

SiC Schottky Barrier Diode

SN0608G4

 $V_{RRM} = 650 V$

 $I_F(T_C=150^{\circ}C) = 8 \text{ A} \quad Q_C = 21 \text{ nC}$

Features

Silicon Carbide Schottky Barrier Diode

Small Die Size

Low I_{R}

High-Recovery Speed

Die Structure & Pattern Diagram

Applications

Switch Mode Power Supplies Power Factor Correction Secondary Side Rectification PV Power Conditioners

Chip Information

Wafer size	6 inch
Chip size	1,360 * 1,560µm
Chip thickness	$350 \mu \text{m}$
Scribe line width	$100 \mu \text{m}$
Pad diameter	900 * 1,100μm
Top metallization	AlCu(Cu 0.5%) for Wire
Back metallization	Ti-Ni-Ag (for Solder)
Chip quantity	6,954 pcs/wafer

Maximum Ratings (T_a = 25°C)

Parameter	Symbol	Conditions	Limit	Unit
Repetitive peak reverse voltage	V_{RM}		650	V
Reverse voltage (DC)	V_{R}		650	V
Forward voltage (DC)	I_{F}		8	Α
Peak surge forward current	I _{FSM}	10 ms Sinusoidal	65	Α
Junction temperature	T_j		175	$^{\circ}$ C
Storage temperature	T_{sta}		-55 to +175	°C

Electrical Characteristics (T_a = 25°C)

	(- /					
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
DC blocking voltage	V_{DC}	I _R = 30 μA	650	-	-	V
Forward voltage	V_{F}	I _F = 8A, Ta = 25°C	-	1.33	1.70	V
		I _F = 8A, Ta = 150°C	-	1.60	-	V
		I _F = 8A, Ta = 175°C	-	1.70	-	V
Reverse current	I_R	V _R = 650V, Ta = 25°C	-	0.3	40	μΑ
		V _R = 650V, Ta = 150°C	-	3	-	μΑ
		V _R = 650V, Ta = 175°C	-	7	-	μΑ
Total capacitance	С	$V_R = 1V$, $f = 1MHz$	-	272	-	pF
Total capacitive charge	Q_{C}	$V_R = 400V$, di/dt = 350 A/ μ s	-	21	-	nC
Switching time	Tc	$V_R = 400V$, di/dt = 350 A/ μ s	-	15	-	ns

SiC Schottky Barrier Diode

SN0608G4

 $V_{RRM} = 650 V$

 $I_F(T_C=150^{\circ}C) = 8 \text{ A} \quad Q_C = 21 \text{ nC}$

Electrical characteristic curves

SiC Schottky Barrier Diode

SN0608G4

 $V_{RRM} = 650 \text{ V}$

 $I_F(T_C=150^{\circ}C) = 8 \text{ A} \quad Q_C = 21 \text{ nC}$

Notes

- 1. This document is for reference only.
- 2. Please request for the specification sheet before use.
- Since the products are in wafer form, the values in this document are for reference only.
- 4. Although we strive to improve the quality of our products, they may malfunction or fail. When using this product, please implement a safety design suitable for the system within your responsibility.
- 5. Although this document has been prepared with great care, we assume no responsibility for any damages incurred due to errors in the provided information.
- 6. If the operating environment (ex. high temperature, high voltage, high current) is severe, the reverse current may become excessively large, and the device may be destroyed due to the increased reverse.
- 7. The absolute maximum ratings must not be exceeded even momentarily. Do not exceed the absolute maximum ratings for any of the multiple ratings.
- 8. When evaluating or using the product in a resin-encapsulated package or in a sealed environment, be sure to measure the temperature and confirm that the maximum junction temperature designated as the maximum ratings is not exceeded.
- 9. The products described in this document are intended for use in general electronic equipment (ex. AV equipment, OA equipment, home appliances).
- 10. This product is not intended for use in products whose manufacture, use, or sale is prohibited by domestic or foreign laws or regulations.
- 11. Do not use the information contained in this document or this product for the purpose of developing destructive weapons for military use
- 12. When exporting this product, please comply with applicable export laws and regulations and follow the necessary procedures.
- 13. The information in this document is subject to change without notice.
- 14. The process flow and process conditions of this product are subject to change without notice.