Amphibious Twin Turbojet

A Revolutionary Solution for Remote Medical Evacuation in Undeveloped Areas

Executive Summary

The introduction of a clean-sheet amphibious twin-engine turbojet aircraft represents a paradigm shift in emergency medical services for remote coastal communities around the globe. With a 1,200-mile range and pressurization capabilities comparable to other business jets of similar size, this aircraft addresses critical gaps in medical evacuation infrastructure across some of the most remote geographic regions. The aircraft's amphibious design enables operations from both conventional airports and water surfaces, providing unprecedented access to communities that have historically relied on weather-dependent helicopter services or seasonal ground and maritime transportation.

This operational flexibility mirrors the revolutionary success of the Pan American Airways Clipper flying boats of the 1930s and 1940s, which established reliable passenger and mail service to previously inaccessible Pacific islands and remote coastal settlements. Just as the Pan Am Clippers transformed global connectivity by landing on protected harbors, bays, and coastal waters where

conventional airports were impossible to construct, modern amphibious medical aircraft can access the thousands of island communities in archipelagic nations like the Philippines, Indonesia, and island chains throughout the Atlantic, Pacific, and

Caribbean. The Clipper routes demonstrated that water-based aviation could provide consistent, weather-resilient service to remote locations—landing on sheltered lagoons during storms when land-based runways would be unusable, and accessing communities where building airports would be economically or geographically impossible.

Unlike the luxury passenger service of the Clipper era, this new generation of amphibious aircraft focuses on life-saving medical missions, but the fundamental advantage remains the same: the ability to reach isolated populations that lack aviation infrastructure by utilizing the abundant natural landing surfaces that coastal and island communities inherently possess—their surrounding waters.

Geographic and Operational Context

Labrador's coastline stretches over 8,000 kilometers, serving approximately 27,000 residents scattered across remote communities often separated by hundreds of miles of wilderness. Many of these settlements lack paved runways capable of accommodating traditional medical evacuation aircraft, while seasonal ice conditions and harsh weather patterns frequently ground helicopter operations. The

primary medical facility capable of handling complex cases is the Health Sciences Centre in St. John's, Newfoundland, located over 500 miles from many northern Labrador communities.

The Philippines' coastline stretches over 36,000 kilometers across more than 7,640 islands, serving approximately 113 million residents scattered across remote island communities often separated by hundreds of miles of open ocean. Many of these settlements lack paved runways capable of accommodating traditional medical evacuation aircraft. The primary medical facilities capable of handling complex cases are concentrated in Metro Manila, Cebu, and Davao, located hundreds of miles from many remote island communities in regions like Palawan, Sulu, and the outer Visayan islands.

Current medical evacuation services rely primarily on helicopters with limited range and weather capabilities, slower STOL capable fixed-wing/fixed gear aircraft restricted to communities with adequate runway infrastructure, and seasonal ground or marine transportation that becomes impossible during winter months. These limitations result in delayed medical care, increased mortality rates, and substantial operational costs due to multi-stage evacuations and weather delays.

Aircraft Specifications and Capabilities

The amphibious twin-engine turbojet combines the speed and altitude capabilities of modern business jets with the operational flexibility of seaplanes. Key specifications include:

- **Range**: 1,200 nautical miles, enabling direct flights from any Labrador coastal community to St. John's or most coastal communities in the remote islands of the Philippines back to Manila.
- **Pressurization**: Equivalent to other cabin class business jet aircraft, (8000 foot cabin altitude at FL410), crucial for patient comfort and medical equipment operation
- **Amphibious Configuration**: Retractable landing gear system allowing operations from water, gravel, and conventional runways.

• Medical Configuration:

Customizable interior accommodating stretcher patients, medical personnel, and life support equipment. Aircraft supports single patient transport capabilities with options available from both

LifePort and Spectrum Aeromed and modular brownline mounting solutions through a partnership with Hilaero. Patients and equipment are easily loaded through a 48 inch wide cargo door.

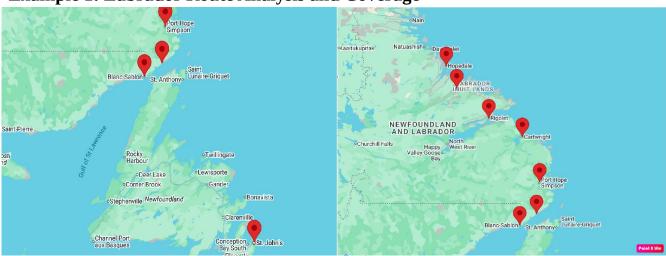


Figure 1: Two examples of popular modular medical systems that will be available with this aircraft.

- **Weather Capabilities**: Heated wing enhanced de-icing systems and instrumentation for IFR operations in challenging maritime conditions. Aircraft is certified for SPIFR but is also configured to support two pilot operations.
- **Engine Reverse** to enable safe deceleration on reduced RCAM runways. Drag chute further enhances safety into wilderness runways in northern climate.

Primary Use Case: Medical Evacuation Network

Example 1: Labrador Route Analysis and Coverage

The aircraft's 1,200-mile range creates a comprehensive coverage envelope encompassing all major Labrador coastal communities with direct routing to St. John's. The following examples are predicated upon a round trip with the aircraft based at St. John's, Newfoundland (CYYT). Destinations further away would require fuel available at the sending airport. Key service routes include:

Northern Routes:

Hopedale: 1,102 nm roundtripPostville: 1,030 nm roundtrip

Central Routes:

• **Port Hope Simpson:** 658 nm roundtrip

Cartwright: 808 nm roundtripRigolet: 904 nm roundtrip

Southern Routes:

• **Red Bay:** 578 nm roundtrip

Blanc-Sablon: 578 nm roundtrip

Shenzhen 深圳市 Itbayat Philippine Sea INAN Paracel Islands Luzon Manila Caramoan China Sea Manila West Philippine Sea Malapascua Island Mindoro **Philipp** Iha Trang mar Island Panay Spratly Islands ∘ Cebu Negros Palawan Balabac Sulu Sea Mindanao Palau Davao SABAH Brunei.

Example 2: Philippine Route Analysis and Coverage

The aircraft's 1,200-mile range covers the isolated island communities scattered across the vast oceanic area of the Phillipines, with direct routing to the major medical centers in Manila. Examples of this capability include:

Celebes Sea

• **Manila to Balabac:** ~1,104.8 nautical miles

Manila to Itbayat Island: ~890.9 nautical miles

• Manila to Malapascua Island: ~874.7 nautical miles

Manila to Caramoan Islands: ~448.6 nautical miles

Operational Advantages

The amphibious capability of this aircraft effectively eliminates the primary constraint facing current medical evacuation services: runway availability. Communities such as Hopedale and Rigolet, which rely on short gravel strips often closed due to weather, gain year-round access through water operations. During winter months, the aircraft can operate from plowed gravel surfaces, while summer operations utilize protected harbors and bays. Communities in the Philippines are directly accessible by the Sea Panther with a relatively low infrastructure cost. The cost to provide seaplane base consisting

of a dock and instrument approach procedure are less than 1% of the cost of an airport providing the same access. The Sea Panther can operate in areas previously only accessible by a slower, range limited, unpressurized STOL aircraft or helicopter. However, unlike a slower turbo prop or helicopter a patient can be evacuated directly to definitive care, direct from the point of injury, with a transport time of under two hours.

The pressurized cabin environment of this aircraft maintains sea-level equivalent conditions up to 8,000 feet cabin altitude, critical for patients with respiratory conditions, cardiac issues, or trauma cases where altitude exposure could exacerbate medical conditions. This capability eliminates the need for specialized high-altitude medical protocols and reduces patient stress during transport.

Economic and Social Impact

Cost-Effectiveness Analysis

Current medical evacuations often require multiple aircraft changes, ground transportation segments, and extended weather delays. In the Labrador example, a typical evacuation from a remote area such as Black Tickle to St. John's may involve either Twin Otter or helicopter transport to Goose Bay, examination by the local hospital, fixed-wing aircraft transfer to St. John's, and ground ambulance services, with total costs exceeding \$25,000 per mission. In the case of the Philippines, a maritime asset would be involved with a significant delay in access to definitive care. The amphibious turbojet enables direct transport to definitive care, reducing mission costs by approximately 40% while improving response times from 8-12 hours to 2.5 hours.

Community Health Outcomes

Reduced evacuation times directly correlate with improved patient outcomes, particularly for timesensitive conditions such as myocardial infarction, stroke, and trauma cases. The aircraft's ability to operate in marginal weather conditions that ground helicopter services ensures consistent availability, reducing the "golden hour" delays that currently characterize remote medical emergencies. Patients can be evacuated with a more comprehensive, cost, and resource effective modality.

Implementation Considerations

Infrastructure Requirements

The amphibious design minimizes infrastructure requirements, utilizing existing water surfaces and basic marine facilities. Communities would require minimal investment in patient loading equipment and communication systems, significantly reducing implementation costs compared to runway construction or expansion projects. RNAV/LPV Instrument approach procedures to a sea lane can be created using a third party engineering firm. For remote destinations beyond the range of the aircraft, fueling trailers or barges are are a cost effective alternative to fixed airport fuel systems or fuel trucks.

Conclusion

The amphibious twin-engine turbojet represents a transformative technology for Labrador and SE Asian coastal medical services, addressing fundamental accessibility challenges that have persisted for decades. Its combination of range, pressurization, and amphibious capability creates a comprehensive solution that improves patient outcomes while reducing operational costs. The aircraft's introduction would establish a medevac operator as a global leader in remote medical services, demonstrating how innovative aviation technology can overcome geographic barriers to essential healthcare.

The implementation of this aircraft fleet would fundamentally alter the healthcare landscape for remote coastal communities, transforming emergency medical services from a weather-dependent, multi-stage process to a reliable, direct-response capability. This advancement represents not merely a technological upgrade, but a commitment to ensuring that geographic isolation no longer determines access to life-saving medical care.

Note: Distance calculations are approximate and based on great circle routing. Actual operational distances may vary based on weather routing and air traffic control requirements. All nautical mile measurements assume standard atmospheric conditions.

Prepared for Pepin Aero by Dickson Aerospace, LLC. 2025.