 22,000$ shipped to University of Washington.
$* 50,000$ shipped to Pierce County Gamé Commission.
OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.
Fiscal Year 1925.

DOG SALMON	Number Females Spawned	Number Eggs Taken	No. Eggs Received From Other H'cher's	$\begin{gathered} \text { No. } \\ \text { Eggs } \\ \text { On } \\ \text { Hand } \\ \text { Aprilit } \\ 1925 \end{gathered}$	$\begin{aligned} & \text { No, } \\ & \text { Eggs } \\ & \text { Lost } \end{aligned}$	Number Eggs Shlpped	No. Eggs on Hand March 31,1926	Number Fry Hatched	$\begin{gathered} \text { Fry } \\ \text { Received } \\ \text { From } \\ \text { Other } \\ \text { H'tcher's } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Fry on } \\ \text { Hand } \\ \text { Aprill 1, } \\ \text { 1925 } \end{gathered}$	$\begin{aligned} & \text { No, } \\ & \text { Fry } \\ & \text { Lost } \end{aligned}$	$\begin{gathered} \text { No, } \\ \text { Fhry } \\ \text { Shipp'd } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Planted } \end{aligned}$	Number Fry on Hand March 31, 1926	Number Fry Reared In Ponds
PUGET SOUND DIST.-															
Green River	251	602,900		40,000	14,900			678,000	100,000	1301,500	5,300	100,000	1,147,500	526,700	
Green River No. 2,		500,000			18,700					193,016	116		102,000		
Puysllud River	1318	3m, 500			20,400			379,100		ces, 01	2,200		00,000	47,000	
Samish	533	1,571,000			46,650			1,524,250		5,555,625	2,710		5,510,125	1,518,140	4,200,000
8kykomish										138,404	8		136,319		
Sult Water Pond.									'1,500,000					1,500,000	
Totals	1,149	3,172,600		40,000	100,650	3,111,950	1,600,000	7.519,639	35,786	100,000	8,027,263	4,068,540	4,900,000
COLUMBIA RV. DIST. Chinook										66,754	22		66,732		
Total									66,754	22		60,732		
GRAYS HARBOR DIST:Chehalis	3,203	8,340,000			418,000	3,500,000		4,422,000		1,804,414	1,700		6,224,74		
Chehslis No. 2....			2,000,000		13,910			1,986,000			7,245		1,978,855		
Humptulips	52	78,000	1,500,000		4,000			1,574,000			4,100		1,500,000		
Tota	3,255	8,418,000	3,500,000	435.910	3,500,000	7.082.000	1,804,414	13,045	9,773,450	.6........	
RECAPITULATION Puget Sound Dist	1,149	3,172,600		40,000	100,650			3,111,050)	1,600,000	7,519,639	35,786	100,000	8,027,368	4,068,540	4,900,000
Grays Harbor Dist.	3,255	8,418,000	3,500,000		435,910	3,500,000		7,0¢, 0×0		1,804,414	13,045		9,773,459		
Totals	4,40s	11,500,600	3,500,000	40,000	536.560	3,500,000		11,094,040	1,600,000	9,300,807	48,563	100,000	17,567,454	4,068,540	4,900,000

${ }^{*} 1,500,000$ fry received from U. S. Bureau, Quilcene, Washington.

OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.
Fiscal Year 1925,

HUMPBACK SALMON	Number Females Spawned	Number Eggs Tuken	No. $\mathrm{Eg} g \mathrm{~g}$ Received From Otber H'cher's		No. Eggs Lost	Number Eggs Shipped	No. Eggs on Hand March $81,1026$	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hatched } \end{aligned}$	Fry Recelved From Other H'tcher's	$\begin{aligned} & \text { Number } \\ & \text { Fry ot } \\ & \text { Hand } \\ & \text { April1, } \\ & \text { 1925 } \end{aligned}$	No. Fry Lost	No. Fry Shipp'd	$\begin{aligned} & \text { Number } \\ & \text { Ery } \\ & \text { Planted } \end{aligned}$	Number Fry on Hand March 31, 1926	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Reared } \\ & \text { in } \\ & \text { Ponds } \end{aligned}$
PUGET SOUND DIST-															
Dungeness,	980	280,000			21,000			259,000							
Green River Puyallup Rlver	2.0000	$\frac{1}{4,009,500}$,	"101\%	25,500 217,275			984,000 $2,337,975$			2,200 11,600		981,800 $2,326,375$		400,000
Puyalup River Skykomish	2,087 24	$\begin{array}{r}4,505 \\ 45,250 \\ \hline\end{array}$,	n......	217,275 3,190	$2,000,000$		$2,537,975$ 41,810		,-1.....	11,600 270	10t	$2,026,375$ 41,540	
Salt Water Pond.......				+ $+6 . .$.					11,000,000				1,000,000		1,000,000
Totals.	2,902	5,891,750			208,965	2,000,000		3,628,785	1,000,000		14,070-**	4,608,715		1,400,000

*2,000,000 shipped to U. S. Hatchery, Quilcene, Washington.
OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.
Fiscal year 1925.

SOCKEYE SALMON	Number Females Spawned	$\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Taken } \end{gathered}$	No. Eggs Received From Other H'cher's	No. Eggs On Hand April 1, 1925	No. Eggs Lost	Number Eggs Shipped	No. Eggs on Hand Mareh 31, 1926	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hatched } \end{aligned}$	Fry Received From Other H'teher's	$\begin{gathered} \text { Number } \\ \text { Fry on } \\ \text { Hand } \\ \text { April 11, } \\ 1925 \end{gathered}$	No. Fry Lost	$\begin{gathered} \text { No. } \\ \text { Fry } \\ \text { Shipp'd } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Planted } \end{aligned}$	Number Fry on Hand March 31, 1926	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Reared } \\ & \text { in } \\ & \text { Ponds } \end{aligned}$
PUGET SOUND DIST.Green River	3	8,000		800		7,200	1,500		5,700
Totals.............	3	8,000			800		7,200		1,500		5,700		

OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.

OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.

 Fiseal year ${ }^{1925}$.| 8TEELHEAD | Number Females Spawned | Number Fggs Tuken | No. Eggs Received Froms Other H'tcher's | Number
 Eggs on Hand
 April 1, 1025 | $\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Lost } \end{gathered}$ | Number Eggs Sblpped | $\begin{gathered} \text { Number } \\ \text { Eggs on } \\ \text { Hand } \\ \text { March } 81, \\ 1926 \end{gathered}$ | $\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hatebed } \end{aligned}$ | $\begin{gathered} \text { Number } \\ \text { Fry on } \\ \text { Hand } \\ \text { April 1, } \\ 1025 \end{gathered}$ | No.
 Fry
 Lost | $\begin{gathered} \text { No. } \\ \text { Fry } \\ \text { Shipp'd } \end{gathered}$ | $\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Planted } \end{aligned}$ | Number Fry on Hand Murch81. 1026 | Number Ery Reared in Ponds |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PUGET SOUND DIBT.Dungeness | 127 | 455,000 | | | 22,0 | ${ }^{1} 100,000$ | | 323,000 | | | ${ }^{3} 100,000$ | 223,000 | | |
| Green River | 113 | 257,500 | | 21,000 | 16,800 | 220,000 | 85,200 | 200,500 | | | | 204,500 | 2,000 | 165,000 |
| Nookssck | 30 | 104,500 | | 95,0511 | 23,600 | | | 106,550 | | | | 105,600 | | 105,600 |
| | 1809 | 559,000 | | 48,000 181,580 | 25,450 31,425 | ${ }^{3} 125,000$ | 286,400 168,425 | 290,150 367,500 | (,........) | 18,495 1,120 | 185,000 | 141,005 348,915 | 17,465 | |
| Totals. | 554 | 1,936,500 | | 221,500 | 129,275 | 245,000 | 490,025 | 1,298,700 | | 15,505 | 235,000 | 1,023,670 | 19,465 | 270,600 |
| GRAYS HBR. DIST. Chebalis | 230 | 781,000 | | 193,000 | 35,300 | 72.55 .000 | 383,700 | 380,000 | (.......... | 700 | 553,000 | 306,300 | 20,000 | |
| Humptulips | 47 | 80,000 | +1+......, | | 1,880 | | 78,110 | | | | | | | |
| Totals | 277 | 861,000 | | 11/3,000 | 37,190 | 225,090 | 411,810 | 380,000 | | 700 | 53,000 | 306,300 | 20,000 | |
| WILLAPA HBR. DIST. Whlapa | 534 | 1,301,000 | | 203,800 | 101,600 | ${ }^{6} 125,000$ | 496,000 | 1,062,200 | 124,840 | 2,123 | | 1,085,342 | 99,575 | |
| Totals | 534 | 1,301,000 | | \$83,900 | 101,600 | 125,000 | 496,000 | 1,062,200 | 124,840 | 2,123 | .4....... | 1,085,342 | 90,575 | |
| REOAPITULATION- | | | | | | | | | | 15,565 | 235,000 | 1,023,670 | 19,465 | 270,600 |
| Grays Harbor Dist....... | 277 | , 361,000 | | 193,000 | 37,100 | 235,000 | 411,810 | 380,000 | | 709 | 53,000 | 1300,300 | 20,000 | |
| Whapa Harbor Dist..... | 534 | 1,301,000 | | 383,800 | 101,600 | 125,000 | 496,000 | 1,062,200 | 124,810 | 2,123 | | 1,085,342 | 90,575 | |
| Totals | 1,305 | 4,188,500 | | 818,300 | 206,065 | 505,000 | 1,397,835 | 2,735,900 | 124,840 | 18,388 | 288,000 | 2,415,312 | 139,040 | 270,600 |

[^5]OUTPUT OF SALMON FROM THE STATE HATCHERIES-Concluded.

ALL SPECIES	Number Females Spawned	$\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Taken } \end{gathered}$	No. Fggs Received From Other H'cher's	Number Eggs On Hand April 1, 1825	Number Eggs Lost	Number Eggs Shipped	Number Eggas On Hand March 31, 1926	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hatched } \end{aligned}$	No. Fry Recelved From Other H'cher's	Number Fry On Hand April 1, 1925	$\begin{aligned} & \text { No. } \\ & \text { Fry } \\ & \text { Lost } \end{aligned}$	$\begin{gathered} \text { No. } \\ \text { Fry } \\ \text { shipp'd } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Planted } \end{aligned}$	Number Fry On Hand March 31,1926	Number Fry Reared In Ponds
PUGET SOEND DIST.Chambers Creek				40,000						130,000		100,000	70,000		
Dungeness	583	1,485,000		400,000	121,000	, 0		1.74,000		150,000		100,000	1,04,000		
Green Rlver	6,507	23,007,900	240,000	2,665,500	694,500	1,242,000	35,200	25,911,700	100,000	13,900,400	414,700		18,179,400	, 4	9,804,900
Nooksack	1,110	3,152,200		2,051,500	178,700			4,105,300		4,311,100	14.525		6,612,275	2,700	5
Pitchoek		,	1,500,000	-10	7 700			1,490,300			3,200		506,100	900,000	
Puyallup Rive	2,801	6,018,500		109,728	3n7,002	2,000,000		4,720,535		8,092,04	32,079		6,981,916	748,575	
8alt Water Po		18,312,000		4,0465,900	323,400		3,200,4	13,154,500	2,500,000	7.784,250	85,480	135,000	1,000,000	$1,500,000$ $8,834,765$	1,000,000
Skykomish	3, 213	13,761,500		1,320,650	403,95	3,125,000	-611,025	10,858,160		4,804,911	10,288		11,611,621	4,070,492	
Snohomish									2,760,000	2,200		2,757,800		
Tota	19,80	61,6a7,100	1,740,000	10,850,278	2,150,5017	6,467,000	4,698,375	00,053,496	2,600,000	41,231,364	567,300	39,000	65,672,622	38,210,482	27,056,406
COLUMBIA RV. DIST.Chinook \qquad	(2i)	,80,000	2,000, 0×00		(15, (09)			3,787,000					014		2,400,000
Kalnraa	4,927	26,175,000	1,335,(04)	1,909,429	1.148,80	10,552,000		18,008,579		5.831,020	22, 160		16,207,434	7,550,000	
Kittitas			1,000,000		4,100			96,900		1,639,500	6,500		1,632,000	900,900	6,190,250
Total	5,282	27,077,000	4,235,000	1,976,429	1,217,950	10,352,		22,741,479		7,505, 470	46,401		20,408,348	9,800,200	8,500,250
GRAYS HARI Chehalls	11,687	20,433,000		4,531,966	1,608,800	11,725,000	6,393,700	14,302,466		5,008,714	11,721	53,000	15,303, 900	3,877,500	
Ohehalis			$8,000,000$	786,200	73, (kit		2,295,700	6,477, 420		4,154,946	18,275		7,811,500	2,801,506	
Humptulij	428	226,050	3,500,000		48.183		1,075,612	3,202, 36		1,357,000	20,147		3,009,900	1.469,258	
	11,515	20,250, 00	11,500,000	5,318,106.	,725,013	11,725,000	9,(45,01	2,982,191		10,544,654	(50, 143	53,000	36,275,432	8,148,263	
WIL1.APA HBR. DIST															
Whlapa	3,570	10,524,500	1,530,000	576,800	630, 400	2,460,000	is,500	8,222,900		4,239,780	6,302		10,818,732	2,207,645	7,812,420
Tot	4,006	15.053, 100	2,5\%0,000	576,840	1,018,500	3,900,000	608,500	12,542,000		5,968,305	8,873		15,604,777	2,807,645	12,151,200
PRCAPTrULATION-															
Columbia River	5,292	27,977,060	4,335,000	1,999,429	1,217,950	10,352,000	4,020,315	22,741,479	2,00	7,568,470	46,401	350,000	¢,		
Graye Harbor	11,515	30,259,050	11,500,000	5,318,166	1,725,013	11,725,000	9,645,012	23,982,191		10,544,654	50,143	13,600	31,275,430	$8.148,26$	
Willapa Harbor	4,005	15,063,100	2,530,000	576,800	1,018,500	3,990,000	608,500	12,542,900		5,968,395	8,873		15,004,777	2,807,645	12,151,900
Tota	41,202	134,026,250	20,105,000	18,744,073	6.141,070	32,534,000	14,879,887	120,220,006	2,000,000	05,313,383	672,723	888,000	128,046,188	59,028,540	47,798,565

SUMMARY OF OUTPUT OF SALMON FROM STATE HATCHERIES.
Fiscal Year 1925.

	CHINOOK	DOG	HUMPBACK	SILVER	SOCKEYE	STEELH'D	TOTALS
Number of femsles spawned.	9,012	4,404	2,902	23,516	8	1,365	41,202
EGGS- Taken by state hatcheri	45,911,600	11,590,600	5,889,750	67,387,800	8,000	4,188,500	134,926,250
Received from King county				240,000			240,000
Total	45,911,600	11,500,600	5,889,750	67,577,800	8,000	4,188,500	135,166,250
On hand April 1, 1		40,000		17,896,373		806,300	18,744,673
Grand Totals.,......ttow.......................................	45,911,600	11,630,600	5,889,750	85,474,173	8,000	4,906,800	158,910,928
Lost	2,145,292	586,560	266,965	2,924,288	800	268,065 20,000	$6.141,970$ 42,000
Furnished to University of Washington (experimental purposes). Furnished to county hatcheries for hatching and planting as follows-	22,000	20,000 100,000	42,000 100,000
						100,000 850,000	100,000 350,000
Grays Harbor County						350,000 125,000	1050,000 125,000
	50,000				125,000	125,000 50,000
Furnished to Commissioners of Lincoln Park, Chicago, Illinols.	500			150,000			150,000
Furnished to State of Oregon..	6,352,000						6,352,000
Furnished Alaska Territorial Fistr Commission	2,000,000						2,000,000
Furnished United States Buresu of Flsheries..	2,000,00		2,000,000	1,500,000			$3,500,000$ $14,879,887$
On hand March 31, 1926................				18,482,052		1,307,835	14,879,887
FRY-							
Hatched	35,342,308	11,094,040	3,622,785	67,417,833	7,200	2,735,900	120,220,066
On hand April 1, 1925	11,675,811	9,390,807		44,121,925		124,840	65,313,383
Recelved from U. S, Hatchery, Quilcene		$1,500,000$ 48,858	$1,000,000$ 14,070	504,700	1,500	18,388	$2,500,000$ 672,723
Furnished to counties (planted in lieu of trout)	85,212	48,853	14,070	504,700	1,500	18,388 258,000	672,723 288,000
Planted ...	28,029,007	17,877,454	4,608,715	74,219,908	5,700	2,415,312	128,046,186
On hand March 31, 1826	18,008,900	4,068,540		36,815,060		139,040	50,026,540

PERCENTAGE OF LOSS ON EGGS AND FRY.
 Fineal Yeer 1925.

AVERAGE NUMBER OF EGGS TAKEN TO FEMALE Fiscal Year 1925.

Yhum.
Humpback
Sockeyo
Stcelhead
ARRESTS MADE FOR VYOLATIONS OF THE FOOD FYSH LAWS.

Date of Arrest	OFFENDER	CHARGE	Disposition of Case	Penalty Imposed	Totals
1925		BENTON COUNTY			
May 12	H. G. Reeves	Fishing in closed waters.	Guilty.............. .	8100	
May 12	W. Henry Smith	Fishing in closed waters............................	Guilty.................	100	
May 12	J. E. Crosby.	Fishing in closed waters.	Gullty.	100	
May 12	T. Suhadolnlk	Fishing in closed waters.	Gullty.	100	
May 12	M. G. Tweeten.	Fishlng in closed waters.	Guilty.	100	
May 12	F. E. Crosby.	Fishing In closed waters.	Guilty.	100	
May 12	D. C. Mathews.	Possesslon of illegal salmon	Gullty.	100	8700
1925		OLALLAM COUNTY			
Sept. 27	Geo. Mattson	Flshing in river with purse seine.	Guflty	\$100 00	
Sept. 27	Rogers Oolfax	Fishing in river with purse seine.	Guilty..............	10000	
Sept. 27 Sept. 27	Tom Holden ..	Fishing in river with purse seine.	Guilty..............	10000	
Sept. 27 Oct.	Martin Hunter	Fishing in river with purse seine.	Guilty..............	10000	
$\begin{array}{ll}\text { Oct. } \\ \text { Oct. } & \\ \end{array}$	Frank Balch	Buying fish without licanse......	Gullty...............	1000	
$\begin{array}{ll}\text { Oct. } & 8 \\ \text { Oct. }\end{array}$	Oie 8. Bjerke......	Fishing within three miles of river.	Not gullty..	10000	
Oct. 8	Harold Noringset	Fishing within three miles of river.	Guilty.	10000 5000	
Oct. 8	Harold Noringet	Alien flshing	Gullty.	5000	
Oct. 8	Bert Ronning	Flshing within three miles of river.	Guilty................	5000	
Oct. $\quad 8$	William Oakley	Fishing within three miles of river.	Guпty...............	5000	
Oct. 8	John Tornensis, Jr	Flshing within three miles of river.	GuIty...............	5000	
Oct. 8	8am Tornensls.	Fishing within three mlles of river.	Guilty.............	5000	
Oct. 8	Gust Huggevik	Flshing within three miles of river.	Guilty.	5000	
Oct. 14	Art Severn	Spearing salmon	Gullty.	200	
Oct. 22	A. Dahl	Alien fishing	Guilty..............	5000	
Oct. 22	Matt Vaddoanovlch	Alien fishing	Gufty.............	5000	
Oct. 28	Niek Moslch	Alien fishing	Gulty..............	5000	
Oct. 26	John Borovich	Alien fishing	Guilty.............. .	5000	
Oct. 26	Joe Mizetlch	Alfen fishing	Guilty.	30 days jall	
Oct. 30	Tom Olson	Alien fishing	Guilty......	- 5000	
1926					
Jan. 16	A. D. Fernandez.	Selling flsh wlthout llecnse.	Guilty..............	2000	
Jan. 16	A. D. Fernandez.	Possession of more than 20 pounds of steelheads..................	Guilty..................	2000	
Jen. 16	A. D. Fernandez.	Fishlng ln closed waters...	Guilty...............	2000	1,17200

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS-Continued.

$\begin{gathered} \text { Date } \\ \text { of } \\ \text { orrest } \end{gathered}$	OFFENDER	CHARGE	Disposition of Case	Penalty Imposed	Totals
105					
Dec. 11	C. Helm	Operating fish market without license	Guilty	No fine	
Dec. 12	O. L. Gllpinown...................	Possession of short fish..	Dismissed.........		
Mar. a	John Wood	Fishing without license.	Guilty.	\$75 00	87600
$\begin{gathered} 1025 \\ \text { April } 29 \end{gathered}$	Vletor Furep	Fishing during closed se	Gullty..............	80500	
Sept. 14	Willam Manning	Fishing in closed waters.	Guflty..............	4750	
Sept. 14	A. Lowman	Fishing in closed waters.	Guilty,..............	4750	
Oct. 4	K. L. Potter	Gaifing salmon	Guilty..............	$\begin{array}{r}750 \\ 10 \\ \hline 00\end{array}$	
Oct. 4	L. J. Potter.....			1000	
Oct. Oct Ofer	Oscar Oope Max Sprowberg	Snag hooking salmon. Spearing salmon	Guilty, ${ }^{\text {Gullty }}$,	1250 1250	
Oct. Nov.	Max Sprowberg	Spearing inamon Flshing illegally	Gullty...............$~$	1250 10	17250
		GRAYS HARBOR COUNTY			
April 3	Henry Edmondson	Oregon resident using Washington license	Gullty..............	8840	
${ }^{\text {Aprll }} 23$	W. E. Steward		Guilty..............		
April 23 April 23	H. Cralghead			$\begin{aligned} & 5 \text { days fall } \\ & 4 \text { days jail } \end{aligned}$	
April 29	Udell Hank	Oregon resident using washington liecnse.............................	Guilty	565	
Oct. 2	Claude Barrows	Fishing above dead line with set nets.............................	Guilty	725	
Nov 16	H. J. Seller	Fishing with net in prohibited arca	Guilty	[2500	
Nov, 19	3, Newlun	Gafting salmon	Guilty.............	$\begin{aligned} & 1000 \\ & \text { (Fined and } \end{aligned}$	
Nov. 20	Joo and Allen Chenols	Fisblige with pound net with too long lead	Gullty	$\{$ later	
Nov. 20	Olarence Boyer	Fishing with pound net with too long lead.	Guilty	2500	
Dre. 28	Dan Parker	Catching steelheads out of soason.	Gullty	2500	
Dee. 28	Sam Mosgrove	Catching steelheads out of season................................	Guilty..............	2500	
${ }_{\text {Jan. }}^{1368}$	Jim Hilcots	Selling razor clams out of season.	Gullty	1500	
Jan. 4	E. D. Answorth	Oatching steelbeads out of season,	Gullty	2500	
Jan. 4	E. O. Seely.	Catching steelbeads out of season.	Guilty	1000	
Jan. ${ }^{\text {a }}$	Frank Rlding	Catching steelheads out of season.	Guilty...............	1000	
${ }^{\text {Jan. }}$ -	L. Neiml	Catching steelheads out of season......	Gullty.............	10000 5000	
${ }_{\text {Jan. }}^{\text {Jab. }}{ }_{11}^{8}$	John Hannula ${ }_{\text {Reating }}$..........................	Possession of steelheads out of season.................................	Guilty............... Guilty.........$~$	100 1000	89930

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS-Continued.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Date } \\
\text { of } \\
\text { Arrest }
\end{gathered}
\] \& OFFENDER \& CHARGE \& Disposition of Case \& \begin{tabular}{l}
Penalty \\
Imposed
\end{tabular} \& Totals \\
\hline \& \& ISLAND COUNTY \& \& \& \\
\hline Mny 15 \& C. A. Payne, \& Shipping short fish. \& Guilty. \& \$25 00 \& \\
\hline May 16 \& Albert Wegner \& Shlpping short fish. \& Guilty............... \& 2500 \& \\
\hline May 18 \& O. Martell \& Possession of short salmon with intent to sell \& \& 2500 \& \\
\hline May 18 \& C. Martell \& Possesslon of short salmon with intent to sell..................... \& Gullty.............. \& 2500 \& \\
\hline June 10 \& Anton Melum \& Allen engaged in fishing for crabs.................................. \& Guilty.............. \& 2500 \& \\
\hline June 26 \& Ted Menzony \& Alleu fisherman (trap watehman)................................... \& Bail forfeited...... \& 2500 \& \\
\hline June 26 \& Halvor Johanson \& Alien fisherman (trap watchman) \& Bail forfelted...... \& 2500 \& \\
\hline June 96 \& B. Bjertsen \& Alien fisherman (trap watchman).................................. \& Bail forfeited...... \& 2500 \& \\
\hline June 26
June 27 \& I. Nelson \& Alien flsherman (trap watchman) \& Bail forfeited...... \& 2500 \& \\
\hline June 27
June 27 \& Lais Steffenson \& \& Guilty............... \& 1000 \& \\
\hline June 27
June 27 \& \& Alien fishing . \({ }_{\text {Alien }}\) flshing . \& Guilty............... \& 1000
1000 \& \\
\hline Jane 27 \& Carl Hamries \& Alien flshing ., \& Guilty............... \& 1000 \& \\
\hline June 27 \& Elnar Erickson \& Alien flshing ++........ \& Guilty............... \& 1000 \& \\
\hline June 27 \& Nick Dybdabl \& Alien fishing \& Guilty \& 1000 \& \\
\hline June 27 \& Edwin Dverseth \& Allen fishing \& Guilty \& 1000 \& \\
\hline June 27 \& Eric Coristopherson \& Alien fishing \& Guilty............. \& 1000 \& \\
\hline June 27 \& Eric O. Brouvald \& Allen flshing \& Guilty.............. \& 1000 \& \\
\hline June 27 \& Olaf Amble \& Alien fishing \& Guilty.............. \& 1000 \& \\
\hline \[
\begin{gathered}
1926 \\
\text { Mar. } \quad 8
\end{gathered}
\] \& Nick Uglesich \& Allen flishing ... \& Bail forfelted...... \& 5000 \& \$875 00 \\
\hline 1525 \& \& \& \& \& \\
\hline May 8 \& Roy Jensen (Wash. Fish \& Oyster Co.) \& Possession of short salmon... . . \& Gullty \& \$1000 \& \\
\hline May 11 \& \begin{tabular}{l}
Lawrence Dressel \\
(Dressel-Collins Fish Co.)
\end{tabular} \& Possession of short salmon \& Guilty............... \& 1000 \& \\
\hline May 25 \& Sam Abledeff (Palace Fish \& Oyster Co.) \& Possessfon of short sulmon \& Guilty............. \& 1000 \& \\
\hline June 12 \& \begin{tabular}{l}
Theo Honch \\
(M. F. Weise inned for employing)
\end{tabular} \& Allen fishing . .. \& Guilty.............. \& 1000 \& \\
\hline July 8 \& Scbustjan-Stuart Fish Co........ \& Possession short fish.. \& \& \& \\
\hline Oct. 8 \& Dun Mher \& Fishing in Duwamish Preserve... \& Gulty............... \& 9625 \& \\
\hline Oct
Oct
Oct

Ofer \& \& Fishing in Duwamish Preserve \& Guilty \& 9625 \&

\hline | Oct. |
| :--- |
| Oct. |
| 17 | \& Tom Pappas

O. Johnson \& Fishing in Duwamish Preserve.

Fishing in Duwamish Preserve. \& | Guilty. |
| :--- |
| Dismissed | \& 10000 \&

\hline
\end{tabular}

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS－Continued．

	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \text { 总 } \end{aligned}$		
$\begin{aligned} & \text { 家若 } \\ & \text { E } \\ & \text { 首 } \end{aligned}$	8888888 汭88888888 	8 8 $\frac{8}{6}$ 888888 \vdots 0.8 \vdots \vdots	
M 3 3 3		 $00000000 \% 000$	

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS-Continued.

Date of Arrest	OFFENDER	CHARGE	Disposition of Oase	Penslty Imposed	Totals
1925		KITSAP OOUNTY-Contlnued			
Nov. 1	Thomas Chamberlin	Gaffing salmon	Gullty.	\$1000	
Nov. 1	Fred L. Gordon.	Gaffing salmon	Gullty....	1000	
Nov. 10	Johny Tornensis	Possesslon of fish taken illega	Gullty...	1000	
Nov. 10	M. Olson	Gating salmon	Guilty....	1000	
Nov. 10	Elno Vsitalo	Gafling salmon	Gullty........	250	
Nov. 10	O. Peterson.	Gaffing salmon	Gullty.......	750	
Nov. 11	Peter McLean	Using net with less than $11 / 4$ inch mesh	Guilty......	10000	
Nov. 12	P. F. Cheplack	Stoning salmon	Guilty........	1250	
Nov. 12 Dec. 15	N. W. Cheplack.	Stoning salmon	Guilty........	1250	
Dec. 15 Dec. 18	A. H. Johnson...	Fallure to display license numb Fishing in closed waters........	Gullty.......	1500	
$\begin{gathered} 1926 \\ \text { Jan. } \quad 1 \end{gathered}$	L. M. Van Zandt.	Gaffing salmon	Guilty.	1000	
Feb. ${ }^{2}$	J. Wada	Alien fishing ..	Guilty.	- 5000	
Feb, 2	M. Nagaisbu	Alien frshing	Gullty.	5000	
Feb. 3	Clarence Larson	Set lines with too many hooks.	Not guilty.		
Feb. 3	Lawrence Olsen	Set lines with too many hooks.	Guilty.	1500	
Feb. 3	Llef Olsen	Set lines with too many houks.	Guilty.	2500	
Feb. 17	Clarence Olsen	Set lines with too many hooks.	Guilty.	3500	
Feb. 19	G. Rerecich	Fishing with longer net than had license for	Gullty.	5000	$\$ 83875$
		MASON OOUNTY			
July 29	R. G. Coldwell.	Fishing in closed water with dip net.	Gullty...	$\$ 1000$	
July 29	Chas. L. Hall.	Fishing in closed water with dip net.	Guilty.........	1000	
July 29	R. W. Craig.	Fishing in closed water with dip net.	Guflty.........	1000	
Nov. 8	Frank Aust	Gaffing salmon	Guilty.........	1000	
Nov. 9	O. W. White.	Gaffing salmon	Guilty.........	2500	
Nov. 9	O. M Giner.	Gaffing salmon	Guilty.........	2500	
Nov. 11	I. Richardson	Gaffing salmon	Gullty.........	2500	
Nov. 11	A_{4} Fields	Gaffing salmon	Gullty.	2500	
Nov. 12	F. M. Bennett	Gaffing salmon	Guilty.	2500	
Nov. 12	F. S. King.	Gafflig salmon	Guilty.	2500	
Nov. 13	Lloyd Lindstrom	Gaffling salmon	Gullty.	$2500{ }^{*}$	
Nov. 13	Ray Lindstrom	Gaffing salmon	Gullty.	$2500{ }^{*}$	
Nov. 14	Rex Powers	Grffing salmon	Guilty.	500	
Nov. 14	J. H. Bankuy.	Gaffing salmon	Gullty.	1000	
Nov. 24	Chester Person	Fishing with less than $11 / 4$ lnch mesh.	Gullty.	$10000{ }^{\text {c }}$	
Nov. 24	Henry Camers	Frshing with less than $11 / 4$ fnch mesh.	Guilty.............	$10000{ }^{\text {c }}$	45500

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS-Continued.

$\begin{gathered} \text { Date } \\ \text { of } \\ \text { Arrest } \end{gathered}$	OFFENDER	CHARGE	Disposition of Case	Penalty Imposed	Totals
		PACIFIC COUNTY			
May_{14}^{1925}	G. P. Henderson.	Buying fish without license	Guilty.	Costs	
May 14	Amos Larson	Buying hiah without license	Guilty	Costs	
May May 16	Clarence Green	Making folso uttidavit regarding resldence	Guilty	Disappeared	
Sept. 2	Martin Talus	Fishlng with set net nbove dead line..	Guilty.	\$100 00	
Sept. 2	Mike Talus	Fishing with set met nbove dead lin	Dismis		
Sept. ${ }^{2}$	John Masters Victor Neime	Alien fishing Possesslon of iliegal kalm	Guilty.................. Guilty		
Sept. 14 Sept. 14	Victor Neime Jobn A. Bamer	Possesslon of (ilegnal kaln Fishing nbove dead lime.	Guilty...............	2500 100 100	
Sept. 17	William Church	Plshing with set nets above dead	Guilty...............	10000	
8 8ept. 17	Carl Easlenson	Possesslon of short samon	Guilty	3750	
Sept. 17	Chas. Matson	Possession of short aummon	Guilty	3750	
Sept. 17	Frans Johnson	Possesylon of short salmo	Guilty	${ }^{37} 50$	
Sept. 17	${ }_{\text {M }} \mathrm{K}$. Jernstrom	Possession of short matmon Possession of short anluo	Guilty.................	37 500	
Oct. 1	F. C. Barnes \&	Pospession of short fish.	Guilty	5000	
Oct. 15	${ }_{\text {P }} \mathbf{P}$ Shelse	Flahing illegally	Guilty	3500	
Nov. 5	W. T. Allphan	Fisbing with get net nbove dead lin	Guilty	10000	
Nov. ${ }^{5}$	E. R. Gritin.	Fissing wih set net above dead in	Gullty	10000	
Nov. 5	A. L. Howard	Finhing with sel neta clear across rive	Guilty	10000	
Nor. 6	John O'Rourke	Set det siear ucrons river and set wr	Guilty	25 00	
Nov. 6	Torald Trondson	Possesslon of Illegrl sulmon.	Guilty	10000	
Nov. ${ }^{6}$	John Klauman	Alen figherman on trap.	Guilt	5000	
Nov, 7	Walter Williams	Fisbinge with tro long lead on pound ne	Guilty..............	10000	
Nov. 7	C. Wrilliams	Fishing with set pet clear ncross river Fishing with set net clenr neross the river	Guilty.................$~$	2500 2500	
Nov. 7	Ed. Perry	Fishing with set not nbove dead line...	Guilty	5000	
Nov. 24	E. Haatja	Fighitge trap with lend over suo feet loug	Gullty	5000	
Nov. 24	F. J. Girt	Flshing trap with lend oycr so0 feet long	Guilty	5000	
Nov. 24	Tom Mosny .,	Fishing trap with lend over s00-feet long	Guilty.............	10000	
${ }_{\text {Mar. }}^{196}{ }_{1}$	William Mason	Digging and selling clams without license	Guilty..............	1000	
Mar. 1	Joc Mason	Digging and selling clams before season..	Guilty.............	1000	
Mar. 1	Vernon Lane	Digging clams out of season and no license	Guilty Guilty		
Mar, Mar. 11	Angus Beatty $\mathrm{W} . \mathrm{H}$. Cox..	Digging clams out of season and no license	Guilty................	10 2500 2500	
Mar. 11	John Heckard,	Digging clams without license.	Guilty	2500	\$1.700 00

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS-Continued.

$\begin{gathered} \text { Date } \\ \text { of } \\ \text { ofreat } \end{gathered}$	OFFENDER	CHARGE	Disposition Case af	Penalty Imposed	Totals
1925		PIERCE COUNTY			
May 28	John Suhr	Cstching and selling salmon without lieense.	Suspended sentence		
May 29	Superior Fish Co.	Possession of short salmon..................	Gulity..............	\$10 00	
May 29	National Fish Co	Possession of clams out of season	Guilty	1000	
June 17	Clem Zukosky	Fishing without license in closed waters	Guilty.......	5000	
June 18	D. Fujitis	Retsiling fish without a license	Guilty.	2500	
July 18	R. Crooks	Possession of fish with intent to sell without license	Gully.	1500	
July 18	Geo. Freemsn	Poseession of flsh with mient to sell without license Gaffing salmon	Guilt	250	
Oct. Oet. 11	$\underset{\text { Hirsma }}{\text { G }}$. Latiom		Guilty...............	750 2100	
Oct. 21	J. W. McGee.	Gsffling salmon.	Guilty................	750	
Oct. 21	T.J. Rasmuson	Gaffing salmon	Gullty.	2250	
Oct. 21	Philip Orlando ..	Gsffirg salmon	Guilty........	2250	
Oct. 27	Jim and Clarence Ball	Gaffing salmon	Guility.	500	
Oct. 27	T. V. Young	Gaffing samimon	Guilty.	750 2850	
Oct. 27	Philman Jackson	Gaffing salmon	Guilty.	2250	
Oct. 30	Ralph Shook	Gsaling salmon	Guiity...............	750	
Oct. 30	John Hanson	Illegsily fishing with lights	Guilty.	750	
Oct. Oct. 31	T. G. Suinay.	Gsffing salmon	Gulity	4550	
Nov. 20	George Harris	Gaffing salmon	Guilty.	2550	
Nov. 20	Ray Smith	Gsffing salmon	Guilty.	2500	
Nov. 30	Pacifle Fish Co	Possession of salmon for sale during closed scucon	Guilty.	1000	
Nov. 30		Porsession of salmon for sale during ciosed senson	Guilty.	2000	
${ }_{\text {Dec. }}{ }_{\text {Dec }}{ }^{2}$	Whollochet Mill Co.		Guilty.	2500	
Dec. Dec.	Nick Miloserich	Buying fish without license.	Guilty	5000	
Dec. 3	Psul Martinis	Buying short fish	Gulity	2500	
Dec. 3	Frank Tomasich	Buying short fish	Guilty.	2500	
Dec. 3	Andrew Rasmussen	Buying short fish.	Guilty	2500	
Dec. 3	Nick Milosevich	Buying short flah	Guilty...............	2500	
Dec. 3	Mike Katich	Buying short fish..............................	Guilty..............	2500	
Dec. Dec. 15	John Adams	Using 48 more feet on selin than license called for	Guilty.	1000	
Dee. Dec. 18	A. Meloud	Fishing in Nfoqually River with set net.	Not guilty		
Dee. 18	John Rader	Gsfling salmon	Guilty.	1000	
Dee. 18	Walter Cromogo	Gsffing salmon	Guilty.	1000	
Dec. 22	William Case	Casting sawdust into writer	Guilty	1000	
Dec. 22	Nakamura Fish	Operating a market without a license.	Guilty........	4800	

arrests made for violations of the food fish laws－Contimed．

	$\begin{aligned} & 8 \\ & \text { B } \\ & \text { 莫 } \\ & \hline \end{aligned}$			
			8888888888 	8888888888 ：
$\begin{aligned} & \text { 思 } \\ & \text { 2 } \\ & \text { 종 } \end{aligned}$			 そそきそなそれそれそれ	
$\stackrel{8}{\circ}$	Kincin	$0 \times \infty \infty$ 	2 	＂

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS-Continued.

CHARGE	Disposition of Case	Penalty Imposed	Totals
SAN JUAN OOUNTT--Continued			
Allen fishing	Guilty..	$\$_{5} 00$	
Alien fishing	Gullty.....	500	
Alten fishing	Gullty.........	500	
Alien flshing	Guillty..........	500 500	
Alien fishing	Guilty..........	500	
Alien fishing		Pending	$\$ 30000$
SKAGIT COUNTY			
Flshing during closed season.	Guilty....	\$2500	
Illegal possession of fleh....	Gullty.........	10000 5000	
Fishing during closed season	Guilty..	10000	
Selling fish in closed season.	Gulty.......	10000	
Interfering with an officer..	Not guilty		
Allen trap watchman.... Alien trap watchman...	Guilty...	${ }_{12}^{12} 50$	
Alen trap watchman....	Dusmissed.		
Fishing in closed waters.	Dismissed.		
Fishing in closed watcrs.	Dismissed.		
Fishing in closed waters.	Dismissed.		
Fishing in closed waters.	Dismissed.		
Flishing in closed waters.	Dismlssed.		
Fishing in closed waters.	Dismissed.		
Fishing in closed waters.	Dismissed.		
Fishing in closed waters.	Dismissed.		
Fishing in closed waters.	Dismissed.		
Fishling in closed waters.	Dismissed.		
Fishing in closed waters Fishing in closed waters	Dismissed.		
Fishing in closed waters.	Dismissed.		
Fishing in closed waters.	Dismissed.		
Fishing in closed waters	Dismissed		
Flishing in closed waters.	Dismissed.		
Flishing in closed waters.	Dismissed. Dismissed.		

		及

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS－Continued．

¢ $\stackrel{\text { ¢ }}{0}$ H	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$		
	\vdots 路 	$\begin{aligned} & 88888 \\ & 9.889 .9 \end{aligned}$	888888888888 ：8
	 웅응응웅응응응응응응응응응 믇․ㅌ․․․․․․․․․․․․․ㅜㅜ 붇 		家 $\underset{0}{\infty}$ 릉 \square ㅌㅡㄸm․․․․․․․․․ㅗ
运。㽞	－		

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS-Continged,

$\begin{gathered} \text { Date } \\ \text { of } \\ \text { Arrest } \end{gathered}$	OFFENDER	OHARGE	Disposition of Case	Penalty Imposed	Totals
		SNOHOMISH COONTY-Continued			
$\begin{gathered} 1925 \\ \text { Oct. } 18 \end{gathered}$	Arthur Sands	Fishing in closed waters.	Dlsmissed.		
Oct. 18	S. W. Lewls .	Snagging salmon	Ball forfeited......	\$2500	
Oct. 18	P. Sands ..	Flishing in closed waters..	Dismissed.		
Oct. 23	Erlt Tangen	Fishing in closed waters..	Guilty..............	2500	
Oet. 23	Olaf Matson	Flshing in closed waters..	Guilty..............	2500	
$\begin{gathered} 1920 \\ \mathrm{Mar}, 20 \end{gathered}$	P. E. Ingerham.	Gaffing galmon ...	Guilty..............	500	867000
$\begin{gathered} 1975 \\ \text { Nov. } 12 \end{gathered}$	Antony Zukosky	Fishing with gill net less than 5\% inch mesh.	Guilty..............	\$100 00	
Nov. 12	Clem Zukosky .	Flshing with gill net less than 5\% lnch mesh.	Guilty................	10000	
Nov. 13	John Gill	Gaffing salmon	Guilty..............	1000	
Nov. 18	Ollf Kuren	Gaffing salmon	Guilty.............	1000	
Nov. 13	Chester Warner	Gaffing salmon	Guilty..............	1000	
Nov. 18	S. A. Howard.	Gaffing salmon	Guilty	1000 10	
Nov. 13	J. E. Howard	Gaffing salmon	Gulity	1000 1000	
Nov. 14	Lee Conner	Gaffing salmon.	Guilty....	1000 1000	
Nov. 14 Nov. 15	R. W. Austin...	Gafing salmon	Gulity.... Gullty..........	1000 1570	
Nov. 15 Nov. 15	F. E. Wambult.	Gaffing balmon	Guity...............	1000	
Nov. 15	R. E. Norrls	Attempt to gaff salmon.	Guilty.............	1000	
Nov. 15	O. A. Maty	Gaffing salmon	Guilty...............	1000	
$\begin{gathered} 1926 \\ \text { Jan. } 14 \end{gathered}$	Folta \& Monroe.	Poesession of lliegal salmon.	Guilty..............	2500	
Jan 14	J. Zamberlm	Possession of lliegal salmon.	Gulity................	2500	
Jan. 14	John Damanla	Possession of lliegal salmon.	Guilty..............	2500	39070
1825		WAHKIAKUM GOUNTY			
Aug. 4	Knute Nilsen	Trap fishing during closed season....................................	Guilty..............	\$25000	
Aug. 20	Visco Bogdanovich	Making faise affdavit as to citizenship papers.......	Gullty..............	10000	
Aug. 27	Nels. G. Nelson.....................	Flshing during closed season...................... . .	Guilty. Dismiged	2500	
Sept. 9	Hjalmar Johnson	Flshing during closed season................. Fishing during closed season	Dismissed.		
Bept. Sept. 9	Hjalmar Johnson John C. Peterson	Fishing during closed season...	Dismissed..........	5000	
Sept. 9	Knute Nelson	Fishing during elosed season.................. .	Dismissed..........		
Dec. 5	J. A. Shabert.........................	Fishtng Fithout license...	Gulity...............	1000	43500

ARRESTS MADE FOR VIOLATIONS OF THE FOOD FISH LAWS—Comeladed

*suspended.
NUMBER AND VALUE OF CANNERIES AND FACTORIES OPERATED, AND THEIR FISHING APPLIANCES, AND CAPITAL FIATEA Year 1925 .

	$\begin{aligned} & \text { PUGET SOUND } \\ & \text { DISTRICT } \end{aligned}$		$\begin{aligned} & \text { COLOMBIA RIVER } \\ & \text { DISTRICT } \end{aligned}$		$\begin{aligned} & \text { GRAYS GARBOR } \\ & \text { DISTRIGT } \end{aligned}$		WILLAPA HARBOR DISTRIOT		$\underset{\text { OOMBINED }}{\text { ALL DIBTRIOTS }}$	
	No.	Value								
Canneries, salmon (bulldings and machinery). Canneries other than salmon..	26 6	$\begin{array}{r} \$ 1,361,13292 \\ 11,75000 \end{array}$	10	\$855,227 92	${ }_{6}^{4}$	$\begin{array}{r} \$ 33,899 \\ 26,195 \\ 20 \end{array}$	17	$\$ 85,000$ 42,486 41	41 19	$\begin{array}{r} \$ 2,075,26004 \\ 80,43141 \end{array}$
Factories, by-products	3	137,000 00							3	137,000 00
Warehouses, cold storages, smoke houses, packing plants, fuel houses, residences for labor, real estate		2,133,773 59		395,801 39		5,415 00		2,525 00		2,537,514 98
Automobiles, trucks and other land convcyances	77	53,178 91	6	6,491 64	13	3,737 00	7	1,550 00	103	
Steamboats	10	293,29005							10	293,290 05
Launches	${ }_{21}^{31}$	118,121 69	14	41,422 41	2	20000	1	${ }^{85000}$	48	100.59410
Ple drivers or pullers	- ${ }_{167}$	116,329 58	$\begin{array}{r} 3 \\ 21 \end{array}$		5	4.85000	2	5,000 00	${ }_{108}^{26}$	126,50865 163,48832
Cannery tenders	23	293,810 05	5	21,888 93	2	5,200 00			${ }_{30}^{183}$	163,48832
Fishing boats	29	94,679 32	59	69,759 49	2	${ }_{400} 00$	2	50000	92	165,38981
Buyer's boats	5	22,19794	4	4,800 00					9	26,997 94
Pound net locations operated.................	107	963,973 89	22	42,816 61	2	86825	8	6,500 00	139	1,014,158 75
Pound net locations not operated..............	37	145,257 82	14	10,000 00	2	20000	4	4,000 00	57	159,457 82
Stationary or scow fish wheels. Nets and seines			7	19,720 00					7	19,720 00
Net racks	13	94,500 00	118	122,790 18,597 76	7	10000	2	25000	115	123,811 87
Miscellaneous equipment		291,431 78		34,754 97		5,81713		2,300 00		
Total invested in plant and equipment. Operating expenses	$\begin{array}{r} \$ 6,272,665 \\ 8,80,999 \end{array}$	$\begin{array}{r} \$ 1,464,322 \\ 2,576,544 \\ 40 \end{array}$	\ldots	$\begin{aligned} & \$ 87,08158 \\ & 508,72004 \end{aligned}$	$\begin{aligned} & 390,96141 \\ & 185,33338 \end{aligned}$		$\begin{aligned} & 87,914,98091 \\ & 12,201,596 \end{aligned}$
Grand total capital invested............		\$15,153,664 45	\$4,040,888 95		\$645,751 62	\$276,294 79	\$20,116,577 81

NOTE-The above figures do not include valuations of the floating gear and equipment or the fixed appliances owned and operated fadependent
of the operators whose reports make up the above statement.
NUMBER AND EARNINGS OF LABORERS GMPLOYED IN OPERATION OF CANNERIES, FACTORIES, WEOLESALE AND PROCESSING PLANTS AND THEIR APPLIANCES.

	PUGET SOUND DISTRICT			COLUMBIA RIVER DISTRICT			GRAYS HARBOR DISTRICT		
	$\begin{gathered} \text { Number } \\ \text { Em- } \\ \text { ployed } \end{gathered}$	Average Season's Farnings	$\begin{aligned} & \text { Total } \\ & \text { Earnings } \end{aligned}$	Number Ema-d ployed $\|$	Average Scason's Earnings	$\begin{gathered} \text { Total } \\ \text { Earnings } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Eme } \\ \text { ployed } \end{gathered}$	Average Season's EarnIngs	$\begin{aligned} & \text { Total } \\ & \text { Earnings } \end{aligned}$
Clerleal Capacity-									
${ }_{\text {Female }}$	11 37	$\begin{array}{r} \$ 2,43887 \\ 1,41916 \end{array}$	$\begin{array}{r} \$ 2 m 9,604 \\ 52,509 \end{array}$	$\stackrel{25}{7}$	$\begin{array}{r} \$ 2,26968 \\ 1,05251 \end{array}$	$\$ 56,74197$ 7,367	18 18	$\begin{array}{r} 7765 \\ 202 \\ 34 \end{array}$	$\begin{array}{r} 823,73553 \\ 3,64203 \end{array}$
Operating canneries, factories, warehouses, etc White labor-male	836	76604	640,412 47	189	77241	145,21290	137		
White labor-female	679	17716	120,293 20	1:4	37686	50,49955	207	9783	20,250 24
Oriental labor	4×2	51421	247,801 28	247	66550	164,378 78	18	41483	7,467 00
Indian labor $\begin{aligned} & \text { Inerating pile drivers, pullers, boats, scows }\end{aligned}$	169	11595	19,594 74				21	21024	4,415 00
nets and other fishing appliances.	667	60050	460.5622 28	${ }_{2}^{45}$	96377	42,919 76	5	32345	1,617 28
Miscellaneous labor	127	1,248 28	158,531 \%	26	54845	14,259 60	36	11949	4,30170
Totals.	3,108	\$633 64	1,009,359 08	672	\$716 34	\$481,380 14	473	\$20480	\$96,874 07

WILIAAPA HARBOR DISTRICT			ALL DISTRICTS COMBINED		
Number Fmployed	Average Season's Earaings	Total Earnings	$\left.\begin{gathered} \text { Number } \\ \text { Emoyed } \end{gathered} \right\rvert\,$	Average Beason's Earnings	Total Earning
2	\$75796	$\begin{array}{r} \$ 1,515 \\ 705 \\ \hline 00 \end{array}$	169 64	$\begin{array}{r} 82,08046 \\ 1,00349 \end{array}$	$\begin{aligned} & \$ 351,59767 \\ & 64,223 \\ & 62 \end{aligned}$
47	325 85	15,315 00	1,208	68906	832,385 68
51	18494	9,427 01	1,071	16596	200.47000
12	20833	2,500 00	759	55624	422,187 06
			190	12638	24,009 74
	1666	1.00000	723	69999	506,009 30
20	12168	2,433 54	209	88898	178,52869
140	\$234 97	\$32,806 47	4,303	\$687 41	2,580,509 76

OUTPUT OF THE PRIVATE FISH HATCHERIES. Fincal Year 1925.

Spawn sold Fry sold

Dealers' purchases of hatchery fish from outside the state.................................287 pounds Purchases of hatchery fish by Washlngton restaurants... 1,521 pounds
(Due to the provisions in the Game Oode enacted during the last session of the Legislature, the State Game Department will license all flsh hatcheries maintained for the hatching and rearing of all kinds of game fish. This department then would only license hatcheries which handle salmon. O. R. P.)

STATISTICS

FOR

FISCAL YEAR 1926

April 1, 1926, to March 31, 1927
 DIVISION OF FISHERIES

Department of Fisheries and Game

STATE OF WASHINGTON

Appropriations, Receipts and Disbursements; Output of Salmon
Hatcheries and Costs; Licenses Issued; Take and
Value of Food Fishes; and Other Information
Regarding the Food Fishing Industry.
APPROPRIATION AND EXPENDITURES OF FISHERIES FUND.

FUND	Appropriation for One Year	$\begin{gathered} \text { Expended } \\ \text { Fiscal Year } \\ 1926 \end{gathered}$	Balance April 1. 1927
Salaries of director, supervisor of fisheries, lnspectors and employes; traveling expenses af director, supervisor, inspectors and cmployes; rent and lncidentals; construction, repair, rearing aud maintenance of salmon hatcheries, construction of new hatcheries; patrol service; improverments, replacements; destruction scals; printing and other necessary expenses of the office of the supervisor of fisheries.	2200,000 00	\$210,408 89*\|	\$79,593 11

-It Will be noted in checking the net expenditures of the department given above that the total is $\$ 4,000,00$ less than the total shown in the Auditor's returned to the State Treasurer before the close of the period. During the fiscal year 1926 there was also a special revolving fund of $\$ 2,000.00$ to bandle ITEMIZATION OF EXPENDITURES OF FISHERIES FUND.

	Salarles	Labor	Mileage	Subsistence	$\begin{aligned} & \text { General } \\ & \text { Expense } \end{aligned}$	Mainte- nance	Improve- ments	Total Cost of Operation
Office expense	\$10,142 41	84400	$\$ 672$	812615	84,786 91	41150	\$182295	\$16,716 04
Repairs and maintenance of hatcheries........	24,966 43	30,979 76	8885	1,252 60	12,480 54	5, 83032	33,287 71	113,69490
Patrol service \ldots...........................	20,140 38	7,085 \%9	6,944 42	9,030 79	7,336 ${ }^{14}$	5,155 96	13,186 98	${ }^{68,879} 15$
Sundry expense	109200 1,05106	96 15500 000	${ }_{224}^{198}$	275 472 10	(24468	2838		2,914 38
Aluska	, 47742	57474	1,044 39	14740	1,15866	150	4240	3,446 51
Destruction of seals.					3,285 00			3,285 60
Totals	857,309 70	\$47,935 00	\$0,979 41	11,605 09	\$31,027 47	86,341 09	\$47,140 04	\$210,406 80

SEGREGATION ON REPAIRS, MAINTENANCE AND IMPROVEMENTS (CAPITAI, OUTLAY) OF SALMON HATCHERIES,

	Salarles	Labor	Mileage	Subslst-	General Expense	Maintenance	Improvements	Total Oost of Operation	Total Eggs Taken	Total Fish Reared	Cost Per 'rhousand
Repairs and maint	\$17,626 43	\$22,155 76	\$691799	\$99725	\%9, 61119	837582		\$51,45814	141,635,483		8.363
New construction	3,930 00	13,23600	18435	15585	1,930 00		\$31,068 06	50,511 0,060 00			
Rearing expense ${ }_{\text {Salt }}$ water pond.................	1,230 1,380 00	$\begin{array}{r}3,70800 \\ 830 \\ \hline 00\end{array}$	1000 1250	8400 1550	91200 27	33600 11850	$\begin{array}{r}2,080 \\ 14100 \\ \hline 180\end{array}$	9,060 2,575 50		$32,167,000$ $1,300,000$. 281
Totals	\$24,868 43	\$38,978 76	\$888 54	\$1,252 60	\$12,489 54	483032	\$33,287 71	\$113,604 00			

FUND

 Alaska operations.
APPROPRIATION AND EXPENDITURES OF STATE OYSTER RESERVE FUND. Fincal Year 1828.

FUND	Appropriation for One Fear	Expended Fiscal Year 1828	$\begin{gathered} \text { Balance } \\ \text { April 1, } \\ 1927 \end{gathered}$
For the improvement and protection of the state oyster reserves	\$9,000 00	\$4,943 40	\$4,056 60

ITEMIZATION OF EXPENDITURES OF STATE OXSTER RESERVE FUND.

Patrol Improvement of oyster bede.	$\begin{gathered} \$ 2,857 \\ 2,085 \\ \hline 67 \end{gathered}$
Total.	4,943 40

RECEIPTS OF THE FISHERIES DEPARTMENT.

CREDITED TO THE FISHERIES FUND	Puget Sound District	Columbla Rlver District	Grays Harbor District	Willapa Harbor District	Totals
LICENSES -					
	821,80000 8200	814,88800 8300	83,29100 2900	$\$ 3,80815$ 2100	843,84724
1,098 Retail dealer's at \$ $\$ 1.00$	62200	33400	4500	2100	1,08200
118 Wholesale dealer's	58000	38000	12000	10000	1,18000
8 Brokers	1000		1000	1000	3000
27 Freezers	21000	4000	2000	27000
81 Halibut dealer's	14000	1500		15500
${ }_{1}^{1}$ Codfish, esnning and curing.	500 17500				500 17500
7 By-products manufacturing	17500				17500 1750
7 Private hatchery product dealer....... 4 Hotel serving private hachery product	500 400	1250			1750 400
4 Hotel serving private hachery product	45000	22500	12500	10000	400 800
23 Clam canneries.	7500	225	15000	12000	34500
801925 licenses ...	7800	1500	6050	1775	17125
8,356 Total					\$18,296 90
TAXES- Catch tax recelyed.	\$05,981 16	\$60,678 11	\$5,035 49	86,288 76	8137,028 53
SALES- Sale of eggs					
Sale of eggs. Spawned fish	814000 795	\$88872			814090 806
Oonflscated gear	2500	10650	\$3500		16580
Conflscated flsh	10614	2100		sot 79	198.95
Totals	.1.0.........		\$1,396 15
MISCELLANEOCS 1926 miscellaneous licenses.			\$10 00	8450	
1926 miscelianeots neenses.	\$ 450		. 10.0		450
Transfers	4700	87400	400	300	12800
Miscellaneous	60206	11896			78101
Refunds 1	30227	100.98			40825
Refinds ${ }^{2}$	43551	10665	1388	3328	58932
Oregon suspense ${ }^{\text {a }}$		2,985 20			2,985 20
Tax paid Oregon ${ }^{4}$.		13,283 80			18,283 80
Totals.	\$01,888 71	\$94,355 43	\$8,948 87	\$10,600 23	\$206,843 24

REGEIPTS OF THE FISHERIES DEPARTMENT-Continued.

[^6]| YEAR | | | | | | | OYSTER RESERVE FUND | | | | Grand
 Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Licenses | Taxes | Sales | Miscella. lancous | Fines and Interest Earnings | Total | Licenses | Sales | Interest Earnings | Total | |
| 19065 | \$39,508 20) | \$10,587 88 | | \$471 5 | | \$50,568 03 | | \$4,464 00 | | \$4,40400 | \$55,022 03 |
| 1 MR . | 11, 5049 | $2,9 \times 338$ | | 26462 | | 45,123 96 | | 3,766 70 | | 3,760 70 | 48,834
 51,9618
 18 |
| $1: 977$ | 38,5, 10 | 9,154 18 | | | | 47, فraj 2 c | | 4,2604 90 | | 4,20490 | 51,961 18 |
| 1 1 M15 | 318,8440 | 3, त12 5 | | | | | | 2,389 80 | | 2,389 80 | 46,06877 |
| $1: \times 03$. | 4), 80200 | 17,659 36 | \$110 70 | 1680 | | 57.90888 | | 4, $\mathrm{pl}_{1} 16$ | | 4,021 65 | 61,990 51 |
| 1970. | 45,44290 | 5.183191 | | | | 51.27481 | | 1,183 10 | | 1,18\% 0 | 52,460 81 |
| 1911. | $99,17+90$ | 14.3 T0 19 | | | \$1,010 83 | 64,553 92 | | 3, (4, 2 : ${ }^{\text {a }}$ | | 3,682: 3 | 68,218 27 |
| 1912. | 57,752 10 | $(6,1!\times 1+7$ | | | | 63.14257 | | 1, (1) 3275 | | 1,0:5275 | 64,1753 |
| 1913. | 25,51925 | 32, 4154 | 2310 | 1750 | 6,776 37 | 94.1 [3] 96 | 8000 | 2,5x) (1) | . | 2,64590 | 97.52780 |
| 1914. | $50 .+2170$ | 9,004 16 | $1{ }^{1}$ | 6357 | 2,917 75 | $71,(m, n) 14$ | 500 | 0574 | | 57957 | 72.57871 |
| 1915 (8 months) | $4 \times, 16901$ | 23, が3 | 218 | | 35225 | 78.510088 | 2×5 (0 | 2, inio sis | | 2,915 \% | 81,50600 |
| 1916............. | 45,767 61 | (3), axi (k) | | 5438 | 1,41876 | 83,75256 | 2500 | 970 ss | 811423 | 1,100 61 | 94, 47217 |
| 1917 (4 months) | 1,535 46 | 9, 23: 93 | 300 | 3137 | 94840 | 12, (f) 16 | | | | | 12,104 16 |
| 1917............ | 56,75176 | (6),115 71 | 20,23546 | $2: 450$ | 3,981 94 | 146,523337 | 0000 | 5,545 79 | 6176 | 5,702 515 | 152, (\%) 92 |
| 1918. | 48.119 (4) | | 12,301 81 | $2: 3725$ | 4,387 25 | 102,01136 | 1000 | 750734 | | 51734 | 112,508 70 |
| 1919 | 52, 63 | 15,573 91 | 16,667 4 4 | $2: 570$ | 6,913 54 | 122,225 22 | O5) 0 | 7,870 00 | 6838 | 8 , 010338 | 1:30,2080 60 |
| 1980 | 47,4*487 | 27,917 02 | 2,842 92 | 63068 | 7,295 14 | 86.17063 | 8000 | 5,491 75 | 11270 | 5,664 45 | 91, 4×08 |
| 1921 | 54,5059 | 124, (x) 48 | 10679 | $1: 3463$ | 7141 | 175,40527 | (i) (0) | 5,717 18 | 1, $\mathrm{P} \times 2 \mathrm{C} 51$ | 7,648 49 | 183,103 78 |
| 1 1222. | 3 4,14897 | $(5,115)$ | 91592 | 3 , 108339 | 3,027 71 | $1+1,345064$ | 2500 | 2, 5is 52 | 1,377 90 | 3,757 32 | 145,10296 |
| $1(\underline{y}$ | 36,11278 | $144, \times 219$ | 2,073 (x) | 20,302 98 | 7,606 32 | 210.98684 | 5000 | 6,45129 | 1,10508 | 7,606 37 | 218,502 61 |
| 19 | 34.4028 | 15ti, 1in) ${ }^{\text {a }}$ | 2,81+77 | 26,3x 74 | 8,567 92 | 233,960 | (25) 00 | 2,312 08 | 54690 | 2,953 98 | 2365.90988 |
| 1025 | 40, 5 \% ${ }^{3} 0$ | $1: 2,1438$ | 2, 250 32 | 21,44,812 | 12,00845 | 275,483 06 | 3500 | 7,241 17 | 74737 | 8,02354 | 283,506 60 |
| 19 | 48,29699 | 157,928 52 | 1,34615 | 18,221 58 | 14,98954 | 220,852 78 | 5500 | 5,571 71 | 86144 | 6,288 15 | 227,120 98 |

	$\begin{aligned} & \text { PUGET SOUND } \\ & \text { DISTRIOT } \end{aligned}$		$\begin{gathered} \text { COLUMBIA } \\ \text { RIVER } \\ \text { DISTRIOT } \end{gathered}$		$\underset{\text { DISTRIOT }}{\underset{\text { GRAYS HARBOR }}{ }}$		$\begin{aligned} & \text { WILLAPA } \\ & \text { HARBOR DIST. } \end{aligned}$		ALL DISTRIOTSOOMBLNED	
	Number Licenses	Amount Collected	Number Licenses	Amount Oollected	Number Lleenses	Amount Collected	Number Licenses	Amount	Number Licenses	Amount Collected
FISHING LIOENSES-										
First class pound net.......................... 2500	215	\$10,750 00		\$3,300 00					215 122	\$10,750 3,300 3
Second class pound net........................ 1500			252	3,780 00					${ }_{252}$	3,30000 3,780
Pound net 8 (tatlonary fish wheel					66	\$990 00	142	\$2,130 00	208	3,12000
Stationary fish wheel................................ . $_{\text {S }} 5000$			${ }_{11}^{17}$	527500					17	${ }^{505} 000$
Set net 875		1125	261	97875					445	
Gill net............ 87.50 and 1 cent each add. foot	361	3,013 90	530	3,975 00	49	49850	53	44360	993	1,68875 7,831
		980 8,740 00	47	1,478 25	1	100			178	2,468 44
Reef net 500	10	514000							136 10	3,740 00
Set line .. 100	113	11300	51	5100			1	100	169	16800
Hook and line.................................. 200	684	1,368 00	109	21800	3	600	6	1200	812	1,004 00
		523 ${ }^{9} 100$		8000					80	1800
	18	525 450 020			1	700			73 18	53021 450
Beam trawl ….............................. 10.00	29	29000							${ }_{29}^{18}$	${ }_{200}^{45000}$
Olams und mussels 100	912	24200			1,449	1,44900	843	84300	2,534	2,534 00
		200 14600			${ }_{3}^{2}$	200 300	52	5800	56	5600
Gill net boat pulier 100	146	1460	156	15600	3	300	54	5400	204 156	20400 15600
Gill net extension................. ${ }^{1}$ cent per foot Drag seine extension............. 3 cents per foot		4724				150		1380		15600 6254
Drag seno extension3 3 cents per foot		720 1810								720
smett drag bag net extension.......3 cents per foot		18	析	,						1810
TOTALS	2,178,	\$21,800 69	1,647	\$14,888 00	1,605	\$3,291 00	1,236	\$3,888 15	6,726	\$43,847 24

YEARLY COMPARATIVE TABLE OF LICENSES ISSUED.

fearly comparative table of licenses issued-Continued.

PUGET SOUND DIST.-Continued	1905	1908	1907	1908	1900	1910	1911	1912	1913	194	1915	1916	1917	1918	1919	1920	1921	1922	1923	24	1925	1928							
RECAPITULATION- Fishing licenses Dealers and miscellaneous licenses.		${ }^{1,467}$	$71,544$,933 2,		$\left\lvert\, \begin{aligned} & 1,99_{4} \mid \\ & 368 \end{aligned}\right.$				$\begin{gathered} 3,043 \\ 909 \\ 909 \end{gathered}$						$\begin{gathered} 1,4291 \\ \hline 6 \times 51 \\ 261 \end{gathered}$	$\begin{aligned} & 1,876 \\ & 772 \\ & 722 \end{aligned}$								
									310																				
Totals.	1,40	1,573	1,771	,04910	1,880 2	2,003	$\left\|\frac{2,260}{22}\right\|$	$\frac{2,229}{2,345}$		2,282 2,876		$\frac{2,3 x 0}{38}$	3,940	$3,3959$	$\begin{aligned} 4,445 \\ 43 \\ 4 \end{aligned}$	3,100 2,782 1,880						3,077							
Cannery licensees			14		23	14				2	45																		
Grand	1,433 ${ }^{24}$			2,069	1,893	2,077					2,921																		
Colctmbia river district						$\left[\begin{array}{r} 18 \\ 282 \\ 14 \\ 4 \\ 214 \\ 563 \\ 33 \\ 3 \end{array}\right.$				1424171727240454	29229189967867630613																		
Shing licenses																													
First class pound net.																													
Stationary fish wheel. Scow flsh whel					${ }_{8}^{15}$																								
Set net.					8																								
${ }_{\text {Drag }}^{\text {Geil }}$									20647537																				
Purse scine									4																				
Hook and																		3-79	[57	(17) ${ }^{57}$									
Hag net ...																20,					${ }_{\text {225 }}^{208}$	${ }^{178}$		109 80 8					
Sment and herring										148	2 io																		
Smelt drag bag net																			-	\cdots		\ldots						
Clams and mussels																				- ${ }^{2}$									
${ }^{\text {Clamb }}$ Crab bait.																		18			$\begin{gathered} \cdots, \\ \cdots \cdots, \\ 156 \\ \hline \end{gathered}$								
$\underset{\text { Crabs }}{\text { cill boat p }}$											5	13		. ${ }^{2}$	5														
Gill net boat p																			147	193									
		$\underline{1,247}$	1,143,				216	321	, 104											1,582, 1,022 1,047									

yearly comparative table of licenses issued-Continued.

COLUMBIA RIVER DIST.-Continued	1906	1906	1807	1908	1909	1910	1911	1912	1913	1914	1015	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926
DEALERS AND MISO. LICENSES Buyer's																				44	88	8
Scow buyer's	20	19	16	7	3	5	3	3	12	14	3	1	5	3	11	2	7	10	1			
Retall dealer	106	80	79	98	141	209	216	212	225	243	260	2230	237	185	191	208	199	287	256	281	329	334
Wholesale dealer	8	15	21	17	18	18	11	140	33	38	44	38
Broker	2	3									2	
Halbut wholesale dealer or broker.,			- +)		1	2	8	2	2				9	3
Freezer						-	4	3	3	5	4
By-product manufacturing																1	1					
Private hatchery	1	3	5	3	5	8	6	8		12	14	
Private hatchery product dealer...		, , ,	, , ,	-			8	1		8	1	2	2	4		5
Hotel serving private hatch. prod.	t....											3	3				3	2	1	1	1	
Permit to collect birds...............			.	,						...	2	3							7	7	
Total	134	99	95	105	144	214	219	215	257	257	276	258	284	225	241	250	241	487	357	300	508	467
MISCELLANEOUS RECEIPTS.									...,	2			4		3			89	1	5	34	7
CANNERY LIGENSES	9	8	7	6	6	6			6	8	12	7	9		9	9	9	11	11	10	9	9
RECAPITULATION- Fishing licenses ..	970	1,247	1,143	1,376	1,257	1,078	1,216	1,332	1,104	1,150	1,887	1,417	1,612	1,513	1,503	1,517	1,349	1,217	1,400	1,582	1,622	1,647
Denlers and miscellancous licenses..	134	D0	- 95	106	144	214	219	215	237	257	276	258	284	225	241	259	241	487	357	890	508	467
Miscellaneous receipts									\cdots				4	7	3	7		89	12	5	34	7
Tota	1,104	1,346	1,298	1,481	1,401	1,202	1,495	1,547	1,341	1,409	1,613	1,675	1,980	1,745	1,857	1,783	1,590	1,793	1,760	1,977	2,164	2,121
Oannery licenses									6	8	12	7	9	10	9	9	9	11	11	10	9	9
Grund Totals	1,113	1,354	1,245	1,487	1,407	1,298	1,4.41	1,553	1,347	1,417	1,6\%	1,682	1,039	1,755	1,846	1,792	1,599	1,804	1,780	1,987	2,173	2.180

YEARLY COMPARATIVE TABLE OF LICENSES ISSUED-Continued.

GRAYS HARBOR DISTRICT	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1815	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926
FISHING LICENSES-	16	2	21	17	18	21	32	42		32			53				47				50	${ }^{66}$
Set net.	75	114	100	10)	69	110	240	332	$2: 45$	249	136	141	276	316	349	200	242	183	156	160	125	${ }_{88}$
Giil net	6	63	54	36	10.	79	111	72	6.	117	80	113	105	94	117	45	60	62	58	44	51.	49
				4		13	12	4	3	2	1							1
Set line..											\cdots					1						3
Hook and line.												13	25	72	29	. 36	\cdots	$\cdots \cdots$			3
Smelt drag bag net									1		,	2	3	,	1			1
Clams and mussels											618	347	284	304	476	418			1,002		1,003	1,449
Clams for bait..																4						2
Crabs											38		13	10			11.	14				3
Totals.	159	197	175	153	${ }^{28}$	210	387	423	*372	410	908	645	749	8031	1,068	851	1,007 1	1,538	1,290	1,0971	1,341	1,665
DEALERS AND MISC. LICENSES- Buyer's																						
Scow buyer's																						29
Retail dealer					7	14	16	12	37	39	28	38	31	42	48	50.	41	59	51	46	44	45
Wholesale dealer												11	11		14	14	11	12		14		12
																		,	1	,	2	2
Halibut wholesale dealer or broker.													1									
Totals	1	7	9	6	10	18	19	15	44	43	36	51	44	53	68	69	55	76	65	65	81	¢9
MISOELLANEOUS RECEIPTS.													10	4		43	90	124	65	64	99	54
Cannery licenses.		2	1	1	1							19	21	21	20	14	21	27	27	25	21	15
REOAPITULATIION-																						
	159	197			${ }^{98}$	${ }_{16}^{210}$		${ }^{423}$	${ }^{372}$	410		645	749		1,078					1,007		1,665
Dealers and miscellaneous licenses.. Miscellaneous receipts					10					43			$\begin{aligned} & 44 \\ & 10 \end{aligned}$		$\begin{aligned} & 36 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 43 \end{aligned}$	$\begin{aligned} & 55 \\ & 90 \end{aligned}$	$\begin{array}{r\|r\|} 76 \\ 124 \end{array}$		${ }_{64}^{65}$	$\begin{gathered} 81 \\ 99 \end{gathered}$	${ }_{54}^{89}$
Totals.	160	204	184	159	108	228	406	438	416	453	944	696	808	8601	1,217		1,152	1,738	1,420	1,226	1,521	1,808
Cannery llcenkes							5	6	8	87	8	19	21	21	20	14	21	27	27	25	21	15
Grand Tot	162	206	185	160	109	229	411	444	424	460	952	715	824	881	1,237	77	1,173	1,765	1,447	1,251	1,542	1,823

YeARLY COMPARATIVE TABLE OF LICENSES ISSUED-Continued.

WIL LAPA HARBOR DISTRICT	1905	1906	1907	1908	1909	1910	1911	1912	1813	1914	1915	1916	1917	1918	1919	1920	1021	1922	1923	1924	1825	1926
Set net	${ }_{36}$	5	${ }_{5} 5$	${ }_{64}$	42	152	289	67	33	17	81	53	48	62	63	${ }^{64}$	55	32	!	34	47	142
Gill net	5	2	17	16	15	14	80	65	29	52	46	54	84	188	76	32	43	27	19	100	141	85
Drag selne	...	3	1	3	7	3	4				1							1	1	1	
Purse seine Hook and line																						
Hook net and line.										. \cdot.	\cdots	3		16	16	6	5	2	2	1	6
Clams and mussels											164	$\begin{array}{r}3 \\ 134 \\ \hline\end{array}$	8	62	164	1 208	285	343	284	295	511	843
Clams for bait.													43	18	13	22	10	16	11	19	24	52
Crabs											160	129	96	56	52	55	65	51	40	51	35	54
Set lines																				2	1
Totals.	91	131	116	134	129	209	424	423	171	267	501	475	583	449	561	579	603	487	385	549	833	1,236
DEALERS AND MISO. LICENSES-																						
Retail dealer.			1	2	4	17	13	7	6	14	18	13	$\stackrel{8}{11}$	16	23	23	23	17	16	218	14	21
Wholesale dealer											19	14	10	10	17	15	15	8	${ }_{6}$	11	8	10
Broker																				1	1	1
Freezer															1		
															.			12			14	\ldots
Totals.		1	2	4	17	13	7	6	14	37	27	30	31	48	40	40	38	22	42	50	53
MISCELLANEOUS RECEIPTS.													4			4	5	4	4	2	34	6
OANNERY LICENSES	2	2	2	2	1	1	2	8	2	2	2	5	5			6	5	8	11	11	11	12
RECAPITULATTON-																						
Dealers and miscellaneous lice	91	131	116 1	134 2		209	424 13	423 7	171	267 14	501 37	475	583	449	561	579	603	487	365	549	833	1,236
Miscellaneous receipts				2		17	13	7	0	14	37	27	30 4	31 4 4	10	4	$\stackrel{40}{5}$	38	${ }^{22} 4$	42 2	50 34	53 8
Totals.		131	117	136	133	228	437	430	177	281	538	502	617	484	619	623	648	528	391	598	917	1,295
Cannery licenses			2			1	2	3	2	2	2	5	5	5	9	6	5	8	11	11	11	12
Grand Totels	93	133	119	188	134	227.	439	433	179	283	540'	507	622	488	628	629	653	537	402	604	928	1,307

ALL DISTRIOTS OOMBINED	1906	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1025	1926
FISHING LIOENSES-																						
Pound net		761	630 22	1206	557	609 18	647 17	$\begin{array}{r} 712 \\ 22 \end{array}$	629	602.	610 27	$\begin{array}{r} 620 \\ 27 \end{array}$		+685	617 27	62 27	500 95	510	23	${ }^{581}$	(636	807
Set net	764	904	1,010	1,123	92	1,142	1,572	1,683	1,302	1,150	904	977	1,356	1,345	1,440	1,024	771	385	309	478	542	445
GIII net	85	1,041	1,020	1,200	1,159	1,069	1,227	1,272	1,107	1,114	1,814	1,249	1,327	1,006	1,250	920	972	679	673	811	1,048	908
Drag seine	129	179	224	389	290	280	342	273	276	411	230	228	367	283	235	181	150	150	149	151	190	178
Purse seine	91	80	72	78	97	130	138	109	252	288	008	294	444	234	301	305	386	127	183	93	154	136
Reef net											18	13	13	13	14	10	13.	8	9	9	10	10
Set line										, ,	87	81					108	117	107	154	148	168
Hook und line	, ins												985	1,248 180	1,450	922	688	808	358	190	538	80
Bag net										148	11	213	${ }_{20}^{204}$	180	119	126	102	52	82	110	120 64	89 73
Smelt drag bag net											111	51	56	50	57	56	51	51	49		64	
Smelt and herring Brush weir											138		9	6	11		8	4	8		12	18
Beam trawl											27	27	25	20	16	14	20	15	22	26	88	23
Olams and mussels											965	628	606	548	872	774	1,031	1,704	1,586	1,251	1,764	2,534
Clams for bait									+1..				45	$\underline{98}$	13	${ }_{10}^{27}$	18	35	24	29	37	56
Crabs											294	214	181	157	186	193	219	185	159	160	158	9.94
Gill net boat puller																			147	188	187	150
Totals	2,561	2,983	2,973	3,445	3,106	3,238	4,043	4,131	3,682	3,741	5,083	4,630	6,279	5,808	6,638	5,202	5,052	4,388	4,240	4,000	5,672	6,726
DEALERS AND MISC. LICENSES-																72	108	81		87	236	215
Scow buyer's	26	19	19		6	7		6	19	18	4	1	5		11	2	7	10		8	238	210
Retail dealer	176	248	310	354	085	498	508	491	561	647	738	627	639		863	864	703	790	778	827	900	1,089
Wholesale dealer											8	(2)	106	103	126	110	105	100	98	114		
Broker											11	9	- 6				3 27
																27	27	$\begin{aligned} & 24 \\ & 28 \end{aligned}$		31
Halibut wholesale dealer or broker.												$\begin{array}{r}18 \\ 8 \\ \hline\end{array}$	$\begin{array}{r} 21 \\ 5 \end{array}$	24 6	6 6	$\begin{array}{r} 27 \\ 6 \end{array}$	27 1	27 1	28 1		31
Codflish, canning and curing........ By-produet manufacturing												\cdots	11	11	6	6	$\begin{aligned} & 6 \\ & 4 \\ & 6 \end{aligned}$	8	$\left.\begin{gathered} 1 \\ 4 \\ 1 \end{gathered} \right\rvert\,$	8		
Private batchery			3	4	1	2	2	,	-		6	3	5	5	8	13	12	12	12	19		
Private hatchery product dealer....									2	2	2	4	5	,	3	5	8	4	5	7		
Hotel serving private hatch. prod..		-2.											11	113	13	10	21	19	${ }^{6}$			
Permit to collect birds..............		'1+'•		14	12			8	12	10	18	11	11	11	15	27	21	12	13	14	14	
Tota	203	272	882	880	407	500.	520	506	597	682	888	7781	980	1,216	1,390	1,146	909	1,185	1,008	1,132	1,411	1,406

YEARLY COMPARATIVE TABLE OF LICENSES ISSUED-Coneluded.

HThls Item represents receipts which were issued in lieu of licenses, upon payment of license fees, to persons who had operated the previous year
without securing licenses as required by law.
CATCH OF SAIMON AND VALUE. Fincal Year 1926.

DISTRICT AND GEAR WITH WHIOH TAKEN	Number of Chinook Salmon	Number of Dog Salmon	Number of Humpback Salmon	$\begin{aligned} & \text { Number of } \\ & \text { silver } \\ & \text { Salmon } \end{aligned}$	Number of Sockeye Salmon	Number of Steelhead Salmon	Totals
PUGET SOUND DISTRICT-							
Pound nets	202,366	125,164	21,678	984,600	331,374	6,379	1,071,556
Set nets Gill nets	$40,201{ }^{2}$						${ }^{505}$
Drag seines .	40,201	98,784 1,014	650 379	57,436 2,888	1,376 6,094	3,438	208,420 12,919
Purse seines	5,400	858,371	1,764	298,721	00,523	206	1,169,063
Reef nets	77	241	. 6	2,057	70,785	.	1,4,016
Hook and lines.....	2,308	85	117	22,209	65	176	25,080
Smelt drag bag nets		14		8			22
Totals	258,129	1,063,005	24,489	703,292	481,767	10,190	2,486,571
Value	\$807,481 51	\$425,478 00	\$48,488 22	8155.78321	\$336,863 23	\$11,014 92	82,145,059 09
COLUMBIA RIVER DISTRRICT- First class pound nets.							
First class pound nets. Scond class pound nets	111,046	15,402	78.908	17,067	79,100	301.608
Second cass pound nets.	41,988	10,881	41,778	5,291	35,201	135, 700
Scow tish wheels.......	1,001			58	1,003	1,455	3,110 3,607
Set nets	3,813	76		836	16,102	22,482	44,008
Gill nets	145,432	35,068		23,351	50,014	88,608	290.483
Drag seines	35,676	671		1,683	14,282	36,165	91.480
Set lines	10				3n..........	13
*'otals	343,057	62,797		146.704	105,436	212,304	870.298
Value	\$820,592 34	*5,651 73		\$88,168 10	\$72,750 84	\$148,612 80	81,135,776 81
GRAYS HARBOR DISTRICS-							
Set nets .	$\begin{array}{r}5,808 \\ \hline 7.008\end{array}$	18,158	$\begin{array}{r} 41,372 \\ 4.649 \end{array}$	30	241 210	65,661 10,686
Gilt nets.......	7,019	12,447		19,381		629	30, 179
Smelt drag bug nets.	11	216		256		40	523
Totals	18,828	35,817	, ,.,	65,504	30	1,120	116,349
Value.	\$15,90e 20	\$5,372 55	. + *	\$92,777 00	52394	\$9,016 00	\$56,001 69

*These Oolumbia River totals of different varieties of salmon secured by using average weights on the total tonnage reported in the distriet, as
all in Columbia River is purchased on a tonnage basls.
CATCH OF SALMON AND VALUE-Concluded.

DISTRICT AND GEAR WITE WHICH TAKEN	Number of Chinook Salmon	Number of Dog Salmon	Number of Humpback Salmon	Number of Silver Salmon	Number of Sockeye Salmon	Number of Steelhead Salmon	Totals
WILLAPA HARBOR DISTRICT- Pound nets							
Set nets \ldots...	1,139	10,476 7,926		2,665 4,008		154	14,434
Hook and lines	6,347 4	7,926		4,098		128	18,490 4
Totals	19,791	90,232	30,025	598	150,241
Value.	\$22,759 65	\$14,584 80	$1 f \cdot$	\$15,312 50	\$1,067 40	\$54,004 35
ALL DISTRICTS COMBINED-							
	373,591	250,435	21,673	570,610	353,722	121,852	1,601,883
Stationary fish wheels	951 1,061		58	1,594	650 1,455	3,195 3,667
Set nets	1,061	16,399		8,506	1,088 16,132	1,455 29,846	3,667 69,723
Gill nets ..	199,689	154,165	50	104,269	52,300	40,818	551,881
Drag seines	40,684	1,715	879	4,521	20,976	36,174	104,399
Purse seines	5,469	838,371	1,764	232,721	90,523	205	1,169,053
Reef nets Hook and lines	2. 77	241 85	${ }_{117}^{6}$	2,957	735		4,016
Smelt drag bag nets.	2,373 11	85 280	117	22,260 264	65	176 40	25,084
Set lines	10	20		264	3	40	545 13
Totals.	629,805	1,261,541	24,480	946,175	537,233	224,216	8,603,459
Value.	\$1,666,795 70	\$351,387 08	\$48,488 22	\$591,901 81	\$459,688 01	\$162,711 12	\$3,390,951 94

Note-These totals do not include any of the fish brought in and sold by outside trollers.

YEARLY COMPARATIVE TABLE OF SALMON CATCH, SEGREGATED AS TO GRAR AND SPECIES.

DISTRICT AND GEAR WITH WHICH TAKEN	Number Cbinook Salmon	Number Dog or Chum salmon	Number Humpback Salmon	Number Salmon	Number Sockeye Salmon	$\begin{aligned} & \text { Number } \\ & \text { Steelhead } \\ & \text { Salmon } \end{aligned}$	Totals
PUGET SOUND DISTRIOT-							
1913							
Pound n	212,507	159,473	11,353,700	731,329	11,549,669	17,137	24,023,824
set nets.	77,537	445,384	4,554,001	493,786	10,049,296	28,148	15,846,151
urse selnes							
Totals	230,044	604,857	15,907,710	1,225,115	21,598,984	43,296	39,669,975
1914							
Pound	224,397	254,154	25,888	479,155	2,107,308	25,833	3.116,825
Set nets.	201,582		49,603				
	20,582	1,431,083	49,003	1,020,151	1,34,004	38,78	4,006,108
Purse selnes							
Totals	425,979	1,686,137	75,491	1,499,306	3,451,402	64,618	7,202,933
1915							
Pound nets	244,011	180,180	2,907,463	525,356	589,729	17,510	4,458,249
Gill nets.	24,334	93,151	35,983	127,327	18,913	4,809	304,577
Set nets.	6,069	21,495	38,(30	63,784	2,476	5,885	138,639
Drag selnes.	2,910	20,541	2,271	6,049			31,937
Purse seines.............	22,634	1,568,886	4,301,203	382,750	197,569	10,130	6,541,181
Hook and lines.	18						
Reet nets......	192	1,827	23,238	3,970	1,640		28,967
Drag bag nets.	124	1,065	525	510			2,214
Totals	301,192	1,894,144	7,388,713	1,108,896	804,385	38,452	11,506,782
${ }_{\text {Pound }}^{1916}$ nets							
Pound nets.	244,011 24,334	180,181	9,294	525,350 127307	583,729 18,113	17,511	1,560,028
Set nets.	6,870	21,498	478	63,786	2,476	5,886	101,091
Drag selnes.	2,911	20,541	33	6,099			20,700
Purse seines	22,635	1,568,895	56,702	382,750	197,570	10,130	2,236,682
Reef nets.	192	1828		3,071	1,641		5,732
Drag bag nets	125	1,055		510			1,630
Totals.	301,178	1,884,147	68,098	1,108,988	804,387	38,455	4,205,163
1917							
Pound nets.	28,484	131,804	4,428,436	488,681	2,849,345	12,573	8,191,273
Set nets.	13,622	84,818	134,470 9,417		113,6098	3,133	509,753
Drag sefines.	4,181	27,973	4,536	12,659	938		50,297
Purse selnes.	38,155	832,822	8,711,055	232,703	1,880,191	2,184	11,806,210
Hook and linee	21,782	580	1,388	58,080		42	82,823
Reef nets....	49	820	57,978	8,611	7,568		73,016
Totals	440,864	1,095,015	13,315,280	936,242	4,961,033	29,133	20,807,467
1918							
Pound nets.	381,459	173,782	60,181	703,173	496,910	11,058	1,828,463
Set nets.	15,121	28,446	554	97,798	154	8,316	148,387
Gill nete.	39,948	88,838	1,518	178,810	17,652	2,453	338,017
Drag selines.		69,788		24,681			85,533
Purse setnes.	14,781	799,833	3,097	513,973	45,073	11,915	1,388,672
Reet nets . ${ }_{\text {Rook and }}$	1,515	${ }^{914}$	12,448				29,547
Hook and lines...........	$\begin{array}{r} 24,457 \\ \hline \end{array}$	120 2,050		$108,408$		8	131,548 2,106
Totals.	477,246	1,156,571	77,849	1,637,535	561,431	34,650	3,945,272

YEARLY COMPARATIVE TABLE OF SALMON CATCE, SEGREGATED AS TO GFAR AND SPECIES-Continued.

DISTRICT AND GEAR WITH WHIOH TAKEN	Number Ohinook Salmon	Number Dog or Chum Salmon	Number Humpback Salmor	Number Silver Salmon	Number Bockeye Salmon	Number Steelhead Salmon	Totals
PUGET SOUND DISTRICT-Oontinued							
1919							
Pound nets.	257,638	185,292	2,081,944	711,429	453,965	11,818	3,702,086
Set nets.	9,823	30,000	5,431	72,491	60	8,529	128,334
Gill nets.	47,022	62,938	37,584	129,896	4,803	2,275	284,517
Drag setnes.	726	80,835		12,113			98,674
Purse seines	12,250	1,112,404	2,513,521	427,586	283,660	1,888	4,351,289
Reef nets.	962	3,404	29,042	9,639	3,210	50	46,307
Hook and lines	19,345	47	298		998	158	20,944
Bag nets..		171					171
Totals.	347,768	1,475,091	4,667,820	1,363,153	746,694	24,898	8,625,222
Pound nets.	217,245	111,433	13,753	247,651	595,304	9,837	1,105,223
Set nets.	7,053	5,658	33	39,634	484	5,475	59,217
Gill nets.	22,482	19,534	157	70,980	3,241	2,565	118,389
Drag seines.	123	5,073		2,370		2	7,568
Purse seines	17,715	541,213	4,943	158,467	64,083	$1 \pm$	775,435
Reef nets.	-60	143	13	2,361	813		2,890
Hook and lines	6,348	16	667	48,102	208	226	55,567
Totals.	271,926	683,070	19,566	569,505	652,613	18,118	2,214,798
$\begin{aligned} & 1921 \\ & \text { Pound nets. } \end{aligned}$	224,099	32,414	1,967,899	293,409	859,506	5,086	3,382,503
Set nets.	4,833	3,252					8,085
Gill nets.	26,910	20,323	87,271	101,989	48,404	. 56	284,953
Drag selnes	415	471	17,131	1,556	3,195		22,768
Purse selnes	9,053	211,198	2,303,008	334,604	221,152	769	3,079,784
Reef nets.	56	334	19,269	3,749	2,626		26,034
Hook and lin	3,616	2,201	429	26,662		3	32,911
Bag nets..			6,509	252	500		7,261
Totals.	268,982	270,193	4,401,516	762,221	1,135,473	5,914	6,844,299
1922 Pound nets.	188,945	89,427	26,358	463,307	399,431	5,938	1,171,491
Set nets.	11226	8, 72		1,177			1,575
Gill nets.	11,412	6,572	291	29,591	9,394		57,260
Drag selnes.	3,796	- 4	577	613	7,757	121	12,868
Purse seines	5,184	405,905	5,057	370,810	83,277	606	875,839
Reef nets	8	250	11	3,164	632		4,115
Get lines.				382			382
Hook and lines	688			23,226	10	31	23,955
Totals.	208,359	502,230	32,289	892,360	506,551	6,606	2,147,485
1923							
Pound nets.	105,288	74,465	2,443,230	441,881	831,914	7,387	3,494,165
Set nets.		97		1,073			1,170
Gill nets.	22,648	24,574	22,487	54,948	5,541	180	130,388
Drag selnes.	1,617	9,196	7,392	7,078	627	18	25,927
Purse selnes	4,743	528,542	3,021,782	344,866	142,355	96	4,042,384
Reef nets.	3	999	38,371	3,241	1,960	44,568
Hook and linea	325	16	824	34,334			36,499
Bag nets..				50			50
Totals.	224,624	637,882	5,534,086	887,471	482,387	7,691	7,774,141
$1924 \text { nound nets. }$	211,536	84,200	84,698	497,414	635,478	8,963	
Set nets.	-19	15		152	,		1,520,188
Gill nets.	28,892	60,733	1,922	93,560	7,503	9	100,709
Drag seines.	1,676	860	551	12,945	3,459	51	19,542
Purse seines	2,515	713,258	12,649	299,500	99,098	2,317	1,129,337
Reef nets...	42	917	225	4,755	3,211		9,150
Hook and lines..........	2,921		1	38,384		12	41,328
Totals	245,601	859,983	100,046	946,720	746,839	11,352	2,910,541

YEARLY COMPARATIVE TABLE OF SALMON CATCH, SEGREGATED AS TO GEAR AND SPECIES-Continmed.

DISTRICT AND GEAR WITH WHICH TAKEN	Number Chinook Salmon	Number Dog or Chum Salmon	Number Humpback Salmon	Number Sllver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
PUGET SOUND DISTRICT-Continued							
1925 Pound nets	235,138	67,204	1,964,771	432,115	928,966	6,152	3,624,346
Set nets.		242		2,464			2,710
Gll nets .	34,810	29,246	37,443	85,513	10,885	2,085	199,982
Drag selnes.	4,185	968	23,605	3,790	11,081	20	44,479
Purse seines	9,238	436,408	4,602,188	321,352	287,329	101	5,656,616
Reel nets.	19	744	47,236	2,802	2,747		53,548
Hook and lines	1,128		98	20,977	902	236	23,309
Totals	294,496	534,912	6,665,345	809,013	1,242,820	8,504	9,605,080
1028							
Pound nets.	202,366	125,164	21,673	384,600	331,374	6,979	1,071,556
Set nete.		42		463			506
Gill nets..	40,891	98,734	550	57,433	2,376	3,433	203,420
Drag selnes.	1,958	1,044	379	2,838	6,694	${ }^{6}$	12,919
Purse seines	5,469	838,371	1,764	232,721	80,523	205	1,169,063
Reef nets.	77	241	${ }^{8}$	2,067	736	4,016
Hook and lines.	2,368	85	117	22,269	65	176	25,080
Smelt drag bag nets.		14		8			22
Totals.	253,129	1,063,095	24,489	703,292	481,767	10,199	2,486,571
OOLUMBIA RIVER DISTRICT-							
		25,66	5,621	169,28	,288	8,972	395,488
Fish wheels.			5,			8,872	395,488
Gill nets.							
Set nets. Drag sein	362,670	42,065		100,360	38,856	98,014	688,965
Totals	462,530	67,732	5,621	269,640	95,144	131,986	1,032,453
1914							
Pound nets..............	142,378	29,359	2,509	178,306	140,803	79,028	572,473
Fish wheels.							
Set nets.	453,811	180,320	4,731	185,847	199,553	60,982	1,006,244
Drag seines.						00,082	1,00,24
Totals	596,189	209,679	7,240	364,153	340,446	140,010	1,657,717
1915							
Pound nets.	174,921	35,016	4,710	89,898	11,701	60,889	377,135
Stationary fish wheels..	8,441			59	25,980	5,380	39,860
Scow fish wheels..	5,199				6,546	641	12,388
Gill nets	129,162	19,775	1,249	10,251	4,347	21,570	186,354
Set nets.	2,659	1,006	433	919	1,158	4,199	10,374
Drag selnes.	32,8:0	326	37	4,200	7,646	16,547	61,646
Purse seines.	14,095	3,593	35,350	8,252	462	9,421	71,173
Totals.	367,367	59,776	41,779	113,579	57,840	118,647	758,928
1916 Pound nets.	174,821	35,016	2,040	¢,898			374,466
Stationary fish wheels...	8,442			60	25,979	5,380	39,881
Scow flsh wheels..........	5,199				6,547	641	12,387
Gill nets.	129,163	19,776	2,261	10,252	4,347	21,571	187,370
Set nets.	2,660	1,006	121	918	1,157	4,199	10,060
Drag seines	32,891	327		4,200	7,647	16,548	61,613
Purse seines	14,095	3,503		8,253	462	9,422	35,825
Totals.	367,371	59,717	4,422	113,581	57,841	118,650	721,582

YEARLY COMPARATIVE TABLE OF SALMON CATCE, SEGREGATED AS TO GEAR AND SPECIES-Continued.

DISTRICT AND GEAR WITH WHIOH TAKEN	Number Chinook Salmon	Number Dog or Chum Salmon	Number Humpback Salmon	Number Silver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
OOLUMBIA RIVER DISTRICT-Continued							
1917							
First class pound net....	71,798	7,321	61	33,008	3,378	23,804	139,400
second class pound net..	69,412	19,148	37	46,927	2,237	17,623	144,384
Stationary fish wheels.	11,688				34,524	8,565	54,757
Scow fish wheels..	7,609				10,359	890	18,858
Gill nets.	461,810	37,260	1,029	24,112	11,442	69,667	605,320
Set nets	7,015	4,468	465	569	3,806	7,379	23,792
Drag seines.	24,009	1,593		19,565	2,311	14,890	62,368
Purse seines.	11,683	246	34,634	3,608	9,484	677	60,232
Hook and lines	20,479	29		14,851	750	133	42,242
Totals	680,462	70,065	36,226	142,700	78,381	143,688	1,151,522
$\stackrel{1918}{\text { First class }}$			172				
second class pound net...	15,639	3,190		22,087	6,189	13,155	60,266
Stationary fish wheels...	6,690				59,552	5,005	71,247
Scow fish wheels....	2,065			11	42,231	1,671	46,878
Set nets.	4,682	1,628	6,518	1,890	21,195	7,782	43,685
GIll nets.	217,422	32,792	3,080	51,783	106,823	49,603	461,503
Drag selnes.	21,384	700	227	6,983	13,509	19,821	62,694
Purse selnes	43,279		385	24,318	187	3,480	71,648
Hook and lines.	58,369	20		62,726	1,149	199	122,463
Drag bag nets..	128			26		101	259
Totals	450,783	46,827	10,382	243,870	262,777	141,664	1,156,403
1919							
First class pound net..	64,78\%	23,636	17	50,850	5,627	31,144	176,059
Second class pound net..	23,499	8,922		15,770	2,043	11,859	62,093
Stationary fisb wheels.	7,374				11,010	2,196	20,580
Scow flsh wheels...	6,618				7,196	717	14,531
Set nets.	3,628	3,253	10	465	3,307	3,491	14,154
Gill nets..	162,586	72,711	741	22,386	11,421	26,824	296,668
Drag seines.	24,439	57	32	13,128	9,404	14,037	61,097
Purse seines	76,819			16,290		1,161	94,603
Hook and lines	54,918		500	80,365	876	254	136,913
Totals	424,668	108,579	1,300	199,253	51,217	91,683	876,608
1820							
First class pound net....	54,981	28,029		23,197	984	16,383	123,574
Second class pound net.	17,051	5,940		8,508	967	6,939	39,405
Stationary fish wheels	6,018				13,252	5,419	24,689
Scow flsh wheels..	5,175				5,167	1,463	11,805
Set nets.	3,141	495		389	1,286	3,027	8,338
Gill nets.	154,544	5,233		6,802	2,153	16,237	185,029
Drag seines.	18,296	1,750		4,772	2,559	10,498	37,870
Purse selnes	39,693	1,127		4,045	26	1,725	46,556
Hook and lines.	51,554	217		36,524	32	185	88,512
Totals	350,398	48,791		84,297	26,420	61,871	565,778
1821							
First class pound net....	36,910	1,200	21	32,732	1,316	21,409	93,588
second class pound net..	11,800	500	1	15,789	1,753	11,467	41,360
Stationary fish wheels...	7,206				17,061	2,648	26,915
Seow fish wheels.	3,016				7,227	665	10,908
Set nete.	1,837			1,247	1,646	2,682	7,504
Gill nets.	1.02,142	296	2,922	6,618	6,440	18,573	136,991
Drag seines.	7,987	5	800	2,738	112	5,949	16,999
Purse selnes	15,653		835		790	332	17,788
Hook and lines	13,503			59,343	8	175	73,036
Totals,	200,014	2,095	4,083	118,643	36,353	63,900	425,088

YEARLY COMPARATIVE TABLE OF SALMON CATCF, SEGREGATED AS TO GEAR AND SPECIES-Continued.

DISTRICT AND GEAR WITH WHICH TAKEN	Number Chinook Salmon	Number Dog or Chum Salmon	Numter Humpback Salmon	Number Silver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
OOLUMBIA RIVER DISTRIOT-Continued							
1922							
First class pound net....	31,486	5,300		34,811	9,631	21,192	102,420
second class pound net.	21, 603	11,073	50,394	15,009	23,647	122,677
Stationary fish wheels...	4,033				31,938	2,016	37,909
Scow flsh wheels..........	4,784			700	11,228	666	17,378
Set nets.	1,750	256	20	1,54:	7,679	4,953	16,407
Gill nets.	71,621	3,639		14,052	48,209	16,974	154,495
Drag seines	8,377	404		6,119	9,704	12,122	36,728
Hook and lines	4,909			54, (4)4	129	123	59,185
Dip bag nets.	62				111	4	177
Totals.	148,687	20,672	26	161,643	134,729	81,697	547,454
1023 First class pound net	44,599	32,847		106,198	16,739	51,041	251,354
Second class pound net.	17,674	17,772		67,407	14,934	34,741	152,528
Statlonary fish wheels...	5,536				25,245	6,068	36,949
Scow flsh wheels..	3,691				19,763	5,117	28,571
Set nete.	1,556	1,137		745	6,241	4,518	14,197
Gill nets.	123,396	25,761		15, $\mathrm{S}^{2} 0$	112,000	47,482	324,219
Drag seines.	71,347	263		10,286	9,329	17,834	109,149
Hook and lines	6,957			21,202		57	28,316
Set lines.	20	83		3			106
Totals	274,706	77,863		221,601	204,351	166,858	945,379
1924							
First class pound net....	72,887	37,795		126,908	8,513	54,890	300,943
Second class pound net..	37,450	15,116		50,209	8,174	30,006	141,511
Stationary fish wheels.	3,403	220		8	3,249	535	8,467
Scow fish wheels...	3,273	$2 \geqslant 0$		<58	2,433	144	7,048
Set nets.	2,277	521		510	1,348	2,265	6,921
Gill nets.	168,310	121,641		48,136	8, $\mathbf{8 2 0}$	43,885	390,792
Drag seines	21,658	5×16		3,604	4,753	15,197	45,878
Hrok and lines	1,749	10		2,512	3	60	4,384
Dip bag nets	175					249	424
Set lines.	3			1		I	8
Totals	311,903	176,119		233,736	37,293	147,233	906,374
1925							
First class pound net....		49,167		76,497			278,382
Sccond class pound net..	2, 3 , $\times 2$	12,236		19,887	1,270	11,541	68,348
Stationary flsh wheels.	12,528			6,868	14,008	25,598	59,002
Scow flsh wheels..	3,46 2,96				4,522 1,171	2,943 2,743	11,311
Set nets.	229,926	1,310		25. 2006	1,171	2,743 46,866	19,057 360,541
Drag seines	24, 244	1,871		1,403	2,300	10,856	41,279
Hook and lines	1,346			4,020		1	5,367
Dip bag nets	82	38		18			138
Set lines.	19	27				8	54
Totals.	393,340	123,993		135,761	31,350	149,035	833,479
1926							
First class pound net.	111,046	15,402		78,998	17,057	79,100	301,603
Second class pound net..	41,908	10,881		41,778	5,291	35,821	135,759
Stationary fish wheels...	951				1,594	650	3,195
Scow flsh wheels..	1,061			58	1,003	1,455	3,667
Set nets.	3,698	78;		836	16,102	22,482	44,098
Gill nets	145,43)	35,058		23,351	50,014	36,628	290,483
Drag seines	38,676	671		1,683	14,282	36,168	91,480
Set lines..	10				3	13
Totals.	343,057	62,797		146,704	105,436	212,304	870,298

YEARLY COMPARATIVE TABLE OF SALMON CATCH, SEGREGATED AS TO GEAR AND SPECIES-Continued.

DISTRICT AND GEAR WITH WHIOH TAKEN	Number Chinook Salmon	Number Dog or Chum Salmon	Number Humpback Salmon	Number Silver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
$\begin{aligned} & \text { GRAYG HARBOR } \\ & \text { DISTRIOT- } \end{aligned}$							
1918 Pound nets. Gll nets Set nets	6,601	19,447		63,942		288	79,278
	79,046	53,092	38,844	3,315	283,108	86,494	555,989
Totals	82,647	72,530	38,844	89,257	283,198	86,782	635,267
1914	17,878	24,972	347	48,824	639	8,858	101,518 375,262
Get nets.	16,885	107,752	85	151,615	80,814	18,131	
Totals.............	34,743	132,724	432	200,430	81,453	26,989	476,780
1915							
Pound	$\begin{array}{r} 23,471 \\ 12,669 \\ 7,072 \\ 673 \end{array}$	$\begin{array}{r} 35,728 \\ 32,763 \\ 15,983 \\ 17 \\ \hline \end{array}$	…....... 73	41,886 17,963	21	1,985	$\begin{array}{r} 101,965 \\ 64,474 \\ 39,852 \end{array}$
Set nets.				14,777	28	,492	
Drag selnes. Totals.				2,309			2,999
	43,885	84,491	73	76,715	181	3,905	209,290
Pound nets	$\begin{array}{r} 23,471 \\ 12,770 \\ 7,071 \\ 672 \end{array}$						$102,993$ 64,761 39,840
Gill nets....		$\begin{array}{r} 35,728 \\ 32,763 \\ 15,982 \\ 17 \end{array}$	$\begin{array}{r} 1,028 \\ 360 \end{array}$	$\begin{array}{r} 41,666 \\ 17,962 \\ 14,776 \\ 2,309 \end{array}$	822228	$\begin{array}{r} 1,018 \\ 984 \\ 1,892 \end{array}$	
Set nets.							
Drag seines...............							
Totals.	43,894	84;490	1,388	76,713	132	3,894	210,601
1917							
Pound nets.	$\begin{array}{r} 16,636 \\ 18,834 \\ 13,491 \\ 449 \end{array}$	$\begin{array}{r} 15,702 \\ 8,428 \end{array}$	35,18614,071	……170' 120	$\begin{aligned} & 2,227 \\ & 422 \\ & 3,688 \end{aligned}$	$\begin{array}{r} 69,751 \\ 41,825 \\ 75,286 \\ 2,348 \end{array}$
Gill nets.							
Set nets..		19,048	8	39,068			
Hook and lines.				1,899			
Totals	49,460	43,178	8	90,224	128	6,317	189,310
1918 Pound nets.							
Set nets..	$\begin{array}{r} 2,307 \\ 7,068 \\ 18,903 \\ 510 \end{array}$	$\begin{array}{r} 2,865 \\ 11,992 \\ 12,782 \\ 111 \end{array}$ 161	9,21254,630 70,595 5,695	326825	$\begin{array}{r} 7 \\ 3,354 \\ 515 \end{array}$	$\begin{array}{r} 14,391 \\ 78,129 \\ 103,620 \end{array}$
Glll nets.							
Hook and lines							
Totals.	29,388	27,750	161	140,132	1,151	3,876	202,450
1919							
Pound nets.	$\begin{aligned} & \mathbf{8 , 6 6 6} \\ & 9,178 \\ & 6,780 \\ & \mathbf{5} \\ & 2,317 \end{aligned}$	$\begin{aligned} & 65,899 \\ & 65,386 \\ & 62,839 \end{aligned}$	-	23,29535,19937,069			$\begin{array}{r} 98,948 \\ 119,735 \\ 97,092 \\ 5 \\ 2,317 \end{array}$
Set nets..						5,105	
Glll nets.							
Drag selnes.							
Hook and lines.							
Totals.	26,946	184,124	4,205	95,558	662	6,607	318,007
Pound nets...............							
Set nets......................	13,034	13,887		35,52619,697	\cdots	1,4133,419	$\begin{aligned} & 63,514 \\ & 30,490 \\ & 32,120 \end{aligned}$
Glll nets.	4,318	2,882	150				
Hook and lines.	667			19	1,005		
Totals.	27,751	18,722	150	74,353	1,035	4,809	126,910

YPARLY COMPARATIVE TABLE OF SALMON CATCH, SEGREGATED AS TO GEAR AND SPFCIES-Continued.

DISTRICT AND GEAR WI'TH WHICH TAKEN	Number Chinook Salmon	Number Dog or Ohum Salmon	Number Humpback Salmon	Number Silver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
GRAYS HARBOR DISTRIOT-Continued							
1921							
Pound nets................	12,937	5,099		52,377		136	50,579
Bet nets..	4,953	3,748	79	13,978	194	2,198	25,150
Gill nets.	18,031	9,821	295	30,616	1,372	12	60,147
Hoolr and lines.	1,774			2,764			4,538
Totals.	37,725	18,668	374	79,735	1,566	2,346	140,414
1922 Pound nets.	15,426	29,451		48,274		282	93,933
Set nets..	2,453	22,025		25,780	117	1,422	51,797
Gill nets.	11,222	19,671		26,602		30	57,525
Hook and lines.	598			1,480			2,078
Totals.	30,199	71,147	102,136	117	1,734	205,333
1923							
Pound nets.	13,400	75,730		99,390		200	188,710
Set nets.	1,842	34,967		23,412		887	61,108
Gill nets.	17,266	34,581		21,813		73	73,733
Totals	32,508	145,278	144,606		1,160	323,551
1924							
Pound nets.	6,833	58,054		43,013		1	107,901
Set nets..	1,502	24,327		15,552		83	42,218
Gill nets.	6,492	33,186		29,457		203	69,338
Hook and lines.	45			215			260
Smelt drag bag nets.....	16	241		202			450
Totals	14,888	115,808		88,439		1,041	220,176
1025							
Pound nets.	6,193	71,258		37,808		1,012	116,271
Set nets.	971	13,679		8,313		705	23,668
Gill nets.	5,464	41,537		13,091		184	60,276
Hook and lines.	11						11
Smelt drag bag nets.....	33	1,035		445		1,513
Totals.	12,672	127,509	59,657	1,901	201,739
1926							
Set nets....	5,906	18,986		41,542	30	210	10,686
Gill nets.	7,019	12,447		19,384		629	39,479
Smelt drag bag nets.	11	216		256		40	523
Totals	13,828	95,817		65,554	30	1,120	116,349
WILLAPA HARBOR DIBTRICT-							
1913							
Pound nets................	1,923	22,445		13,347			37,715
Gill nets...................	\} 3,802	42,243		11,537		6,449	64,031
Totals.	5,725	64,688	24,884		6,449	101,746
1914							
Pound nets...............	9,561	16,336	66	21,716	1,278	890	48,847
Set nets.) 11,527	45,998		44,272		189	101,986
Totals	20,088	62,334	66	65,988	1,278	1,079	150,833

YEARLY COMPARATIVE TABLE OF SALMON CATCE, SEGREGATED AS TO GEAR AND SPECIES-Continued.

DISTRIC' AND GEAR WITH WHIOH TAKEN	Number Ohinook Salmon	Number Dog or Ohum Salmor	Number Hump back Salmon	Number Sllver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
WILLAPA HARBOR DISTRICT-Continued							
1915							
Pound nets.	16,831	46,440	581	27,102		191	91,095
Gill nets..................	6,513	4,750	4,930		103	16,296
Bet nets....................	4,912	14,838	6,459	415	398	27,112
Totals.	28,256	60,188	531	38,491	415	688	134,503
$\begin{aligned} & 1916 \\ & \text { Pound nets. } \end{aligned}$	10,832	46,440	382	27,102		191	90,927
Gill nets.	0,512	4,750		4,951		102	16,295
Bet nets..	4,911	14,989	1,808	6,460	416	388	28,080
Totals	28,255	66,129	2,228	38,493	416	881	138,202
1917 Pound nets	11,054	37,070		24,568		1,041	
Gill nets. .	10,352	18,232	42	8,451		171	32,248
Set nets..	4,088	31,457		8,968	85	825	45,423
Hook and lines.	2			381			383
Totals.............	25,486	81,765	42	42,368	86	2,037	151,783
$\begin{aligned} & 1918 \\ & \text { Pound nets. } \end{aligned}$		22,060					
Set nets.	1,315	16,361		22,418	94	569	40,757
Gill nets.	6,084	5,080		17,027	3	43	28,217
Hook and lines.	74			506			580
Totals.	15,657	43,507	82,185	97	626	142,072
1919 Pound nets	6,694	90,938		21,773	5\%6	55	125,980
Set nets..	3,455	38,311	20	9,046		1,388	-52,170
Gill nets..	42,142	29,078		12,000		271	94,301
Drag seines.	5					5
Hoor and lines.	,			57			58
Totals.	52,297	164,327	20	48,776	526	1,664	262,610
Pound nets.							
Set nets..	1,586	10,635		,949		621	3,491
Gill nets.	2,481	163		1,473		114	4,221
Purse selnes.	110,138			5,165	3	3,799	119,105
Hook and lines.	744			6			750
Totals	121,300	11,042		13,572	3	4,545	150,462
1921 nets							
Pound nets................	8,969	8,878		11,144		17	29,008
Set nets..	3,299	3,110	434	3,026	95	274	10,238
Gill nets.	5,831	1,875		3,716	2		11,438
Purse seines	73,718		6,298	1,397	868	2,562	84,843
Hook and lines.	141			321			462
Totals.	91,958	13,863	0,739	19,604	865	2,860	135,969
1922							
Pound nets...............	1,003	3,576		3,130	. \cdot		7,709
Set nets....................				62		114	190
Gill nets.	3,441	8,679		1,859			13,979
Hook and lines...........				136			138
Totals.............	4,446	12,267		5,187	\cdot	114	22,014

YEARLY COMPARATIVE TABLE OF SALMON CATCE, SEGRFGATED AS TO GEAR AND SPECIES-Contimued.

DISTRICT AND GEAR WITH WHICH TAKEN	Number Chinoor Salmon	Number Dog or Chum Balmon	Number Humpback Salmon	Number Silver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
WILLAPA HARBOR DISTRICT-Continued							
1925 Set nets. Gill nets Hoor and linee.							
	211	33,327		1,823		249	35,670
	2,622	19,382		796		22	22,822
	108			214			322
Totals.............. .	2,941	52,769		2,833	271	58,814
1924							
Set nets....	1,048	27,211		8,197		1,161	37,617
Gill nets.	5,031	17,595		15,545		418	38,589
Hook and linee...........	2			120			122
Totals..............	8,417	125,121		37,814		1,742	173,194
1925							
Set nets.....................	1,162	34,629		4,136		454	40,381
Gill nets.	6,625	35,427		7,156		123	49,331
Totals..............	11,641	223,268		30,806		860	286,576
1928							
Set nets.	1,139	10,476		2,663		154	14,434
Gll nets.	6,347	7,926		4,098		128	18,499
Totals	19,791	99,232		30,625		593	150,241
ALL DISTRICTS							
1913							
Pound nets................							
Fish wheels.	319,691	227,032	11,359,330	967,898	11,605,957	56,397	24,536,306
Set nets..							
Drag selnes................	523,055	582,784	4,592,845	640,988	10,361,349	212,105	16,903,136
Totals.	842,746	809,816	15,952,175	1,608,896	21,957,306	268,502	41,439,441
1914							
Fish wheels.	\} 393,214	324,621	28,810	729,001	2,250,208	114,609	3,889,068
Glll nets.							
Bet nets. Drag seines							
Totals.	1,076,999	2,090,874	83,229	2,129,888	3,874,579	232,896	9,488,263
$\xrightarrow{1915}$ Pound net	459,234	297,364	2,912,704				
Fish wheels..................	13,640	207,304	2,012,704	68, 59	-32,526	6,021	5,02,446
Gill nets..................	172,678	150,4:99	37,305	160,471	23,281	27,527	571,701
Set nets....................	21,612	53,422	38,463	[6,939	4,077	12,464	215,977
Drag seines...............	38,473	20,884	2,308	12,608	7,704	16,606	180,582
Purse seines...............	36,729	1,570,488	4,396,503	391,002	198,031	10,551	6,812,354
Hook and lines...........	18						18
Reef nets.	192	827	23,288	3,070	1,640	28,967
Drag bag nets.............	124	1,065	525	510			2,214
Totals............. .	740,700	2,004,479	7,411,096	1,337,681	802,771	161,776	12,808,503

YEARLI COMPARATIVE TARLE OF SALMON CATCH, SEGREGATED AS TO GEAR AND SPECIES-Continued.

DISTRICT AND GEAR WITH WHICH TAKEN	Number Ohinoot Salmon	Number Dog or Chum Galmon	Number Hump back Salmon	Number Silver Salmon	Number Bockeye Salmon	Number Steelhead Salmon	Totals
ALL DISTRICTS OOMBINED-Continued							
1918							
Fish wheels.	409,235 13,641	297,306	12,724	684,022	506,513 32,526	79,609 6,021	$2,128,488$ 52,248
GIll nets.	172,679	150,440	4,212	160,472	23,282	27,527	538,612
Set nets.	21,612	53,422	2,465	85,939	4,077	12,465	179,980
Drag selnes.	38,474	20,885	33	12,608	7,705	16,606	94,311
Purse selnes	36,730	1,570,488	56,702	391,003	198,032	19,552	2,272,507
Reef nets.	192	1,870		3,071	1,641		5,732
Drag bag nets.	125	1,055		510			1,690
Totals.	740,688	2,094,483	76,136	1,337,685	862,776	161,780	5,273,543
$\begin{aligned} & 1917 \\ & \text { Pound nets. } \end{aligned}$	443,3	211,051	1,428,534	625,380	854,960	57,328	8,618,837
Fish wheels.	19,277				44,853	9,455	-73,615
Glll nets.	508,627	143,738	135,541	142,716	125,231	73,393	1,189,246
Set nets.	38,216	71,071	9,800	93,081	4,270	22,063	238,591
Drag selnes.	28,190	29,566	4,536	32,224	3,249	14,900	112,665
Purse soines	49,738	833,168	8,745,689	236,311	1,998,675	2,861	11,806,442
Hook and lines	48,722	609	1,388	75,211	1,606	175	127,801
Reef nets.	49	820	57,978	0,611	7,558		73,016
Totals	1,196,282	1,290,023	13,381,556	1,211,534	5,040,522	180,175	22,300,092
1918	487,897	210,400	60,253	850,852	513,981	65,981	2,189,404
Fish wheels.	9,655			11	101,783	6,676	118,125
Set nets.	28,784	56,427	7,239	176,734	21,769	20,021	310,968
Gill nets.	281,335	144,292	4,5088	318,215	125,303	52,614	926,357
Drag selnes	22,348	60,488	250	31,664	13,646	19,821	148,217
Purse selnes	5,069	799,833	3,482	538,291	45,260	15,396	1,460,320
Reef nets.	1,515	914	12,448	12,634	2,036		29,547
Hook and lines.	88,410	251	2s	175,333	1,678	207	260,907
Drag bag nets.	-129	2,050		-78		101	2,358
Totals	973,072	1,274,655	88,392	2,103,812	825,456	180,816	5,446,203
1919 Pound nets	381.282	380,687	2,081,961	823,117		55,964	4,165,172
Fish wheels.	13,992				18,208	2,913	35,111
Set nets.	26,084	136,950	9,666	1i7,201	4,029	18,463	312,393
Gill nets.	258,530	217,566	38,325	202,239	16,224	29,784	762,668
Drag seines.	25,175	80,892	, 32	25,241	9,404	14,037	154,781
Purse selnes	89,089	1,112,404	2,513,521	443,876	283,993	3,029	4,445,892
Reef nets	962	3,404	29,042	9,639	3,210	50	48,307
Hook and lines	76,581	47	798	80,422	1,872	412	160,182
Drag bag net		17					171
Totals.	851,675	1,932,121	4,673,345	1,701,785	799,099	124,652	10,082,627
\% 1920 nets.		169883	13,753	320,981			1,444,601
Fish wheels.	11,193	169,803	13,153	320,801	18,419	6,882	1, 36,494
Set nets.	10,898	9,370	183	60,669	1,780	12,536	101,538
Gill nets.	189,239	28,883	157	98,268	6,399	19,335	340,279
Drag selnes	18,419	6,823		7,142	2,559	10,495	45,438
Purse selnes	167,480	542,340	4,943	167,677	53,112	5,538	941,096
Reef nets....		143	13	2,381	313		2,890
Hook and lines.	50,313	233	667	84,751	240	411	145,615
Totals	771,370	755,625	19,716	741,727	680,077	89,434	3,057,949

YGARLY COMPARATIVE TABLE OF GALMON CATCE, SEGREGATED AS TO GEAR AND SPECIES-Continued.

DISTRICT AND GEAR WITH WHIOH TAKEN	Number Chinook Salmon	Number Dog or Chum Salmon	Number Humpback Balmon	Number Silver Balmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
ALL DISTRICTS OOMBINED-Continued							
1921							
Pound nets.	294,795	48,091	1,967,021	385,451	802,660	38,115	3,507,088
Fish wheels.	10,222				24,283	3,313	37,823
Set nets.	14,922	10,198	517	18,251	1,4335	5,154	50,877
Gill nets	152,914	32,315	90,496	142,0:99	543,218	18,648	493,529
Drag selnes	8,312	476	17,431	4,2,	3,207	5,949	39,767
Bag nets..			6,514	258	500		7,261
Purse selnes	98,424	211,198	2,310,141	336,179	222,810	3,663	3,182,415
Reef nets.	56	334	19,269	3,749	2,626		26,034
Hook and lines.	19,034	2,207	429	89,090	8	178	110,946
Totals.	598,679	304,819	4,412,712	380,203	1,174,357	75,020	7,545,790
1922							
Pound nets..............	257,023	138,827	26,353	600,006	494,962	51,059	1,498,230
Stationary flsh wheels...	4,035				31,95\%	2,016	37,989
Seow flsh wheels.......	4,784			700	11,228	66^{6}	17,378
Set nets......	4,531	22,345	26	28,563	7,906	6,489	69,969
Gill nets	97,696	38,561	291	72,104	57, 60×1	17,004	283,259
Drag seines.	12,173	408	571	6,732	17,461	12,243	49,504
Purse setnes	5,184	405,905	5,057	370,810	88,27	606	875,839
Reef nets.	8	250	11	3,164	682		4,115
Set lines.				382			388
Hook and lines	6,185			78,366	139	154	85,354
Dip bag nets.	62				111	4	177
Totals	391,691	606,316	32,315	1,161,326	640,397	90,241	2,922,236
11023							
Pound nets.	270,891	200,814	2,443,230	714,866	363,587	93,369	4,086,757
Fish wheels.	9,227				45,108	11,185	65,520
Set nets..	3,609	69,588		27,053	6,241	5,654	112,145
Gill nets.	163.032	104,218	22,457	93,137	117,541	47,767	501,162
Drag seines	72,064	9,458	7,392	17,454	9,956	17,852	135,076
Bag nets..				50			50
Purse seines	4,743	528,542	3,021,782	344,806	142,3555	96	4,042,384
Reef nets.		998	38,371	3,241	1,950		44,568
Hook and lines...........	7,390	16	824	55,840		57	64,127
Set lines..................	20	83		3			106
Totals.............	534,779	913,792	5,534,066	1,256,510	686,738	175,980	9,101,885
1924							
Stationary fish wheels...	3,605	220		88	3,249	, 535	8,467
Scow fish wheels..........	3,393	220		$85 \times$	2,433	144	7,048
Set nets..	4,846	52,074		24,411	1,348	2,205	84,944
Glll nets.	200,725	233,155	1,922	185,698	16,413	44,515	689,428
Drag seines	23,314	1,456	[x)1	16, 6: 29	8,212	15,248	65,420
Purse seines	2,515	713,258	12,649	200, 500	99,088	2,317	1,129,337
Reef nets..................	+ 42	917	225	4,750	3,211		9,150
Hook and lines...........	4,767	10	1	41,241	3	72	46,094
Dip bag nets	175					249	424
Smelt drag bag nets	16	241		202			459
Set lines.............	3			1		2	6
Totals.	580,899	1,277,081	100,046	1,256,550	775,958	129,364	4,119,848

YEARLY COMPARATIVE TABLE OF SALMON CATCE, SEGREGATED AS TO GEAR AND SPECIES-Continued.

DISTRICT AND GEAR WITH WHIOH TAKEN	Number Chinook Salmon	Number Dog or Chum Salmon	Number Hurapback Salmon	Number Silver Salmon	Number Sockeye Salmon	Number Steelhead Salmon	Totals
ALL DISTRICTS OOMBINED-Continued							
1925							
Pound nets...............	369,958 12,588	353,127	1,954,771	585,801 6,868	933,086 14,008	67,467	$4,264,210$ 59,002
Scow flsh wheels.........	1,8,846				-4,522	2,943	11,311
Set nets...	5,109	49,860	4	15,770	1,171	3,902	75,816
Gill nets	269,825	165,504	37,443	131,986	16,114	49,258	670,130
Drag seines.	29,009	2,839	23,605	5,198	14,231	10,876	85,758
Purse selnes	9,298	436,448	4,602,188	321,352	287,329	101	5,658,616
Reef nets.	19	744	47,236	2,802	2,747		53,548
Hook and lines	2,483		98	24,997	962	237	28,777
Dip bag nets.	82	38		18			138
Smelt drag bag nets.	33	1,085		445			1,513
Set lines.................	19	27				8	54
	702,149	1,009,582	0,603,345	1,095,237	1,274,170	160,390	10,906,873
Pound nets..............	373,591	250,435	21,673	570,610	353,722	121,852	1,691,883
Stationary fish wheels...	951				1,504	650	3,195
Scow flsh wheels..........	1,061			58	1,003	1,455	3,667
Set nets..	5,940	16,290		8,506	10,132	22,846	66,723
Gill nets. .	199,689	154,165	550	104,269	52,390	40,818	551,881
Drag seines...............	40,634	1,715	379	4,521	20,976	36,174	104,399
Purse feincs.	5,409	838,371	1,764	232,721	90,523	205	1,169,053
Reef nets	77	241	${ }_{1}^{6}$	2,957	735		4,016
Hook and lines...........	2,372	85	117	22,209	65	176	25,084
Smelt drag bag nets.....	11	230		264		40	545
Set lines....................	10				3		13
Totals	629,805	1,261,541	24,489	946,175	537,233	224,216	3,623,459

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE.

DISTRIOT AND GEAR WITH WHICH TAKEN	Pounds of Clams and Mussels	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Crabs } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Carp } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Cod } \end{gathered}$	Pounds of Devil Fish	Pounds of Dog Fish	Pounds of Dolly Trout	$\begin{gathered} \text { Pounds } \\ \text { of of } \\ \text { Flounders } \end{gathered}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Halibut } \end{aligned}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Herring } \end{aligned}$	Pounds of Perch
PUGET SOUND DIETRICT-											
Pound net				2,385	286	76,870	209	3,244	373	173	100
Set nets..				3,680		1,700					1.536
Grag seincs.			12	11,796		6,000		6,212		538,599	49,804
Purse seines.				157	350					173,900	1,075
Reef nets.											
Hook and line			13	6,902 18,2005	25,741 1,450		230	1,149	2,628	293,970	1,199 14,352
Brush weirs										1,614,600	, 100
Berm trawls				15,876				128,611			325
Set lines.				4,875	96,674	201,825			2,111		500
Olams...	911,314										
$\underset{\text { Crabs }}{ }$ Cait	4,000	354,741			,						
Dip bag nets	.									450	
Totals.	915,314	354,741	25	63,906	123,581	290,305	499	139,216	5,112	2,621,092	68,991
Value	227,150 42	\$36,052 37	\$150	\$2,508 24	\$6,179 06	858079	87485		876680	\$26,216 92	\$3,449 55

Catch of food and shell fish (other than salmon) and value-continied.

distriot and gear with WHich taken	Pounds of Red Snapper	$\begin{gathered} \text { Pounds } \\ \text { of Sand } \\ \text { Dabs } \end{gathered}$	Pounds of Sea Bass	$\begin{gathered} \text { Pounds } \\ \text { Skat } \\ \text { Skates } \end{gathered}$	$\begin{aligned} & \text { Pounds } \\ & \text { oft } \\ & \text { Shrimp } \end{aligned}$	$\begin{gathered} \text { Pounds } \\ \text { ot } \\ \text { smelt } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { sole } \end{gathered}$	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Sturgeon } \end{array}\right\|$	$\left\|\begin{array}{c} \text { Pounds } \\ \text { of Other } \\ \text { Food Fish } \end{array}\right\|$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \end{aligned}$ Shad	$\underset{\text { Votal }}{\text { Value }}$
PUGET SOUND DISTRICTConcluded											
Pound nets	422		9,395	3,000			5	40	3,646		
Set nets...											
Drag seines.			6	280		245,628	5,930		i,om	
Purse selnes.										
Hook and line...			1,210							
Smelt drag bag nets..						114,388	150		1,800		
Seam trawls.	${ }_{12}^{7}$	160	${ }_{6}^{8}$	${ }_{340}^{485}$	50,624		195,059		215, 217	
Olams...											
$\underset{\text { Cramb bait }}{ }$								迷....		
Drip bag nets..................						450	.				
Totals,	441	160	11,184	4,105	50,624	360,790	201,954	40	221,840		
Value	\$13 23	\$1600	\$1,342 08	\$82 10	\$5,082 40	\$32,463 81	\$8,078 16	\$18800	\$4,43880		158,68439

CATCH OF FOOD AND SHELL FLEH (OTHER THAN GALMON) AND VALUE -Continued.
 Fiscal Year 1828.

DIBTRIOT AND GEAR WITH	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Carp } \end{gathered}$	$\begin{gathered} \text { Pounds } \\ \text { ot } \\ \text { Smelt } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Sturgeon } \end{aligned}$	$\begin{gathered} \text { Pounds } \\ \text { ot } \\ \text { Shad } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Value } \end{aligned}$
OOLUMBIA RIVER DISTIRICT-					
Stationary fleh wheels..			79	16, 2828	
Scow fish wheels.				1,084	
Set nets..			211	88	
Glll nets....		15,215	973	${ }_{164,845}^{10681}$	
Drag seines	761,283		39	164,645	
Dip bag nets...		806,099			
Set lines..			475		
Totals.	761,2×3	81,314	2,046	380,819	
Valu	\$45,676 98	\$13,219 71	85,728 80	\$7,616 38	\$72,241 87

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE -Continued.
Físcal Year 1928.

DISTRICT AND GEAR WITH WHICH	Pounds of Clams and Mussels	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Orabs } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Sturgeon } \end{aligned}$	Total Value
WILLAPA HARBOR DISTRIOT- Pound nets...				
Sot nets...			000	
Crab.....		469,437	200	
Olams..	584,179			
Olam bait	59,417			
Drag seines.				
Totals.	643,596	469,437	210	
Value	\$8,615 76	858,679 58	884420	\$88,139 54

CATCH OF FOOD AND SHELL FISH. (OTHER THAN SALMON) AND VALUE-Continued.

CATCH OF FOOD AND SHELL FISH (OTHER THAN SALMON) AND VALUE-Continued.

DISTRIOT AND GEAR WITH WHICH TAKEN	Pounds of Red Snapper	$\begin{gathered} \text { Pounds } \\ \text { of Sand } \\ \text { Dabs } \end{gathered}$	Pounds of Sea Bass	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Skates } \end{aligned}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Shrimp } \end{aligned}$	$\begin{aligned} & \text { Pounds } \\ & \text { of } \\ & \text { Smelt } \end{aligned}$	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Sole } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Sturgeon } \end{aligned}$	Pounds of Other Food Fish	$\begin{gathered} \text { Pounds } \\ \text { of } \\ \text { Shad } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Value } \end{aligned}$
ALL DISTRICTS COMBINED-											
Pound nets. Stationary fish wheels Scow fish wheels	422		9,395	3,000			5	319 79	3,646	105,027 2,24 1,964	
Set nets........................			500					212	…........	1,964	
Drag seines.						15,539		1,182		106,811	
Purse seines			6	280		245,628	5,980	39	1,077	164,645	
Hip bag nets.....................			1,210								
Smelt drag bag nets................						896,549 114,388					
Beam trawls Brush weirs.	7	160	8	48	50,624	114,388	$\xrightarrow[19,659]{150}$		1,800		
Brush weirs Set lines....							195,699				
Set lines............................	12		65	340				475			
Olam bait											
Crabs...											
Totals											
		100	11,184	4,106	50,04	1,242,104	201,954	2,306	221,840	380,819	
Value	\$1323	\$1600	\$1,34208	\$82 10	85,062 40	\$45,683 52	\$8,078 16	\$6,781 20	\$4,436 80	\$7,616 38	\$368,461 61

FOOD AND GHELI FIBE CANNED. Fiscal Year 1928.

DISTRICTS	Number of 48 lb . Cases	Value
PUGET SOUND DISTRICT-		
Chinook salmon	27,7794	\$305,830 45
Dog or chum salmon	112,201	550,404 73
Humpback salmon	2,128	11,901 36
Sllver salmon.	120,950	1,020,429 36
Sockeye salmon	44,5673	720,786 01
Steelhead	63	71891
Clams and mussels	9,581	70.25034
Clam nectar and shell fish	824	2,245 59
Totals.	318,094	\$2,682,671 75
COLUMBIA RIVER DISTRIOT-		
Chinook galmon	105,791	\$1,483,327 08
Dog or chum salmon	6,738	29,109 40
Silver salmon .-	17,103	172.82346
Sockeye salmon	$9,391{ }^{1}$	167,909 97
Steelbead .	7,1472	77,145 73
Shad fo...................	5,016 18	$\begin{array}{r} 20,08881 \\ 26800 \end{array}$
Totals.	151,2061	\$1,950,672 45
GRAYS HAKBOR DISTRICT-		
Chinook salmon	582	\$3.24180
Dog or chum salmon.	8,557	39,754 93
Steelhead ...	190	1,064 00
Silver salmon	750	5,672 80
Sockeye salmon	1,729	28,332 20
Clams and mussels.	44,069	360.31304
Clam nectar	$1,171$	$2,63475$
Other fuod and shell flsh	16	21800
Totals.	57,080	\$441,230 52
WILLAPA HARBOR DISTRICT-		
Chinook salmon	1,491	\$13,51700
Dog or chum salmon	8,205	34,320 00
Silver salmon	1,400	8,240 00
Humpback salmon	275	1,375 00
Clams and mussels.	14,833	125,826 36
Clam nectar	16	3200
Other food and shell flsh.	15	18600
Totals.	26,235	\$183,506 35
ALL DISTRICTS OOMBLNED-		
Chinook sulmon	135,6534	\$1,806,016 33
Dog or chum salmon.	135,701	633,588 00
Humpbrck salmon	2,403	13,276 36
Silver salmon	140,209	1,207,165 62
Sockeye salmon	55,088	917,028 18
Steelhead	7,4004	78,928 64
Clams and mussels	68,483	556,394 73
Clam nectar	2,011	4,912 34
Shad fo.................	5,0161	20,088 81
Other food and shell fish.	49	68200
Totals.	552,6141	\$5,258,081 07

YEARLY COMPARATIVE TABLE OF FOOD AND SHELL FISH CANNED.

YEARLY COMPARATIVE TABLE OF FOOD AND SHELL FISH CANNED-Continued.

YEARLY COMPARATIVE TABLE OF FOOD AND SHELL FISH CANNED-Continued.

YEARLX COMPARATIVE TABLE OF FOOD AND SHELL FISH CANNED-Continued.

yearly comparative table of food and shell fish canned－Concleded．

		줄
	朢	：
		（
	咸	
		옻
	㙖	
	\circ 8 8 8 8 8	
	$\begin{aligned} & \stackrel{\vdots}{d} \\ & \stackrel{\rightharpoonup}{\overline{6}} \end{aligned}$	
	商关关	8
	$\stackrel{\circ}{\circ}$	
	$\begin{aligned} & \text { od } \\ & 0.8 \end{aligned}$	
		－

food and shell fish, fresh and preserved (other than canned) and value.

	PUGET SOUNDDISTRICT		COLUMBIA RIVER DISTRICT		GRAYS HARBORDISTRIOT		WILLAPA HARBORDISTRICT		ALL DISTRIOTS COMBINED	
	Number Pounds	Value	Number Pounds	Value						
FRESH-										
Chlnook salmon Dog salmon	$2,644,246$ $4,482,680$	$\begin{array}{r}8383,415 \\ 177,307 \\ \hline 60\end{array}$	545,620 67,805	$\begin{array}{r} \$ 54,56200 \\ 67805 \end{array}$	$\begin{aligned} & 66,411 \\ & 66,360 \end{aligned}$	$\begin{aligned} & \$ 1,741 \\ & 1,990 \\ & 80 \end{aligned}$	$\begin{aligned} & 191,613 \\ & 437,160 \end{aligned}$	819,16130 13,11480	$3,398,800$ $5,004,006$	$\begin{array}{r} 8458,880 \\ 193,000 \end{array} \frac{07}{55}$
Humpback salmon	12,190	54180							12,190	54180
Silver salmon....	2,687,464	218,356 45	48,292	3,062 51	112,070	5.60350	156,390	7,819 50	3,004,147	231,831 96
Sockeye salmon Steellheud	20,301 48,516	2,621 70	28,282 48,887	3,780 3,429	33,210 27,670	4,42800 4,98060	40	720	81,833 125,143	10,830 14,235 41
Carp ...			650,263	30,55\% 78					650,263	${ }_{39,145}^{14,251}$
Clams and muss	1,083,351	32,500 53			38,186	2.2916	1,430	850	1,122,967	34,877 ${ }^{49}$
Orabs (Number)	870,102	38.5×2850			00,972	11,371 50	629,425	76,678 00	1,000,400	126,602 00
Cod fevil	144,3183	${ }_{5}^{5,774} 5$							144,363 119,887	5,774 52
Dog fish	101,05	20887							101,935	20387
Dolly varden	289	5835							380	5835
Flounders	108,727	2,074 54							103,727	2,074 54
Hallibut	2,207	. 93105				,..........			2,907	33165
Herring	189,386 20	1,808 806							180, 308	1,893 96 00
Perch	\%7.316	3,865 s0			1,027	5135			78,34	3,917 15
Red smapper	56	168							56	168
Sand dabs	432	4320					439	4320
Sca bass			30	180					30	180
Skates	1,517	518 34				-......1.....			1,517	578 804 804
Shrimp	43,724	4,872 40							43,724	4,372 40
Smelt	417.812	37,003 08	830,009	26,400 27					1,297,321	64,00835
Sole ${ }_{\text {Sturgeon }}$	288,545	11,42180							235,545	11,481 80
All other food	$\begin{array}{r} 22,456 \\ 8,858 \end{array}$	3,308 1770	711	10665			300	4020	$\begin{array}{r} 23,467 \\ 8,852 \end{array}$	$\begin{array}{r}3,515 \\ 177 \\ \hline 04\end{array}$
Totals	12,323,436	\$936,917 39	2,278,330	\$191,568 94	386,906	\$83.458 01	1,416,858	\$116,906 80	16,905,520	\$1,217,851 14
$\begin{aligned} & \text { PRESERVED- } \\ & \text { Frozen } \end{aligned}$	10,973,666	81,000,138 66	636,000	\$108,600 00	6,000	800000			11,615,066	\$1,104,638 66
Kippered	2,588,662	420,240 89	10,400	1,560 00					2,509,082	421,809 818
Mild cures	2,814,225	718,000 6,159 0							2,814,225	718,008 25
Smoked	258,300	57,6es 60	37,000	4,400 00	450	6750			325,750	42,166 10
T	16,780,753	\$2,182,253 00	696,100	\$109,775 00	6,450	\%eat 50			17,473,308	\$2,292,905 50
GRAND TOTALS	29,004,179	\$3,119,170 39	2,964,930	\$241,345 94	393,356	\$33.425 51	1,416,358	\$116,906 80	34,378,823	\$8,510,846 64

FISH BY-PRODUCTS. Fincal Yenr $182 a$.

OUTPUT	QUANTITX	VALUE
	78,362 gal.	222,858 8
Fish meal	10.57 tons	767700
Poultry food .	158.00 tons 669.00 tons	7,08800 18,893
Shells	129.00 tons	80000
Fresh eggs	30.00 tons	8,351 96
Total value.		\$53,808 78

APPROXIMATE AVERAGE PRICE-
Ofl ... 800 29 per gal.

Fertilizer $\underset{\text { Poultry food } . ~}{44} 58$ per ton
Poultry food ... 28 g8 per ton
Shells 690 per ton
Fresh eggs ... 8585 per ton

HALJBUT HANDLED BY DEALERS. Fincal Year 1828.

Fresh.
$9,449,960$ pounds, valued at $\$ 1,383,423.16$
Approximate average price.
$\$ 0015$ per pound

Hallbut is taken mostly in the Bering Sea and Alaskan waters and brought to Puget Sound to be marketed.

CODFISH HANDLED BY DEALERS. Fincal Year 1828.

Total cured
$1,772,880$ pounds, valued at $\$ 67,87500$
APPROXIMATE AVERAGE PRICE-
Cured.
$\$ 0004$ per pound

STATE OYSTER RESERVES.

SEED OYSTERS SOLD FROM STATE RESERVES.

Fincal Year 1828.

DISTRICT AND RESERVE	County	Number of Sacks	Value
PUGET SOUND DISTRICT-			
Cllfton Reserve	Mason	1,006.9	882274
Oakland Bay .	Mason	1,368.1	2,736 20
Oyster Bay.	Mason	786.6	1,573 20
Mud Bay	Thurston	109.1	19093
Totals.		3,360.7	\$5,323 07

Number of licenses issued to take oysters from state reserves, 11 at $\$ 5.00$ each- $\$ 55.00$

OYSTER INDUSTRY.
 Fiseal Year 1928.

(Complled from reports recelved from 34 companies or Individuals in Puget Sound District, and 8 in Willapa Harbor District)

	OYSTERG MARKETED			
	No. Sacks		Value	
PUGET SOUND DISTRICT-				
Native	27,740		\$349,682 25	
*Eastern .	5,000		30,000 00	
Totals.		32,740		\$379,682 25
WLLLAPA HARBOR DISTRICT-				
Native .	1,297		\$9,289 75	
Eastern	1,630		21,18100	
Totals.		2,987		\$30,470 75
BOTH DISTRIOTS OOMBINED-				
Native Fastern	29,037		$\begin{array}{r} 3358,972 \end{array} 00$	
Totals.		35,727		18410,153 00

* Includes transplanted Japanese oysters.

AVERAGE VALUE OF OYSTERG PER SACK.
Fiscal Year 1820.

OYSTER LANDS.

DISTRICT	NUMBER OF AGRES AND VALUE											
	Owned	Value	Leased	Value	Tota] Lands	Total Values	Native Producing	Value	Eastern Producing	Value	Totsl Producing	Total Values
Puget Sound..... Whilapa Harbor..	$2,027.31$ $5,506.00$	$\$ 1,248,18660$ 231,410	44 230	$\$ 26,20000$ 23,00000	2,071.31 $5,738.00$	$\begin{array}{r}\$ 1,234,386 \\ 254,410 \\ \hline\end{array}$	549 896	$\begin{array}{r}\$ 999,06150 \\ 41,300 \\ \hline\end{array}$	785	\$113,200000	$\begin{array}{r}549 \\ 1,680 \\ \hline\end{array}$	$\begin{aligned} & \$ 899,06150 \\ & 154,50000 \end{aligned}$
Totals.....	7,533.31	\$1,439,506 50	274	\$49,200 00	7,807. 31	\$1,488,796 50	1,444	\$940,361 50	785	\$113,200 00	2,229	\$1,058,581 50

Average values were substituted where valustions were not given. From tbe Puget Sound District 34 reports show a valuation of $\$ 1,234,380.50$

* VALUE OF FISHERIES PRODUCT.

 Fiscal Year 1928.| PRODUCT | |
| :--- | :--- |

* Value based on average wholesale price. The halibut and codflsh are not strictly Washington products, as these fish are taken mostly in the waters of Bering Sea and Alaska and brought to Puget Sound to be marketed.
YEARLY COMPARATIVE TABLE OF VALUE OF HISHERIES PRODUCT．

$\begin{aligned} & \text { 感 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	
	8
$\begin{aligned} & \text { 恡 } \\ & \text { ¢ } \end{aligned}$	禁长发耳 \％Mis 80
	：D． Trindiai
	 ず
	そ

[^7]COMPARATIVE TABLE OF THE CAPACITLIES OF THE STATE SALMON HATCHERIES.

HATCHERIES	CAPAOITY IN 1924		OAPACITY IN 1928	
	Hatchery	Ponds	Hatchery	Ponds
PUGET SOUND DISTRICT-				
Ohambers Creek	6,720,000	5,000,000	6,240,000**	2,000,000*
Dungeness	1,800,000	1,000,000	1,760,000*	
Elwha	1,420,000			
Green River	18,000,000	6,400,000	22,760,000	9,000,000
Green River No. 2	4,400,000			
Nooksack	4,420,000	1,000,000	4,480,000	1,000,000
North Fork Nooksack.	2,720,000		
Plichuck	3,040,000		3,040,000	
Puyallup	5,120,000	200,000	6,000,000+	200,000
Samish.	14,160,000	3,000,000	13,600,000*	3,000,000
Skytomish	6,720,000		6,720,000	
Snohomish	4,640,000	1,500,000
Totals.	73,720,000	18,100,000	64,600,000	15,200,000
OOLOMBIA RIVER DISTRICT- Oblnool	8,200,000	2,000,000	8,200,000	4,800,000 \dagger
Cowlitz .			10,160,000	4,800,001
Kalama	14,560,000	4,800,000	12,460,000*	7,200,000t
Pateros-Methow	2,580,000	4,000,000	2,560,000	3,000,000*
Spokane.	2,000,000		……**	
Wenatchee	1,920,000		1,920,000	
Wind River	4,960,000		...*	
Totals.	29,200,000	10,800,000	30,800,000	15,000,000
Chehalis Chehalis No. 2.	$11,760,000$		$11,760,000$ $6,720,000$	
Humptulips ...	3,440,000		3,200,000*	
Totals.	22,320,000	21,680,000	
WILLAPA HARBOR DISTRICT-				
Nasel	3,200,000	1,000,000	3,200,000	1,000,000.
North River	2,720,000	540,000	$\ldots{ }^{*}$	
Willapa	5,600,000	400,000	7.350,000t	400,000
Totals.	11,520,000	1,900,000	10,500,000	1,400,000
TOTAL OAPACITIES-- All hatcheries combined.	136,760,000	30,800,000	127,630,000*	31,600,000t

* Indicates decrease.

\dagger Indicates Increase.
Previous to and Including 1024 hatchery and rearing pond capacities such as the Elpha, Green River No. 2, Middle Fork, Nooksuck, Snohomish, Spokane, Wind River and the Norti Rlver stations were included in the biemini reports. These hateheries have not been operated since $142 z$, and at some of them, operations were abundoned previous to that date. The reports also fucluded capacities of temporary, outdoor hatehery equipment and experimental rearing ponds. The capacitios shown for 1 leve include only permanomtly constructed and used equipment.

OUTPUT OF SALMON FROM THE STATE HATCHERIES.

OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.

DOG SALMON	Number Spawned	$\begin{aligned} & \text { Nuraber } \\ & \text { Egge } \\ & \text { Taken } \end{aligned}$	No. Egg8 Recelved From Other H'teber's	No. Eggs On Hand April 1. 1926	Number Eggs Lost.	$\begin{aligned} & \text { Number } \\ & \text { Eggs } \\ & \text { Shipped } \end{aligned}$	No. Eggs On Hand March 31,1927	$\begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Hatched } \end{gathered}$	Number Fry On Hand April 1, 1026.	$\begin{aligned} & \text { No. } \\ & \text { Fry } \\ & \text { Lost } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { Fryped } \\ & \text { Shipper } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Planted } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { Fry On } \\ & \text { Hand } \\ & \text { March } \\ & \mathbf{B 1 , 1 9 2 7} \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Reared } \\ \text { In Ponds } \end{gathered}$
PUGET SOUND DIST,-														
Grambers River....	2,672	$4,374,000$ $6,29,000$	2,733,000		427,000	$\begin{array}{r} 2,743,000 \\ 15,000 \end{array}$	12,000	8,550,000	526,700	5,475		2,730,025	6,340,000	50,000
Nooksack.	638	1,577,000			73,250			1,304, 350	427,000	4,500		427,000	1,300,600	
Payallup Rlver	300	1,072,700			77.904			[904,760	26,100	6,400		95,975	988,521	
Samish.....	1,163	3,388,000		195,550			3,102,450	1,515,140	18,480		2,868,140	1,823,970	1,534,070
Sult Water Pond.......		1,500,000			1,500,000		1,500,000
Totals.	5,720	16,461,300	2,733,000		1,295,704	2,748,000	125,000	15,05,526	4,068,540	34,706	+2.t.o.t.	8,005,740	10,993,691	3,084,070
Totals	254	606,500	...at...		12,900	.2.....2...	[.........	502,600		1,200		501,400		
DISTRICTChehalis.	427	1,199,000			57,000			1,132,000		1,000		1,181,000		
Total	427	1,180,000			57,000			1,122,000		1,000		1,131,000		
	92	287,50			21,700			205,800		535		206,265		
Totals	92	227,500			21,700			205,800		535		205,265		
REOAPITULATIONPuget Sound	5,720	16,461,390	2,733,000		1,296,704	2,748,000	125,000	15,025,506	4,068,540	3,705		8,005,740	10,003,091	3,084,070
Columbia River......... Grays Harbor.	${ }_{4}^{27}$	- $1.180,500$			57,000			1,122,000		1,200		1,181,000		
Whllapa Harbor	92	227,500			21,700			205,800		535		205,205		
Grand Totals	6,498	18,483,300	2,733,000		1,387,304	2,748,000	125,000	16,955,906	4,068,540	37,440		9,993,405	10,003,001	3,084,070

$* 10,000 \mathrm{eggs}$ shipped to Olover Creek Hatchery. $\quad+\mathbf{5 , 0 0 0}$ eggs shipped to University of Washington.
OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.

HUMPBACKS	Number Females Spawned	Number Eggs Taken	No. Eggs Recelved From Other H'tcher's	No. Eggs On Hand April 1, 1926	Number Eggs Lost	Number Eggs shipped	$\begin{aligned} & \text { No. } \\ & \text { Eggs } \\ & \text { On } \\ & \text { Hand } \\ & \text { March } \\ & 31,1927 \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Hatched } \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { Fry On } \\ \text { Hand } \\ \text { Aprli 1, } \\ 1926 \end{gathered}$	No. Fiy Lost	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Shipped } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Planted } \end{aligned}$	Number Fry On Hand March 31, 1927	$\begin{gathered} \text { Number } \\ \text { Fry } \\ \text { Reared } \\ \text { In Ponds } \end{gathered}$
PUGET SOUND DIST.Balt Water Pond.......	. $\cdot . .$.							${ }^{1,500,000}$	200,000	1,300,000		1,300,000
Totals...	1,500,000	200,000	\ldots.	1,300,000		1,300,000

* 1,500,000 fry recelved from U. S. Bureau, Qulleene, Washington.
OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued. Fiscal year 1926.

silver salmon	Number Fembles Fpawned	Number Eggs Taken	No, Egg Recelved Forber Otther \#'ther's		$\begin{gathered} \text { Number } \\ \substack{\text { EREGs } \\ \text { Losst }} \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Eggs } \\ & \text { Shlipped } \end{aligned}$	No. Egs Ond Mand March 31, 1927	$\begin{gathered} \text { Number } \\ \text { Nry } \\ \text { Hatched } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Fry On } \\ & \text { Hand } \\ & \text { April } 1, \\ & 1926 \end{aligned}$	$\begin{gathered} \text { No. } \\ \substack{\text { Fry } \\ \text { Lost }} \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { Shry } \\ & \text { Shipped } \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { Pry } \begin{array}{c} \text { Pry } \end{array} \end{gathered}$		$\begin{aligned} & \text { Number } \\ & \text { Number } \\ & \text { Reryed } \\ & \text { Li Ponds } \end{aligned}$
PUGET SOUND DIST:Obambers Creet,	58.	0						,000				64,0	50,000	
Pungennss	${ }_{1}^{140}$	80w,000			${ }^{38} 85.500$	206,000	320,000 100,000	4,5\%\%,000	10,524,600	58,80		11, (2e	3, 0	
Nookssick	(ex)	1,788,000		60, 210	45,550		733,150	1,004,600	2,282,000	2,200		2,341,400	988,000	661,400
Puyallup River samish.	3	$\begin{gathered} 1,50,020 \\ 0,0 \end{gathered}$		3,634,650	$\begin{array}{r} 70,200 \\ 400,400 \end{array}$		$\begin{gathered} 136,163 \\ 1,506800 \end{gathered}$	1,31200000 $12,300,850$		-		6, 523.0000	1, 13\%i6i 175	4,237,226
skykomilh ...	2.056	10,300,500		442,600			3,900,700	6,471,960	4,063,027	6,151		6,988,817	3,530,008	
Totals	0,71	20,755,083	-.........	4,366,350	1,202,220	205,000	6,716,813	25,807,400	25,728,727	106,956		32,864,207	18,504,904	7,808,006
,														
		454,5001	$5.000,000$		$\begin{gathered} 16,100 \\ 118,300 \end{gathered}$		1,981,700	$3,438,400$	250,000	2,800		$\begin{aligned} & 455,600 \\ & 250,000 \end{aligned}$	3,900,000	-
Totals	178	454, (x)	6,000,000		134,400		1,981,700	4,338,400	250,000	2,800		685,000	3,200,000	415,
grays														
析	sh	45,008				117,000,000								
Chenalis N			$6,0 \times 0,00$ $3,000)(\times 00$	2,250,700	22,250		1,966,400	$6,057,005$ $3,031,452$	$2,801,506$ $1,469,258$			5,145,800	3,006,925	
Hamptulpe	488	1,235, (a30)	3, $0 \times 00,000$				1,076,140	3,031,452	1,449,288			3,776,700	703,425	
Totuls,	, 312	22.	8,	3,233,202	3,000,810	17,000,000	9,794,540	19,618,502	8,128,20	78,005		19,200,500	8,458,570	
mlapa														
Nistrici-			2,000,000		113,500			1,886,500	600,000	$\omega 0$		600,000	1,855,900	1,100,000
wilapa.....	1,136	3,286,500		500	232,500		39,000	3,177,500	2,108,070	4,255		2,220,105	3,021,150	1,373,045
Totais.	1,139	3,288,500	2,000,000	112,500	386,000		30,000	5,024,000	2,708,070	4,855		2,820,165	4,907,050	2,473,0
RECAPITGLATI														
get sound,		(95, 500	6,000,00	d,1so,	1,42,400	205,000	1,981,700	4,338,400	250,000	2,800		,	3,900,000	415,940
ays Harbor......	12,312	38,180,650	8,000,000	0,23,203	3,000, 10	17,000,000	9,704,500	19,618,502	8,128,263	78,605		19,200,5150	8,4589,570	
Willapa Harbor.,	1,139	3,288,500	2,000,000	112,500	136,000		39,000	5,024,000	2,708,070	4,855		2,820,165	$4,907,060$	2,473,045
Grand Totnis.	23,	¢б,71	16,000,00	13,488,082	4, 1773,430	17,206,000	18,532,	54,788,	36,815,060	193,		55,579,623	35,830,524	10,787,

OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued.
Fiscal Year 1926.

[^8]OUTPUT OF SALMON FROM THE STATE HATCHERIES-Continued. Fimenl Year 1928.

ALL SPECIES COMBINED	Number Fermales Spawned	Number Egge Tuken	No. Eggs Recelved From Other H'cher's	$\begin{aligned} & \text { No. } \\ & \text { Eggs } \\ & \text { On } \\ & \text { Hand } \\ & \text { Apr1l } 1, \\ & 1926 \end{aligned}$	$\begin{gathered} \text { Number } \\ \underset{\text { Eggs }}{\text { Lost }} \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Eggs } \\ \text { Shipped } \end{gathered}$	$\begin{aligned} & \text { No. } \\ & \text { Eggs } \\ & \text { On } \\ & \text { Hand } \\ & \text { March } \\ & 31,1927 \end{aligned}$
PUGET SOUND DISTRICT-							
Chambers Creek	1,641	4,510,500.			533,500	2,743,000	125,000
Dungeness ...	1,367	1,158,100)			116,000		320,000
Green River	5,97\%	$21,4 \times 6,250$	4,733,000	35,200	1,147,200	220,000	389,250
Nooksack	1,437	3,813,300	1,500,000	50,700	335,223		761,150
Pllchuck	$79 \times$	2,723, 188	510,000.		162,540		130,163
Samish.	5,419	15,930, 3 (00	1,000,000	3,920,450	751,250	401,000	1,957,300
Skykomish	3,04:3	10,945,500	900,000	611,025	426,945		4,026,700
Salt Water Pond............							
Totals.	18,683	61,127,533	8,733,000:	4,626,375	3,474,660	3,384,000	7,715,563
COJUMBIA RIVER DISTRICT-							
Cowlitz River	$5: 4$				110,000		
Lewls River	48	273,250			26,050		
Leavenworth			600,000		2,500		
Kalama	4,483	24,641,600	6,000,000		1,089,300	0,040,000	1,981,700
Kittitas							
Pateros-Methow			400,000		700		
Totals	5,9\%;	30,211,250	8,000,000		1,283,850	9,040,000	1,981,700
GRAYS HARBOR DISTRIOT-							
Chehalis ..	12,756	3R,861,000		6,333,700	2,839,500	17,216,700	7.285,500
Chehalis No			6,000,000	2,255,700	202,250		1,976,400
Humptulips	510	1,38,100	2,000,000	1,075,612	127,929	151,061	1,106,765
Totals	13,266	35,219,100	8,000,000	9,645,012	3,169,679	17,367,761	10,367,665
WILLAPA HARBOR DISTRICT-							
Nasel River	1,949	8,217,000	2,000,000		783,100	5,200,000	
Willapa	2,10]	6,450,000	4,200,000	606,500	430,500	200,000	314,000
Totals	4,050	15,077,000	6,200,000	603,500	1,218,600	5,400,000	314,000
RECA PITULATION-							
Puget Sound ... Columbia River	18,683?	61, 127,53\%	8,733,000	4,620,375	3,474,660	3,364,000	7,715,563
Columbia River Grays Harbor	5, Wef	$30,211,25 \times 1$ $35,219,164$	$8,000,000$ $8,(000,000$		$1,263,850$ $3,169,679$	$9,040,000$ $17,387,751$	1,981,700
Whlapa Harbor	4, 450:	15, $15 \mathrm{~T}, 600$	6,200,000	$8,745,012$ 608,500	$1,168,679$ $1,218,600$	$17,367,701$ $5,400,000$	$10,387,066$ 314,000
Grand Totals.	41,865	141,653,483	[30,933,000	14,879,887	9,126,780	,35,171,751	20,378,928

OUTPUT OF SALMON FROM STATE HATCHERIES-Concluded. Fiscal Year 1828.

ALL $\operatorname{SPECIES}$ COMBINED	Number Fry Hatched	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Received } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { No. fry } \\ \text { On Hand } \\ \text { April 1, } \\ 1926 \end{gathered}\right.$	No. Fry Lost	$\begin{aligned} & \text { Number } \\ & \text { Fry } \\ & \text { Shipped } \end{aligned}$	Number Fry Planted	$\left\|\begin{array}{c} \text { No. Fry } \\ \text { On Hand } \\ \text { March } \\ 31,1927 \end{array}\right\|$	No. Fry Beared in Ponds
PUGET SOUND DISTRIC'T-								
Dungeness	722,000				70,000	- $\mathbf{2 0 2 , 0 0 0}$		
Green River	25,009,000		19,447,000	89,125	1,000	24,208,825	20,156,050	13,504,200
Noolsack	4,326,625		2,709,600	90,650		4,656,975	2,288,600	1,229,975
Pflchuck			900,000			900,000		
Puyallup River	2,834,980		748,575	14,475		1,375,384	2,293,696	
Samish	17,741,200		8,834,765	81,080	400,000	15,581,945	10,512,940	6,164,590
Skykomish	8,092,880		4,070,492	9,028	250,000	8.374,337	3,530,009	2,800,000
Salt.Water Pond.....		1,500,000	1,500,000	200,000		2,800,000		
Totals.	59,932,685	1,500,000	38,210,432	484,356	721,000	59,057,466	39,380,296	23,698,765
COLUMBIA RIVER								
Chinook	3,606,700		1,319,300	8,700		2,346,300	2,571,000	1,754,900
Oowlitz River	2,525,000			31,000		2,494,000		
Lewls River	247,200			5,300		241,900		
Leavenworth	597,500			4,500			593,000	
Kalama	18,550,000		7,550,000	12,100		16,087,900	10,000,000	15,150,000
Kittitas			990,900	1,200		989,700		
Pateros-Methow	399,300			880		358,420		
Totals	25,925,700		9,860,200	63,680		22,558,220	13,164,000	16,904,900
GRAYS HARBOR DISTRICT-								
Chehalls	12,853,000		3,577,500	49,100	120,000	12,503,250	4,058,150	
Ohehalis No.	6,067,050		2,801,505	15,670		5,145,890	3,698,995	
Humptullps	3,048,967		1,469,258	20,770	17,330	3,770,700	703,425	
Totale	21,959,017		8,148,263	85,540	137,330	21,425,840	8,458,570
WILLAPA HARBOR DISTRICT-								
Nasel River	4,234,500		600,000	2,105		2,946,405	1,885,900	2,600,000
Willapa	10,719,000		2,207,645	16,750	200,000	9,599,010	3,110,865	1,443,045
Totals.	14,953,500		2,807,645	18,945	200,000	12,545,415	4,996,785	4,043,045
RECAPITULATION-								
Puget Sound	$59,932,685$	1,500,000	$38,210,432$	$484,356$	721,000	$59,057,466$	$39,380,296$	$23,698,765$
Columbla River	$25,925,700$		$9,860,200$	$03,680$		$22,208,200$	$13,164,000$	$16,904,900$
Grays Harbor willapa Harbor	$21,959,017$		$8,148,263$	85,540	$137,330$	21,425,840	$8,459,570$	
Willapa Harbor	14,953,504		2,807,645	18,945	$200,000$	12,545,415	$4,996,755$	4,043,045
Grand Totals.	122,770,902	1,500,000	59,026,540	652,521	,058,330]	115,586,941	5,999,650	4,646,710

	Chinook	Dog	Sliver	Stechead	Humpback	Totals
Number females spawned	10,388	6,493	23,349	1,635		41,865
EGGS Taken by state hateheri	51,802,950	18,483,360	05,716,738	5,542,500		141,635,483
On hand April 1, 1986.,			13,482,052	1,307,835		14,879,887
Grand totals	51,802,950	18,483,300	70,198,785	6,940,335		156,515,370
Lost ${ }_{\text {Furnished to University of Wazinington (experimental purposes)....... }}$	$2,732,801$ 50,000	$\begin{array}{r} 1,287,804 \\ 5,000 \end{array}$	4,673,430 5,000	338,164		$\begin{array}{r} 9,126,789 \\ 60,000 \end{array}$
Furnisbed to county hatcherics for hatching and planting as follow Whatcom county				401,000		401,000
Clark county .-.	100,000		100,000
${ }_{\text {Lewls county }}^{\text {Cowlitz county }}$				60,000 100,000		60,000 100,000
Grays Harbor county				307,751		307,751
Phillipe trout farm	10,000					10,000
Furnished Alaska Territorini Fish Oo	1,960,000				1,990,000
Furnished U. S. Bureau, Elwell Orcek		10,000	1,000,000			$1,000,000$ 10,000
Lincoln Park, Chicago, Minois..			200,000			200,000
On hand March 31, 1927,...		125,000	18,582,063	1,721,875		20,578,028
Hatched	47,110,060					192,770,002
On hand April $1,1920$.	18,003,900	4,058,540	26,815,060	139,040		50,026,540
Received from U. S. Burcou, Quileene, Washingto					1,500,000	1,500,000
Furnished to counties (planted in lieu of trout)				1,057,330		1,057,330
University of Washington	192,006	37,410	193,216	29,770	200,000	652,501
Planted	-45,830,164	9,093,405			1,300,000	115,586,9011
On hand March si,	19,085,700	10,903,601	$50,500,524$	2,87,735		65,900,650

AVERAGE NUMBER OF EGGS TAKEN TO FEMALE. Fiscal Year 1828.

	SPECIE	Average Number Eggs
Chinook		4,995
Chum		2,847
Silver		2,814
Steelhead		3,389

RECORD OF ERY HANDLED AT SALT WATER POND. Fiscal Year 1828.

SPECIES	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Fry } \end{gathered}$	Placed in Pond	Loss	Relcased	
				Date	Number
Humpbaeks	115,000	Fiscal Year 192)	None Reenrded	Aug. 25, 1920	115,000
Chums	1,506,000	Fiscal Year 1926.	None Recorded	Aug. 25, 1926	1,506, (000
Humpbacks	1,500,000	Fiscal Year 1920 (Jan. 10, 1927)	200,000	June 20, 1927	1,300,000

-

YEARLY COMPARATIVE TABLE OF FRY PLANTED FROM THE STATE HATCHERIES．

$\begin{aligned} & \text { 品 } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { Hen } \end{aligned}$	（\％\％ 	 	Entrixis
	 	TFix SWisisisise シージがN゙が	
	 －		
$\frac{9}{\text { a }}$	 	： Nixinivio	
合	 	 ヘंब्रिक्रक बन्ब	
$\begin{aligned} & \text { H } \\ & \text { 若 } \\ & 0 \end{aligned}$	 	Mis\％ 	
	 品		\qquad

YEARLY COMPARATIVE TABLE OF FRY PLANTED FROM THE STATE HATCHERIES-ContInued.

district and year	Chinook	Dog	Humpback	Silver	Sockeye	Steelhead	Totals
WILLAPA HARBOR DISTRICT-							
1913...	3,247,345	1,581,750		1,636,765		248,565	5,132,665
$1915 .$.	2,374,145	1,590,860		769,290			- ${ }^{2,281,744,296}$
1916	2,374,145	590,860		769,291			3,734,298
1917	5,41,723	2,359,805		1,809,000		77,600	10,353,031
1918.	1,460,206	318,100		1,372,500		198,000	2,347,806
1919.	5,458,500	936,400 $5,613,783$		2,184,900		$\begin{array}{r}887,100 \\ \hline\end{array}$	9,510,900
1921	6,023,500	5,89,585	3,209,420		1,240,900	$12,460,155$ $10,562,405$
1922.	2,538,780			10,865,300		1,900,000	15,311,080
1923.	5,072,605			4,706,340		-979,885	10,767,830
1994	3,784,325			3,591,000		631,790	8,007,115
1925.	${ }_{6}^{6,338,790}$			$8,270,645$		1,085,342	15,694,777
1926.	8,989,450	205,265		2,820,165		1,530,235	12,545,415
ALL DISTRIOTS COMBINED-							
	28,411,893	5,597,178	953,158	9,759,659	43,792	3,588,103	48,350,783
1914	31,509,701	15,674,048	578,504	42,765,162	12,942	3,409,105	94,039,462
1915	$45,782,719$ $45,782,720$	${ }_{34}^{34,468,015}$	${ }_{2}^{2,951,113}$	35,170,927	912,038	7,410,003	128,085,803
1917	82,011,474	71,750,001	6,086,256	44,737,153	6,552,070	9,154,008	${ }_{220,2901,022}$
1918	45,549,106	22,228,025	6,0,060	16,220, 067	6,645,520	6,952,632	91,505,370
1919	32,920,700	22,602,325	1,315,500	27,660,000		8,871,660	98,370,185
1920	8,299,607	114,144,057	718,600	41,300,887		6,323,317	170,809,488
1921	40,957,290	$24,671,252$ 2,369	$3,475,300$ $16,314,627$	43,884,473		4,725,458	117,73,773
1923	29,046,267	9,650,351	6,880,944	40,545138	2A,80	3,180,781	129,448,243
1924	24,750,314	10,939,574	29,588,675	69,473,210		5,167,160	139,918,933
1925	28,929,007	17,867,454	4,608,715	74,219,998	5,700	2,415,312	128,046,186
1926.	45,836,164	9,903,405	1,300,000	55,579,622		2,877,750	115,588,941

YEARLY COMPARATIVE TABLE OF EGG TAKE IN STATE SALMON HATCHERIES．

DISTRICT AND YEAR	Chinook	Dog	Humpback	Silver	Sockeye	Stcelhead	Totals
							37，073，000
1！W\％．							$450,123,25$
11×9.							17，32，140
	2，60， 2 m			11．400．+26		2，36，150	16，46， 776
	5，101，（40）	2，（xm1）（mx）			320，000	2，${ }_{3}$	
$1{ }^{1} 1143$	4，$\times 2 \times 4(x)$	17，		24，30，		4， 3 ， 2 ， 5 ， 575	50，34， $41,572,977$
1：nx．	9，2m， $2 \times$	（6，010．（xW）					39，943， 460
1 1ax．	10， 03 ，（6，$)^{(1)}$	7，7世， 5 （1）	519， 0×0	25， 919,140		$4, \mathrm{SB},(\mathrm{xa})$	$40,897, \times 0$
$1: 14$.	4， $5+2.818$	13，号号， NQ		2，212．0n7		5，24，24，	51，444， 5×0
10	4， 6	（2）－79，（4n	3M，	5			4＊＊．1（x， 21.3
19	$4.290,(x x)$	7，012，4010	1，（8x，$\overline{\text { an }}$	67， 1177,353		3，46，（4ix）	53， 3 72，50，
1914	$5,3 \times 1 \times n)$	11，心，\％10		mi，＋6，＋4，	13，3（3）	4 ， 95.5	55，310，935
1915		11，（iver， 1 1；\％	6，143，（2x）	边，＋2，（m7		$5.36,42$	（01， 111,179
	3，24， $2+10$	11，tifi， 1 ：${ }^{\text {a }}$		（2， $6+3,0 \times 7$	1，2M $2 \times 2(2 x)$	$5,56,63$	54．1610，319
19197	7，	17，174，mo	6，491， 410	13，2\％，（150）	1， $4 \times$ ，（0W	3，\％i，\％\％	53， 20.0080
19 s	$0,171,125$	21， 7 ：4， 314	2，2m， 5,5	14，（fifi，（fix）		3，764，450	53，231，737
$1: 30$	2，（31， $1 \times 1 \times 1$	：30，		＜3，919， 9 my		3，74，（rym	701，＜ 34, a
1 m	6，15， 9	7，275， 40	6，071，500	14，			
129	3，（nx），（4x）	3，144， 914		47， 3 3，，984	10，（10）	2， 5 5，（40）	57，
1 1rem	0，691，${ }^{\text {a }}$		${ }^{7}$ 703． $1(0)$	51，21，201		3，4：N，：30	76，3mand
1×2.		10， $31,3 \times 1$	$40.217,1 / 4 *$	5，		4，478，（nn	129．37，＊＊
125	11，250，（x）		$5, \cdots \infty, 7 \times 1$		8 ，（N）		${ }_{6}^{61,167,1(1)}$
linct						．．．．．．．．．．．	20， 2131,210
max．							
1 10x．	3，$, \mathrm{m} 0,000$			15，（00）			$3,6 \times 3,000$
19 ¢5．	6， 470.000						$7,1 \times 1 \times 10$
likni．	5，173，（m0）			2，（1）0，（x）			$7.293,($ nn $)$
11110×1.	9，94，			1，2\％			10,4000
10 mo	9，4シ4，Mn			3，3－34，（xn）			
1910	11，692，3m	40， 1000		1，3＋1，（4）			13，497，（3x）
1911	19，（03．7，4（x）	114，（01）		： 3110			19，43），＋（）
1912.	24，190，（4n）	115，（0）		2，015，（0x）			26，526， 5×0
	31，982，000	687，000		1，036，500			33，705，500

＊Humpback eggs taken in Alaska and regultant fry relensed in Puget Sound．

YEARLY COMPARATIVE TABLE OF EGG TAKE IN STATE SALMON HATCHERIES－CONTINUEd．

	앵 	ह月38：
	 ベベデがッがこ	웅
	 ージージッ゙ーベージ	
$\begin{aligned} & 80 \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$		 がいがが
	 	 －

YEARLY COMPARATIVE TABLE OF EGG TAKE IN STATE SALMON HATCHERIES—Continued.

YEARLY COMPARATIVE TABLE OF EGG TAKE IN STATE SALMON HATCHERIES-Concluded.

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS.

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS-COntinued. Fincal Year 1926.

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS-Continued.

Date of Arrest	OFFENDER	OHARGE	Disposition of Case	Penalty Imposed	Totals
		GRAYS HARBOR COUNTY			
April 14	Gust Johnson	Digging clams without license.	Gullty.	\$25 00	
July 12	S. Bensen	Custing sawdust in the water.	Guilty.	505	
Sept. 1	W. G. Hulet	Sawing logs in Ohebalis River	Guilty.	1000	
Sept. 3	W. S. McRay,	Peddling fish without lleense............	Guilty...	725	
Sept. 5	Rockwell's Oafo	Serving fresh razor clams out of season	Dismissed		
Oct. Oct. 17	E. E. Jamison	Fishing during elosed season.	Guilty	2500 2500	
Oct. Oct. 17	J. Mateljisn	Fishing without license................	Guilty.	2500 2500	
Oct. 17	Oscar Tonneson	Fishing with gill net one-third seross river	Guilty.,	2500 2500	
Nov. 8	Geo. Bagley Lloyd Goodpaster	Gaffing salmon Gaffing salmon	Guilty..	2500 2500	
Nov. ${ }^{\text {Nob }}$	Charley Johnson	Fishing in closad waters	Guilty	1000	
Nov. 9	Charles Olson ...	Allen flshing	Gullty.	1000	
Nov. 9	S. Rasmussen	Alien working on pound nets	Guilty.	1000	
Nov. 9	Ted Skaret	Alien flshing)	Guilty,	1000	
Nov. 9	Carl Soderglen	Allen fishing	Guilty.	1000	
Nov, 9	Carl Swanson	Allen fishing	Guilty.	1000	
Nov. 15	Geo. Swanson	Fishing two traps without license	Guilty.	10000	
$\stackrel{1927-}{\text { Jan. } 20}$	Fred Williams	Flshing with set net in closed waters	Gullty.	5000	
Feb. 22	O. E. Johnson	Smoking and selling salmon without license	Guilty.	500	
Mar. ${ }^{1}$	A. August ...	Selling clams at retall during closed season.	Gully.	21.25	
Mar. 1	N. I.. Whitmer.	Selling clams at retall during closed season.	Gullty	1125	\$1980
		ISLAND COUNTY			
July 8	Chas. Hansen	Fishing during closed season	Guilty	Dismissed	
Oct. 1	Wm. Anderson	Fishing in closed area,			
Oct. 1	F. Gillis	Fishing in closed area.	Pending		
Oct. 1	A. Haugland	Fishing in closed area.	Pending... ${ }^{\text {a }}$	
Oct. 1	R. MeDonald	Fishing in closed area	Pending.		
Oct. 1	Thos. Steele	Fishing in closed uren.	Pending.		
Oct. $\frac{1}{5}$	Sam Watland	Fishing in closed area......................	Pending.		
Oct. 5	A. J. Anderson	Fishing in salmon preserve with purse seine.	Pending.		
Oct. Oet.	Frank Davis	Fisbing in salmon preserve with purse selne			
Oct. 5	Ole Hendrickson	Fishing in salmon preserve with purse seine.	Pending.	.	

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS-Continued.
Fiseal Year 1926.

Date of Arrest	OFEENDER	OHARGE	Disposition of Case	Pemalty Imposed	Totals
1926-		ISLAND COUNTY-Concluded			
Oct. 5	Jack Husse . .	Fishing in salmon preserve with purse sein	Pending..		
Oct. 5	Minor Johnson	Fishing in snlmon preserve with purse seine....................... .	Pending.............		
Oct. 5	Minor Johnson	Alien engaged in fishing...	Pending..		
		JEEFERSON COUNTY			
Nov. 8	Ernest Obl and Tyler Hoebusket..	Fishing set net above dead lin	Guilty.............	\$1000	\$10 00
1920-		KING COUNTY			
May 19	Dressel-Collins	Inegal possession of clams...	Guilty.............,		
Aug. 16 Ang. 16	James O. Jackson	Operating drag seine without license.................................	Guilty...............	+2500	
Ang. 16 Aug, 29	C. W. Wagner Alfred Hoffer	Operating drag seine without license...	Guilty..............	2500	
Sept. 20	Joe Blll	Using set net in Green River.	Dismissed.		
Sept. 29	Frank Lazier	Using set net in Green River	Dismissed.		
Oct. 10	Lake Union Dry Dock Co	Polluting waters of Lake Dnion...	Guilty.............		
Nov. 28 Nov. 28	${ }_{\text {D }}$ Jim Jerry	Selling fish without license..	Guilty..............	500	
Nov. 28 Nov. 28	D. Jerry ...	Spearing salmon	Suspended.........		
Dec. 9	John Doe Bush	Fishing without license.	Suspended.		
Dee. 9	S. Darting	Fishing without license.	Escaped.		
Dec. 12	John Lekich	Alicn engaged in fishing	Guilty..	2000	
Dec. 27	Martin Perry	Fishing without license	Guilty	7500	
Dec. 27 Dec, 30	$\frac{R}{\text { H. McDougall }}$	Operating drag seine without	Guilty	7500	
Dec. 30	H. Hashlguchi	Retniling fish without Heense..	Gullty.............	1000	
1927-					
Jan. 25	Denny Kourkoumeles	Opernting set net in closed waters.	Guilty.............	7500	
Jan. 28	K. Kanazauna (\%.................	Catching and selling salmon lllegally	Gullty...............	1500^{*}	
Feb, 25	S. L. Anderson (Ploneer Market)..	Retalling fish without license.	Guilty..............	1000	
Feb. ${ }^{25}$	R. Q. DeVreker (Bosch A 1 Mkt.)..	Retalling fish without lleense.	Guilty..............	1000	
Feb. ${ }^{25}$	R. J. Doser (Pac, Highway Mkt.)..	Retailing fish without license.	Guilty.............	1000	
Feb. 25	W. A. Hutchingon (Good Mkt.)....	Retailing fish without license.	Guilty..............	1000	
Fob. 25	W. H, Smyth (Mt. View Mkt.).....	Retalling fish without license.........., , ,	Gullty.............	1000	
Feb. 25	O. H. Trye (Harvard Mkt.) ,.......	Retailing flsh without lleense. .	Guilty...............	1000	841725

- Bail forfelted.

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS-Continued.

AKRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS-Continued.

Date of Arrest	OFFENDER	CHARGE	Dispoejition of Case	Penalty Imposed	Totuls
1926-		Mason county--Coneluded			
Oct. 21	Chas. Teahell	Gaffing salmon	Guilty	\$1000	
Oct. 21	Earl Teahell	Gaffing salmon	Guilty.	1000	
Oct. 24	${ }_{\text {Andy }}{ }^{\text {M }}$ Stacy	Gaiffig Gaffing salmon salmon	Gulity.	800 800 800	
Oct. 24	John Matson	Gaffing salmon	Guilty.	1000	
Oct. 24	Henry Matson	Gaffing salmon	Guilty.	800	
Nov. ${ }^{4}$	Walter Holcombe	Gaffing Gaffing salmon salmon	Guilty.	1000	
Nov. ${ }_{4}$	Henry Turner	Gaffing salmon	Guilty.	1000 1000	
Dec. 5	Fred Muste	Shooting salmon	Guilty.	1000	
$\stackrel{1927-}{\text { Feb. }} 3$	C. A. Fryberg	Pulluting waters ...	Guilty.	1000	\$225 00
1920-		PACIFIO COUNTY			
April 9	Ifwaco Meat Market.	Retailing fish without license.	Guilty	\$1000	
April 12	O. A. Brown.	Selling clams without license	Gullty.	1000	
June 21	Emast Wilson D. Catino	Illegal sale of crabs \ldots..	Guilty.	500 7500	
June 25	David Frank	Ottching crabs for market without license........................	Guilty.	${ }_{75} 000$	
June 25	Harty Olson.	Digging and using clams for crab bait without license...............	Guilty.	10000	
June 25	Harry Shipman	Using clams out of season for crab bait and without license.....	Guilty.	5000	
	Stcve Kukura and crew of 7 men. P. S. boat "Pres. Coolidge"....	Fishing within 3 mile limit above North Head.	Dismissed.		
Sept. ${ }^{6}$	Carl Smart	Selling clams out of season.	Guilty.	5000	
Nov. 13 Nov. 14	Joe Rose	Retailling fish without license	Guilty.	2500 100	
Nov. 14	Gust Dist	Alien fishing or Willapa River.....		10000	
Nov. 15	Hans Alvenes	Fishing without Hicense......	Guilty.	5000	
Nov. 15	Wm. JaPoint \ldots................	Fishing in closed waters.	Gullty	1500	
Nov. 15	Einer Michalson	Fishing without license	Guilty.	1500	
Mar. 4	Day Stmmons	Selling clams without licen	Guilty	4000	\$720 00

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWG-Continued.

Date of Arrest	OFFENDER	charge	Disposition of Oase	Penalty Imposed	Totals
		PIERCE OOUNTY			
May 19	Marco Radanlch	Fishing without license and with undersize web.	Guilty..	\$100 00*	
June 3	S. G. Onuma	Selling fish without license.	Guilty.	1000	
June 11	Emmil Memer ${ }_{\text {John }}$	Fishing without license..	Guilty.	1000	
June 24	Jack Blaskovich	Spearing sole at Pt. Defiance	Guily.	1000 1000	
June 24	A. Webber	Possession of fish without license	Guilty	2500	
July 22	Stanley McKevold	Fishing without license and with Megal gear.	Guilly..	2500	
July 22	Ross Lucca ${ }_{\text {R }}$ L. ${ }^{\text {L }}$ Savidge	Fishing without license and with illegal gear.	Guilty.	7500	
Nov. 16	${ }^{\text {K. }}$ K. Hirikawa	Possession of illegally caught fish............	Guilty.	1500	
Nov. 16	M. Nakamura	Possession of illegally caught fish.	Gullty.	$2250{ }^{+}$	
Nov. Dec. 8	Pacifle Fish Co., Inc	Posgession of tllegally caught fish	Guilty.	2500	
Dec. ${ }^{8}$	Antone Colulich	Casting sawdust in the water.	Not guily		
Dec. 9	Harold Wendt	Spearing salmon	Guilty.	1500	
Dec. 10	Matt Bratonia $\ldots \ldots \ldots \ldots \ldots \ldots$.	Selling fish without license.	Guilty.	2500	
Dec. 10	Crystal Palace Mkt. (J. P. Verone)	Selling fish without licens	Guilty	1000	
Dee. 10	E. Massncr (Masmer Meat Mikt.		Guilty.	2500	
Dec. 10	Pionecr Mkt. (E. Brown).......	Selling flish without license	Guilty	500	
Dee. 10	Settlers Oash Mkt. (H. A. Settlers)	Selling fish without license.	Guilty.	1000	
Dec. ${ }^{26}$	G. O. Hiroskig	Killing salmon illegally	Guilty.	2500	
Dec. ${ }^{26}$	K. Nakashima	Killing samon tlegaly	Guilty	1000	
Dec. 26	H. Tajiri	Kiling salmon miegaily	Guilty	1000	
Nov.	John Doe(roy) Delong	Gaffing salmon, Minter creek	Guilty.	1000	
Nov.	M. J. Pike.........	Gaffing salmon, Minter creek.	Guilty	1000	453000
		SKAGIT COUNTY			
May 13	Glenn Rice	Fishing with gill net without license	Guilty		
May 14	John Seaborg	Fishing with gill net without license.	Gullty.	2250	
May 15	E. E. Eisen	Fishing with gill net without license	Gullty.	2250	
May ${ }^{\text {June }}$	Manus Dugan	Fallure to have license number on boat	Guilty.	500	
Aug. 21	Fred Coor .	Fishing durlig closed seaso	Gullty..		
Aug. 31	Joseph Joe	Fishing without license	Guilty	$5000{ }^{\text {c }}$	
Oct. 16	L. H. Miller	Flshing during weekily closed seaso	Gullty	1000	

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS-Continued.

Date of Arrest	OFFENDER	CHARGE	Disposition of Oase	Penalty Imposed	Totals
		SKAGIT COUNTY-Concluded			
Oct. 7	Frank Bozanich	Fishing in salmon preserve with purse seine........................	Pending..		
Oct. 7	Frank Ellch	Fishing in salmon preserve with purse seine........................	Pending.....		
Oct, 7	Mike Francin	Fishing in salmon preserve with purse seine..........................	Pending............		
Oct. 17	Leslie Hill	Fishing during weekly closed season.	Dismissed..........		
Oct. 17	E. Kasch	Fishing trap during weekly closed season	Dismissed..........		
Oct. 17	M. Pardis ${ }_{\text {Martin Sul }}$	Fishing trap during weekly closed season....	Dismissed..........		
Oct. 7	Martin Suich	Fishing in salmon preserve with purse seine............................	Pending.............		
Oct. Oct. 7	A. Suich ,	Fishing in salmon preserve with purse sefne...........................	Pending............		
$\begin{array}{ll}\text { Oct. } & 7 \\ \text { Oct. }\end{array}$	Martin Suich, Sr. Joe Zankich	Fishing in salmon preserve with purse seine. Fishing in salmon prcserve with purse seine.	Pending............		
1927-					
Feb, ${ }^{2}$	Northern Fish Oo. (H. Peters)...	Retailing fish without lieense, ..	Guilty.............	80500 1000	
Feb. 11	Mareo Barcott	Possession and sale of sbort crabs....................................	Guilty...............	1000 10	
Feb. 11	John Curry ...	Possession and ssle of short crabs...	Guilty...............	1000 1000	
Feb. 11	J. Stankus .	Possession and sale of short crabs	Guilty..............	1000	\$252 50
		SNOHOMISH COUNTY			
May 13	John H. Nelson	Fishing without license.	Guilty..............	\$1500	
June 9	C. J. Kirkhus (Everett Fish Co.).	Possession and shipment of short salmon..........................	Guilty...............	2500	
July 8	A. Christensen ,	Peddlling fish without license...	Guilty...............	1500	
Sept. 10	Anton Bozanich	Fishing during closed senson.	Guilty..............	1000	
Sept. 10	Nicholas J. Bozanich	Fibhing during closed season.	Guilty..............	1000	
Sept. 10	Harry Crowley	Fishing during closed season,...	Guilty..............	1000	
Sept. 11	Vine Bogdanovicht..........	Fishing during weekly closed season	Guilty...............	20000	
Sept, 11	Jack Joncich	Fishing during elosed spason...	Guilty..............	1000	
Sept. 11	Philip Zuanich	Fishing during closed season...	Guilty..............	1000	
Sept. 11		Fishing during ciosed season...	Guilty...............	10 2500 2500	
Sept. 21	Floyd Green	Fishing in Snohomish Preserve.	Guilty...............	5000	
Sept. 21	Leander Johnson	Fishing in Snohomish Preserve.	Guilty...............	2500	
Oct. 8	W. Eggleston	Fishing during closed season..	Dismissed..........		
Oct. 11	C. H. Robinson	Fishing above dead line..........	Dismissed..........		
Oct. 13	Jim Lewis .	Fishing above dead line..	Guilty...............	2500	

ARKESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS—Continued.

Date of Arrust	Offerder	Charce	Disposition of Case	Penalty 1mbosed	Totals
		SNOHOMISH COCNTY-Concluded			
Oet. 14	E. Γ E Elliott.	Fishing in closerl waters	Guilty.	\$25 00	
Oct. 14	Frank 14.in	Fishing in closed arca with gill	Not guilty		
Oct. 洨)	Suton Mozanich	Fishing during closed season.	Guilty.	25.00	
	Nirklos 13ozanich	Finhing during closem season	Cuilty.	50000	
Nov. ${ }^{\text {a }}$	11. 13 jorklund	Fishing for crabs without licens	Guilty.	5 \% ${ }^{5}$	
lere 1if	T. O. mankenship	Buying and selling fish without lieronse	Guilty.	2 sin	
Deer. 15	Sheridan Ward	Fishing in closed area during closed season	Guilty.	200	\$401
Jume 17	Ter Zamberlain (0lympia P'kng.)..	Selling clams nut of serason	Guilty		
Sept. 16	R. S. Rogers.	Selling fish uithout limerse.	Guilty.	5 w	
Oct. 27	Allis Ayar	cathing samon	Guily	875	
Oet. 27	A. MeConkey	(iathing salmon	Guilty	875	\$27 5
		WHATOOM COCNTY			
Ayril 22	J. P. Dragich	Fishing in herring preserve	Guilty.	80000	
Alug. 12	Frank Vitajic	Alinn engared in fishing...			
Aug. 13,	Vine Jurkovich Matt Loverich	Alim engared in fivhing.	Not guile Not guily gre.		
Ang. 13	Nieh Tomich	Alin mengreal in flshing.	Not guilty.		
Ang. 14,	A. W. Baker	selling fish without licate	Guilty..	2500	
Aug. 131	Mate Volich	Alien engagel in fishing.			
Ort. ${ }_{\text {Oct. }}{ }^{\text {at }}$	Tred Adian	Fishing in closed waters	Guilty.	5000	
Ort. 24	Matt Anderson	Fishing in closed watrss.	Guilty.		
Oct. 24	Toma logatich Nick Rozanich	Fishing in closed whters Fishing in closed waters	Guilty.	50, 50	
Oet. 24	John Cikalovich	Fishing in closed waters	Guilty.	5010	
Ort. 24	Tony Elich	Fishing in closed waters	Guilty.	50	
Oct. 24	Jan Ivanisevich	Fishing in closed waters.	Guilty.	5000	
Oct. 24	Dick Kink	Fishing in closed waters.	Guilty.	10000	
Oct. 24	Tony Kinkusich	Fishing in closed weters. Fishing in	Guilty. Guilty.	500 500 000	
Oct. 24	John Mardesich	Fishing in closed waters	Guilty.	50 00	
Oct. 24	Nick Repanich	Fishing in closed waters	Guilty.	5000	
Oct. 24	Loge Roper	Fishing in closed waters	Guilty.	5000	

ARRESTS MADE FOR VIOLATION OF THE FOOD FISH LAWS-Continued.

Date of Arrest	OFFENDER	CHARGE	Disposition of Case	Penalty Imposed	Totals
		WHATCOM OOUNTY-Concluded			
${ }^{1820-1}$	Nikola Vitaljic	Fishing in closed waters.	Guilty.	\$100 00	
Oct. 29	John Bakotich	Frshing in closed waters.	Dismisse		
Oct. 29	John Madak	Fishing in closed waters.	Guilty.	50 500 00	
Oct. 29	G. L. Peplica..	Fishing in closed waters.	Guilty.	5000 5000	
Oct. 29	A. G. Smith...	Fishing in closed waters.	Guilty.	5000	
Oct. 29	John Rudan	Fishing in closed waters.	Guilty.	5000	
Oct. 29	Nick Vitalich	Frshing in closed waters.	Guilty.	15000 10000	
Oct. 30	John Evich	Fishing in closed waters.	Guilty.	10000 100	
Oct. 30	John Medak	Fishing in closed waters.	Guilty.	10000	
Oct. 30	Dome Mofkovita	Ffohing in closed waters.	Guilty.	15000	
Oct. 30	George Pagich	Fishing in closed waters	Guilty.	10000 10000	
Oct. 30	John Padovan	Fishing in in closed waters.	Guilty.........	10000	
$\xrightarrow[\text { Mar. } 12]{1927-}$	Edgar Erickson	Fishing for smelt during weekly closed season	Guilty.....	3000	
Mar. 30	Tom A. Tom..	Possesslon of fish out of season.............	Not guilty.		\$2,025 00
		WAHKIAKUM COUNTY			
Sept. 10	Stuart Davis	Fishing trap during closed season.	Guilty.	\$5000	
Sept. 10	Stuart Davis	Fishing trap during closed season.	Guilty.	5000 50	
Sept. 10	Stuart Davis 0. O. Arness.....	Fishing trap during closed season Possession of small salmon.....	Guilty.	5000 1250	
Feb. 11	Kenneth Backiman	Pishing without liceense...	Guilty.........	1500	817750
	Grand total				\$7,133 80

Note The total amount of fines shown above is very seldom equaled by the actual cash returns shown in the reports of the State Treasurer.
Quite often fnes ars worked out by jail sentencea. Justices often permit partial payments or through error the fines get into county game funds, and Que making of adjustments sometimes requiree a long period of time.(C. R. P.)

FISHWAYS REPAIRED, INSTALLED OR ORDERED INSTALLED.
Fiscal Year 1925-1928

OWNER OF DAM	STREAM IOCATED ON	OOUNTY	OONDITION
PUGET SOUND DISTRIOT一 Puget Sound Power \& Light Co......	Baker River.	Skagit.....	Incomplete

NUMBER AND VALUE OF CANNERIES AND FACTORIES OPERATED, AND THEIR FISHING APPLIANCES, AND CAPITAL OPERATED BY WHOLESALE DEALERS AND PROCESSORS.
Fiscal Year 1926 .

Note-The above flgures do not include valuations of the floating gear and equipment or the fixed appliances owned and operated independent of
the operators whose reports make up the above statement.
NUMHER AND EARNINGS OF LABORERS EMPLOYED IN OPERATION OF CANNERIES, FACTORIES, WHOLESALE AND

	PUGET SOUND DISTRICT			COLUMBIA RIVER DISTRIOT			GRAYS HARBOR DISTRICT		
	$\begin{gathered} \text { Number } \\ \text { Emer } \\ \text { ployed } \end{gathered}$	Average Season's Earnings	Total Earnings	Number Employed	Average Season's Earnings	$\underset{\text { Tatal }}{\text { Tornings }}$	$\begin{gathered} \text { Number } \\ \text { Em- } \end{gathered}$ ployed	Average Season's Eamings	Total Earning
Clerical CapacityMale	109	\$2,107 58	\$229,726 88	20	\$2,136 37	\$42,727 32	12	\$811 73	\$0,740 73
Operating eanneries, factories, warehouses, etc.-	31	2,20168	68,252 00		92500 1,00712		5		
White labor-male ${ }_{\text {Whe }}$ Wh................	${ }_{373}^{648}$	72177 138 46	467,706 51,644 61	$\begin{array}{r}117 \\ 54 \\ \hline\end{array}$	1,00712 144 89	$\begin{array}{r}117,838 \\ 8,951 \\ \hline 73\end{array}$	213	$\begin{array}{r}21286 \\ 75 \\ \hline 8\end{array}$	45,33989 20,17481
Oriental labor	216	${ }_{643}^{198} 5$	139,'001 13	165	61981	102,208 04	25	20776	5.18388
Indian labor	22	38\% 36	8,500 00				14	12728	1,781 77
Operating rile drivers, pullers, boats, scows, nets and other flshing appliances. Miscellaneous labor	481 45	$\begin{array}{r} 58194 \\ 1,47898 \end{array}$	$\begin{array}{r} 279,91170 \\ 66,554 \end{array}$	$\begin{aligned} & 107 \\ & 18 \end{aligned}$	$\begin{array}{r} 59486 \\ 1,60001 \end{array}$	$\begin{aligned} & 58,15978 \\ & 28,81091 \end{aligned}$	$\begin{array}{r} 4 \\ 488 \end{array}$	$\begin{array}{r} 244 \\ 3961 \\ 39 \end{array}$	$\begin{array}{r} 97845 \\ 19,35898 \end{array}$
Totals	1,925	\$681 19	81,311,296 77	484	\$744 69	\$360,526 09	1,029	$\$ 10308$	\$106,046 51

NUMBER AND EARNINGS OF LABORERS GMPLOYED IN OPERATION OF CANNERIES, FACTORIES, WHOLESALE AND PROCESSING PLANTS AND THEIR APPLIANCES-Concluded.

	WILLAPA HARBOR DISTRIOT			ALL DISTRIOTS OOMBINED		
	$\underset{\text { Ember }}{\text { Number }}$ ployed	A verage Season's Earnings	Total Eurnings	ployed $\begin{gathered} \text { Number } \\ \text { Em- } \\ \text { ployed } \end{gathered}$	Average Season's Earnings	Total Earmings
Clerical Capacity-	6	\$1,619 81	\$9,718 85	147	\$1,986 81	\$291,913 78
Male	2	${ }_{4} 1 / 750$	81500	41	1,837 12	75,322 00
Operating canneries, factorles, warehouses, etc.--	56		13,89788	1,034		644,777 28
White labor-female	90	7345	6,610 77	${ }^{785}$	11259	88,38192
Oriental labor	14	14286	2,000 0r	420	59158	248,463 ${ }^{106}$
Indian labor \ldots..				36 804	28560 56568 68	10,28177 340,449
Operating pile drivers, pullers, boats, scows, nets and other fishing apphiances.. Miscellaneous labor	228	28897 58	12,304 26			127,026 40
Totals	408	$\$ 11948$	848,746 76	3,846	\$47494	\$1,826,616 13

OUTPUT OF THE PRIVATE FISH HATCHERIES.
Dealers' purchases of hatchery fish from outside the state...... 4,792 pounds
Dealers, purchases of hatchery fish from inside the state....... ${ }^{3}, 752$ pounds
Purchases of hatchery fish by Washington restaurants........ 1,973 pounds
Due to the provisions in the Game Oode enacted during the last session of the legislature, the state Game Department will license all fish batch-
erfes malitained for the hatching and rearing of all kinds of game fish. This department then would only license hatcheries which handle salmon. C.R.P.

INDEX TO BIENNIAL REPORT AND PAPERS.

Page
Biological studies and investigations 32
Board, flsheries, six years of board regulations 5-8
Charts, comments on. 12-17
Chehalis hatchery 21 and 24
Chinook hatchery 19
Chronology of fisheries board records made 7
Clam industry of Washington, Pacific Ocean beaches 31
Clams, observations on, the Pacific razor, by Harvey C. McMillin 61-69
Clams, pack of razor 10
Clams, Puget Sound 31-32
Clam Resources of the Puget Sound Region, by H. W. Nightingale 69-89
Collections, fisheries fund 46
Cowlitz River hatchery 22
Cultural operations, flsh 17-18
Dams, power and storage 39-41
Educational 43-44
Expenditures, departmental, from fisheries fund 44-47
Fisheries board, creation of 4-5
Fisheries board, effects of regulation 5-8
Fishing industry, continued upgrade in 8-9
Food and shell-flsh, fresh and preserved 9-10
Graphs, comments on egg take at various hatcheries. 23-27
Green River hatchery 18 and 26
Investigations conducted during 1925-1926 34-37
Irrigation 38
International Pacific Salmon Investigation Federation 32-34
Kalama hatchery 19 and 24
Kincaid, Trevor-Oyster Industry of Washington 47-51
Lewis River, experimental operations 22-23
McMillin, Harvey C.-Observations on the Pacific Razor Clam 61-69
Nasel hatchery 25
Nightingale, H. W.-Clam Resources of the Puget Sound Region 69-89
Nightingale, H. W.-Trade Waste Investigations 51-61
Nooksack hatchery 21
Oyster Industry of Washington, by Trevor Kincaid 47-51
Oysters, study of Washington and transplants 29
Oysters, Washington industry 29
Patrol service 44
Personnel Inside front cover
Pink or humpback salmon, experiments in transplanting 11-12
Pollution problems 37-38
Ponds, standard rearing, developed by department 91-92
Problems in man-made menaces to fish life 38-43

1. Irrigation and reclamation projects 38
2. Power and storage dams, construction of (Lake Cushman, Priest Rapids, Baker River) 39-41
Rack construction 89-91
Reclamation projects 38
Salmon, pack of. 10
Samish hatchery 19 and 26
Steelhead made game fish by legislature 27-28
Stream investigations, report on 32
Trade waste investigations 29-31
Trade Waste Investgations, by H. W. Nightingale 51-61
What should be done to save fisheries of Washington 4
Willapa hatchery 21
Wind River hatchery 21-22

INDEX TO ILLUSTRATIONS AND CHARTS.

Page
Chehalis hatchery, chinooks, chums, silvers. 24
Chinook salmon, Chehalis hatchery 24
Chinook salmon, Green River hatchery 26
Chinook salmon, Kalama hatchery 23
Chinook salmon, Nasel hatchery. 25
Chinook salmon, record of eggs taken 28
Chum salmon, Chehalis hatchery 24
Chum salmon, Green River hatchery 26
Chum salmon, Samish hatchery 27
Clams, razor, different ages 70
Clams, razor, digging in surf, truck load of clams, etc 64
Clams, razor, low tide scene, width of beach, etc 62
Clams, Puget Sound 71
Clams, razor, spat different stages 68
Clams, showing average take per man 66
Cockle 71
Columbia River, record of chinook eggs taken 28
Columbia River, take of salmon and percentages by gear 14
Eggs, chinook, record taken 28
Eggs, herring 35
Fry, herring 35
Fry, salmon, shortly after hatching 21
Grays Harbor, record chinook eggs taken. 28
Grays Harbor, take of salmon and percentages by gear 15
Green River hatchery, chinook, silvers, pinks, chums 26
Green River hatchery, warehouse, hatchery, rearing ponds 18
Hammersley Inlet, tidal flow 52
Herring, eggs and fry 35
Humpback salmon, Green River hatchery 26
Japanese, development of oysters in Puget Sound 50
Kalama hatchery, Chinook salmon 23
Kalama hatchery, taking of salmon eggs 20
Nasel hatchery, chinook salmon. 25
Oysters, development of Japanese in Puget Sound. 50
Oysters, gathering oysters for sale. 30
Oysters, seed buyer's scow loaded and waiting for high tide 30
Oysters, a state reserve, Puget Sound 30
Puget Sound, record chinook eggs taken 28
Puget Sound, take of salmon and percentages by gear 13
Ponds, ground plan of standard rearing pond construction 92
Racks, front and cross-section view of typical rack construction. 90
Salmon fry shortly after hatching 21
Salt water rearing pond, cleaning dyke screens. 11
Salt water rearing pond, Quilcene Bay 10
Samish hatchery, chums, silvers 27
Silver salmon, Chehalis hatchery 24
Silver salmon, Green River hatchery 26
Silver salmon, Samish hatchery 27
Take of Columbia River salmon and percentages by gear 14
Take of Grays Harbor Salmon and percentages by gear. 15
Take of Puget Sound salmon and percentages by gear. 13
Take of Willapa Harbor salmon and percentages by gear 16
Tidal flow, Hammersley Inlet 52
Willapa Harbor, record chinook eggs taken 28
Willapa Harbor, take of salmon and percentages by gear. 16

INDEX TO STATISTICS.

	$\begin{aligned} & 1925 \\ & \text { Page } \end{aligned}$	
Appropriations fisheries fund	94	38
Appropriations, oyster reserve fu	95	139
Arrests and court decisions.	121-132	200-209
Average number of eggs taken to female. salmon	120	193
By-products, fish	109	178
Canneries, processors, wholesale dealers, etc.,-labor employed and wages paid.	134	212-213
Canneries, processors, wholesale dealers, etc-capital invested in operating	133	211
Cannerles, processors, wholesale dealers, etc.-number and value of	133	211
Canneries, output of	107	171
Catch of salmon and	100-101	152-153
Catch of food and shell-fish, other than salmon	102-106	166-170
Clam nectar	107	171
Codfish, handled by dealers	109	178
Capacity-state salmon hatcheries		184
Comparisons, see yearly tables.		
Cost of hatching salmon fry.	94	138
Eggs furnished by state to counties	119	192
Eggs and fry, distribution of.	113-119	185-192
Expenditures, fisheries fund.	94	138
Expenditures, oyster reserve fund	95	139
Expenditures, operation, maintenance, etc., salmon hatcheries.	94	138
Fines for violation of food fishery laws.	121-132	200-209
Fisheries fund, appropriations and expenditures.	94	138
Fishways repaired, installed or ordered installed.		210
Food and shell-fish canned	107	171
Food and shell-fish, other than salmon, quantity taken and value of	102-106	166-170
Food and shell-fish, fresh and preserved (other than salnon) and value	108	177
Frozen fish, quantity and value of	108	177
Fry handled, salt water pond.		193
Fry planted	119	192
Halibut, handled by dealers	109	178
Hatcheries, number and capacity of		184
Hatcheries, cost of operation, etc., salmon	94	138
Hatcheries, output of salmon eges and fry	113-119	185-192
Hatcheries, eggs and fry furnished counties	119	192
Kippered fish, quantity and value of	108	177
Licenses issued	98-99	143-144
Licenses, cannery, number issued.	99	144
Licenses, fishing gear, number issued and fees paid	98	143
Loss on salmon eggs and fry.	120	193
Mild cured fish, quantity and value of	108	177
Oyster industry	110	180
Oyster, lands owned	111	181
Oyster, licenses issued	109	179
Oyster, lands produclng	111	181
Oyster, reserves, state		179
Oysters, sold from state reserves.	109	179
Oysters, value per sack.	110	180
Oyster fund, appropriations and expenditurcs.	95	139
Patrol service, expenditures.	94	138
Percentage of loss on salmon eggs and fry	120	193
Private hatcheries, output.	135	213
Processors, wholesale dealers, canneries, etc-capital invested in operating, labor employed and wages paid, number and value of	133-134	111-11.3
Receipts, fisheries department .	$96-97$	140-141
Salmon, catch and value of.	100-101	152-15:3
Salmon, output from the state hatcheries.	113-119	-192

YEARLY COMPARATIVE STATEMENTS.

Food and shell flsh canned184
Licenses issued194-199
Salmon catch, as to gear and species183

[^0]: Enough was observed to state positlvely that the loss of food fishes, princlpally salmon, is appalling. The farmers in the vicinity gather the best of the fish by the washtubful. The same condition is also true of all such drops of which there are several hundred in the different ditches.

 The fall season does not represent the most serious losses in regard to the salmon. Through July when they are migrating, it is estimated that from 90 to 97 per cent of the Yakima River passes into the irrigation ditches, through which the down-stream migrating salmon also pass, only to be washed out on some farm where they must of necessity perish. The economic waste is stupendous as many tons of migrating salmon, trout and whitefish are destroyed each year.

 The Yakima Valley Fish and Game Protective Association, under date of March 4, 1922 , passed a resolution asking for relief and quoted in part as follows:

[^1]: * Later compilation of the total collections for the $1921-1924$ period shows a total of $\$ 717,892.37$ which would change the district percentages to the following: Puget Sound .5793 per cent, Columbia River . 3290 per cent, Grays Harbor .0607 per cent, Willapa Harbor .0310 per cent. This difference is probably chargeable to receipts of the State Treasurer direct in 1921 for fines not reported to this office.

[^2]: *Refunds to Flisheries Department for tax on gasoline used in patrol boats.
 tRefunds to fishing industry for overpayments on licenses and taxes....

 §Refund to Fisheries Department for overpayment of filing fee.
 Total receipts, $\$ 283,506.60$. Net receipts, $\$ 262,995.60$

[^3]: Average values were substltuted where Faluations were not given. From the Puget Sound District 37 reports show a Faluation of $91,337,882.29$
 on a total of $1,093.19$ acres (an average of $\$ 671.23$ per acre) and of this number 529.68 acres were under cultivation and valued at $\$ 721,650.00$. From the Willapa Harbor District 7 reports show a valuatlon of $9267,325.00$ on a total of 4 ; 891 acres (an average of s5b, 68 per acre) and of

[^4]: $\mathbf{+ 6 , 3 5 2 , 0 0 0}$ shipped to State of Oregon.
 $+2,000,000$ ehlpped to Alaska Flish Commission

[^5]: ${ }^{125}, 0 \mathrm{c} 0$ shipped to Snohomish County.

[^6]:

 ${ }^{\text {THefax pald for orerpayment of oysters }}$

[^7]: For the ycars 1806 to 1912，inclusive，the fish preserved（other than canned）is included in the amount of fish handled fresh

[^8]: ${ }^{0} 151,061$ eggs shipped to Grays Harbor Game Comm.
 ${ }^{1} 17,330$ fry shipped to Grays Harbor Oounty Game Oomm.
 100,000 eggs shipped to Olark County Game Comm.
 10100,000 fry shipped to Skamania County Game Comm.
 ${ }^{10} 100,000$ fry shipped to Pacffic County Game Comm.
 -40, 000 eggs shipped to Whatcom County Game Comm.
 170,000 fry shipped to Clallam County Game Oomm.
 ${ }^{2000,000 \text { fry shipped to Skagit County Game Comm. }}$
 ${ }^{2} 250,000$ fry shipped to Snobomish County Gume Comm.
 660,000 eggs shlpped to Grays Harbor Oounty Qame Oomm.
 ${ }_{5} 90,700$ eggs shlpped to Grays Harbor County Game Comm.

