Vibration related **Formulas**

Frequency and Period:

• Frequency = 1/Period = $\frac{1}{T} \frac{Cycles}{Second}$ or Hz

• Period = T =
$$\frac{Second}{Cycle}$$

Data Sampling:

- Tmax (no overlap) = $\frac{(60)(\#FFT \ Lines)}{Fmax \ (CPM)} = \frac{(60)(Sample \ Size)}{(2.56)(Fmax)}$ Tmax (sec) (with overlap) = $\frac{(60)(\#FFT \ Lines)}{Fmax \ (CPM)}$ + ((NO. Samples with overlap) * (1- overlap %)) * $\frac{(60)(\#FFT \ Lines)}{Fmax(CPM)}$)

• # Revolutions =
$$\frac{(\#FFT \ Lines)(RPM)}{Fmax}$$

• Fmax (CPM) =
$$\frac{(\#FFT Lines)(RPM)}{\#Revolutions}$$

Where:

- Fmax = Maximum Spectral Frequency (CPM) •
- *Tmax* = Sampling period in sec to capture one data sample
- Revolutions = # Revolutions captured in the Time Domain. # Revolutions controlled by Accurex bases on component speed.
- Sample Size = Number of Analog to Digital Conversions used to construct the Time Waveform.

#Samples
256
512
1024
2048
4096
8192
16,384
32,768

Data Sampling Examples:

Accurex LF Spectrum: 800 lines with an Fmax of 12,000 cpm.

Collection time (one sample): $Tmax = \frac{(60)(800)}{12,000} = 4$ seconds Collection time 4 samples with 75% overlap: $Tmax = \frac{(60)(800)}{12,000} + ((3^{*}(1-.75))^{*}\frac{(60)(800)}{12,000})$ = 4 + 3 = 7 seconds

Accurex constructed Time Waveform # Revolutions:

Whereas revolutions are equal to:

revolutions = (#Signal Points X CPM)/(Sampling Frequency in CPM)

Example:

revolutions = (128,000 X 120)/(600,000 X 2.56)
revolutions = 15,360,000/1,536,000
revolutions = 10

Shaft Speed	Sampling	FMax	# Signal	Shaft Revolutions	Time for 1	Resolution
RPM	Frequency		Points	in Waveform	Sample (sec.)	(cpm)
< 59	25.6k Hz	600,000 CPM	512k	19.6 or less	20	1.17
59-117	25.6k Hz	600,000 CPM	256k	9.83-19.5	10	2.34
118-120	25.6k Hz	600,000 CPM	128k	9.83-10.0	5	4.7
121-234	51.2k Hz	1,200,000 CPM	256k	10.083-19.5	5	4.7
235-468	51.2k Hz	1,200,000 CPM	128k	9.79-19.5	2.5	9.4
469-899	51.2k Hz	1,200,000 CPM	64k	9.77-18.179	1.25	18.75
900-1899	51.2k Hz	1,200,000 CPM	32k	9.375-19.78	.625	37.5
1900-3999	51.2k Hz	1,200,000 CPM	16k	9.9-20.83	.3125	75
4000-7500	51.2k Hz	1,200,000 CPM	8k	10.42-19.53	.1563	150
>7500	51.2k Hz	1,200,000 CPM	4k	9.77 or greater	.078	300
Eagle						
469-899	12.8k Hz	300,000 CPM	16K	9.77-18.179	1.25	18.75
900-1899	25.6k Hz	600,000 CPM	16K	9.375-19.78	.625	37.5
1900-3999	25.6k Hz	600,000 CPM	8K	9.9-20.83	.3125	75

Vibration Amplitude = $\frac{Dynamic Force}{Dynamic Resistance}$

RMS vs Peak vs Peak-to-Peak:

- Peak-to-Peak Vibration = 2 times Peak Vibration
- Peak Vibration = 0.5 X Peak-to-Peak Vibration
- Peak Vibration = 1.414 X RMS Vibration
- RMS Vibration = .707 X Peak Vibration

CPM/Hz Conversion:

- CPM = Hz * 60
- Hz = $\frac{CPM}{60}$

Frequency Resolution, Bandwidth, Separating Frequency

- Frequency Resolution = $\frac{Frequency Span}{\# FFT Lines}$
- Separating Frequency (difference between two frequencies to be identified) = ≥ 2 * Frequency Resolution * Window Noise Factor
- Required #FFT Lines = $\frac{2*Window Noise Factor*Frequency Span}{Separating Frequency}$

Where:

- Window Noise Factor =
 - 1.0 for Uniform or Rectangular Window
 - 1.5 for Hanning Window (Used in Data Collection)

Approximates of Rolling Element Bearing Defect Frequencies

- Approx BPFI = (Nb/2 + 1.2) X RPM
- Approx BPFO = (Nb/2 1.2) X RPM
- Approx BSF = $\frac{1}{2}(Nb/2 1.2/Nb)$ X RPM
- Approx FTF = (1/2-1.2/Nb) X RPM

Where: Nb = Number of Rolling Elements

Blade Pass Frequency:

• BPF= # Blades * RPM

Gear Mesh Frequency:

• # Gear Teeth * # Gear RPM

Induction Motors:

- $N_s = Synchronous Speed = \frac{120 Fl}{Poles}$
- $F_s = Slip Frequency = N_s RPM$ (Actual)
- F_p = Pole Pass Frequency = $F_s * #Poles$
- RBPF = Rotor Bar Pass Frequency = #Rotor Bars * RPM
- F_1 = Line Frequency

Belt Frequencies:

Flat or V Belt:

• Belt Speed = $\frac{3.142*Pulley RPM*Pulley Pitch Diameter}{Belt Length}$

Timing Belt Frequency:

• Pulley RPM * # Pulley Teeth

dB Conversions:

Calculate dB from ratio:

• 20Log(ratio) = dB

Calculate ratio from dB:

• 10^(dB/20) = Ratio