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Executive	Summary	
This	briefing	synthesizes	insights	from	recent	scientific	publications	to	highlight	two	convergent,	yet	
distinct,	frontiers	in	advanced	computing:	the	emergence	of	Artificial	Superintelligence	for	AI	research	
(ASI4AI)	as	exemplified	by	ASI-ARCH,	and	the	complex,	phased	trajectory	of	quantum	computing's	
impact	on	AI.	The	core	message	is	that	AI	is	increasingly	capable	of	self-innovation,	evidenced	by	
systems	like	ASI-ARCH	that	autonomously	discover	novel	architectures,	thereby	overcoming	human-
limited	research	bottlenecks.	Simultaneously,	quantum	computing,	while	still	in	its	early	stages,	is	a	
dual-purpose	technology:	AI	is	already	proving	invaluable	in	advancing	quantum	hardware	and	
software,	and	in	the	medium-to-long	term,	quantum	machines	are	projected	to	accelerate	specific	AI	
tasks,	particularly	in	optimization	and	complex	data	analysis,	laying	the	groundwork	for	a	"quantum-AI	
synergy."	However,	significant	challenges,	particularly	qubit	stability	and	the	"dynamic	graph	replay"	
problem	for	photonic	systems,	remain	critical	hurdles.	

1.	ASI-ARCH:	The	AlphaGo	Moment	for	Model	

Architecture	Discovery	and	Self-Accelerating	AI	
The	"SII-GAIR"	paper	introduces	ASI-ARCH,	a	groundbreaking	system	demonstrating	Artificial	
Superintelligence	for	AI	research	(ASI4AI)	in	neural	architecture	discovery.	This	system	marks	a	
paradigm	shift	from	"automated	optimization	to	automated	innovation,"	enabling	AI	to	autonomously	
conduct	end-to-end	scientific	research	in	designing	AI	models.	

1.1	Key	Achievements	and	Paradigm	Shift	

• Autonomous	Innovation:	ASI-ARCH	moves	"beyond	traditional	Neural	
Architecture	Search	(NAS),	which	is	fundamentally	limited	to	exploring	
human-defined	spaces,"	by	"autonomously	hypothesizing	novel	
architectural	concepts,	implementing	them	as	executable	code,	training	
and	empirically	validating	their	performance	through	rigorous	
experimentation."	



• Scale	of	Discovery:	The	system	"conducted	1,773	autonomous	
experiments	over	20,000	GPU	hours,	culminating	in	the	discovery	of	106	
innovative,	state-of-the-art	(SOTA)	linear	attention	architectures."	

• Emergent	Design	Principles:	Like	AlphaGo's	legendary	"Move	37,"	ASI-
ARCH's	discoveries	"demonstrate	emergent	design	principles	that	
systematically	surpass	human-designed	baselines	and	illuminate	
previously	unknown	pathways	for	architectural	innovation."	

• Scaling	Law	for	Scientific	Discovery:	Crucially,	the	research	establishes	
"the	first	empirical	scaling	law	for	scientific	discovery	itself—
demonstrating	that	architectural	breakthroughs	can	be	scaled	
computationally,	transforming	research	progress	from	a	human-limited	to	
a	computation-scalable	process."	This	implies	that	"More	Computation	
More	Discoveries."	

• Open-Source	Contribution:	To	democratize	AI-driven	research,	the	
complete	framework,	discovered	architectures,	and	cognitive	traces	are	
open-sourced.	

1.2	The	ASI4AI	Framework	
ASI-ARCH	operates	as	a	"closed-loop	system	for	autonomous	architecture	discovery,"	structured	around	
four	core	modules:	

• Researcher:	The	"creative	engine"	that	"proposes	novel	model	
architectures	based	on	historical	experience	and	human	expertise."	It	uses	
a	two-level	sampling	approach	from	a	candidate	pool	to	balance	building	
on	proven	success	with	exploring	new	directions.	

• Engineer:	"Conducts	empirical	evaluations	by	executing	them	in	a	real-
world	environment."	This	module	is	robust,	featuring	a	"self-revision	
mechanism"	that	automatically	captures	error	logs	and	tasks	the	agent	
with	debugging	its	own	code	until	training	is	successful.	

• Analyst:	"Performs	analytical	summaries	of	the	results	to	acquire	new	
insights,"	enriching	its	findings	from	both	a	"Cognition	Base"	(human	
expert	literature)	and	its	own	"History	Experience	Cognition."	

• Cognition	Base:	A	knowledge	base	derived	from	nearly	100	seminal	
papers	in	linear	attention,	where	a	dedicated	LLM	extracts	"applicable	
scenario,	the	proposed	algorithm,	and	the	historical	context."	This	
provides	"highly	relevant,	information-dense,	and	targeted	way	for	the	
Researcher	module	to	find	solutions."	

• Fitness	Function:	A	"composite	fitness	combines	both	quantitative	and	
qualitative	dimensions,"	including	"Objective	Performance"	(benchmark	
scores	and	loss)	and	"Architectural	Quality"	(LLM-as-judge	assessment	of	



innovation,	complexity,	correctness,	and	convergence).	This	prevents	
"reward	hacking."	

1.3	Emergent	Design	Intelligence	and	Origin	of	"Good	Designs"	

• Stability	of	Complexity:	ASI-ARCH	"does	not	exploit	complex	component	
stacking	as	a	simple	strategy	for	performance	improvement,"	with	the	
majority	of	architectures	consistently	falling	within	a	stable	parameter	
range	(e.g.,	400-600M).	

• Component	Preferences:	While	exploring	many	novel	components,	"the	
top-performing	models	converge	on	a	core	set	of	validated	and	effective	
techniques,"	mirroring	human	scientific	methodology	of	"iterating	and	
innovating	upon	a	foundation	of	proven	technologies,	rather	than	pursuing	
novelty	for	its	own	sake."	

• Shift	from	Cognition	to	Analysis	for	SOTA:	Analysis	of	the	origin	of	
design	ideas	shows	that	"across	the	entire	population	of	generated	
architectures,	a	majority	of	design	ideas	originate	from	the	cognition	
phase."	However,	for	"top-performing	architectures	(the	model	gallery),	
the	proportion	of	design	components	attributed	to	the	analysis	phase	
increases	markedly."	This	suggests	"achieving	true	excellence	requires	a	
deeper,	more	abstract	level	of	understanding"	and	that	"for	an	AI	to	
produce	breakthrough	results,	it	cannot	merely	reuse	past	successes...	
Instead,	it	must	engage	in	a	process	of	exploration,	summary,	and	
discovery	(a	reliance	on	analysis)	to	synthesize	novel	and	superior	
solutions."	

1.4	The	Dartmouth	Project	(1955)	Context	
The	original	"Dartmouth	Summer	Research	Project	on	Artificial	Intelligence"	proposal	from	1955,	
spearheaded	by	McCarthy,	Minsky,	Rochester,	and	Shannon,	laid	the	foundational	conjecture	for	AI:	
"every	aspect	of	learning	or	any	other	feature	of	intelligence	can	in	principle	be	so	precisely	described	
that	a	machine	can	be	made	to	simulate	it."	The	project	aimed	to	explore	how	machines	could	"use	
language,	form	abstractions	and	concepts,	solve	kinds	of	problems	now	reserved	for	humans,	and	
improve	themselves."	

• Early	Themes:	Key	aspects	identified	in	1955	included:	
• Automatic	Computers:	Recognizing	that	the	main	obstacle	was	"our	

inability	to	write	programs	taking	full	advantage	of	what	we	have."	



• Language	Use:	Speculating	that	"a	large	part	of	human	thought	consists	of	
manipulating	words	according	to	rules	of	reasoning	and	rules	of	
conjecture."	

• Self-Improvement:	"Probably	a	truly	intelligent	machine	will	carry	out	
activities	which	may	best	be	described	as	self-improvement."	

• Abstractions:	A	direct	attempt	to	classify	and	describe	machine	methods	
of	forming	abstractions	from	sensory	and	other	data.	

• Randomness	and	Creativity:	The	conjecture	that	"the	difference	between	
creative	thinking	and	unimaginative	competent	thinking	lies	in	the	
injection	of	some	randomness."	

ASI-ARCH's	ability	to	autonomously	discover	novel	architectures,	learn	from	its	own	experiments,	and	
"improve	themselves"	directly	addresses	the	long-standing	vision	articulated	in	the	Dartmouth	
proposal,	demonstrating	a	significant	leap	in	AI's	capacity	for	self-improvement	and	creative	problem-
solving.	

2.	Quantum	Computing	and	AI:	State	of	the	Art,	

Challenges,	and	Five-Year	Outlook	
The	integration	of	quantum	computing	(QC)	and	AI	is	a	complex,	two-way	street.	AI	is	currently	proving	
invaluable	in	advancing	QC,	while	QC's	impact	on	AI	is	still	largely	theoretical	but	holds	immense	long-
term	promise.	

2.1	State	of	Quantum	Computing	Hardware	and	Software	

• NISQ	Era:	QC	is	in	the	"Noisy	Intermediate-Scale	Quantum	(NISQ)	era,"	
with	leading	platforms	(superconducting	circuits,	trapped	ions,	photonics,	
neutral	atoms)	having	"tens	to	a	few	hundred	qubits."	IBM's	"Condor"	
processor	broke	the	1000-qubit	barrier	in	2023.	

• Fidelity	Improvements:	Beyond	qubit	count,	fidelity	is	improving	
significantly;	IBM’s	“Heron”	chip	achieved	"3–5×	better	performance	
(99.9%	two-qubit	fidelities)."	IonQ	aims	for	"five-nines	(99.999%)	fidelity	
for	logical	two-qubit	operations	with	error	correction	by	end	of	2025."	

• Software	Maturity:	Open-source	frameworks	(Qiskit,	Cirq,	Pennylane)	
and	variational	quantum	algorithms	(VQAs)	are	state-of-the-art	for	near-
term	applications.	AI-driven	quantum	compilers	are	optimizing	gate	
sequences,	"cutting	two-qubit	gate	counts	by	20–50%."	

2.2	Key	Roadblocks	to	Quantum-Accelerated	AI	



Despite	rapid	progress,	significant	challenges	prevent	QC	from	broadly	accelerating	AI	training	today:	

• Decoherence	and	Error	Rates:	Qubits	are	"extremely	fragile,"	and	errors	
accumulate.	"Quantum	error	correction	(QEC)	is	the	principled	solution,	
but	it	is	resource	intensive	–	typically	requiring	dozens	or	even	thousands	
of	physical	qubits	to	encode	a	single	logical	qubit."	

• Limited	Qubit	Count	and	Connectivity:	Current	processors	have	"at	most	
a	few	hundred	qubits,"	far	short	of	the	millions	or	billions	of	parameters	in	
modern	AI	models.	

• Quantum	Data	Encoding	(Input/Output	Bottlenecks):	"Feeding	large	
classical	datasets	into	a	quantum	computer	is	a	non-trivial	challenge."	The	
"data	loading	problem"	means	preparing	arbitrary	data	states	can	be	
prohibitively	slow.	

• Noisy	Gradients	and	Deep	Circuit	Depth:	Obtaining	precise	gradients	on	
quantum	hardware	requires	many	circuit	repetitions,	introducing	
"statistical	noise	into	the	training	loop."	Deep	neural	networks	would	
translate	to	deep	quantum	circuits,	which	are	"currently	impractical	due	to	
decoherence	constraints."	The	"barren	plateaus"	problem	also	indicates	
flat	optimization	landscapes.	

• Resource	Requirements	and	Algorithmic	Uncertainty:	Many	early	
quantum	speedup	proposals	have	been	"de-quantized"	(classical	
equivalents	found),	leading	to	"unsolved	problem	to	identify	which	AI	
workloads	truly	benefit	from	quantum	computing	and	justify	the	
overhead."	

2.3	How	AI	is	Advancing	Quantum	Computing	("AI	for	Quantum")	
AI	techniques	are	already	critical	for	improving	quantum	systems	across	several	avenues:	

• Error	Correction	and	Noise	Mitigation:	"AI	is	being	deployed	to	enhance	
quantum	error	correction	(QEC)."	Neural	network	decoders	show	
"superior	accuracy	and	speed	compared	to	classical	decoding	algorithms	
for	surface	codes."	RL	is	used	to	"adapt	error-correcting	strategies	on	the	
fly."	

• Quantum	Control	and	Calibration:	AI,	especially	reinforcement	learning,	
is	used	to	"fine-tune	these	to	maximize	gate	fidelity	and	qubit	coherence."	
RL	agents	have	achieved	"a	100×	reduction	in	average	gate	error	relative	
to	standard	gradient-based	pulse	optimization,	while	also	reducing	gate	
time	by	10×."	

• Quantum	Compiler	and	Architecture	Search:	AI-driven	transpilers	"cut	
gate	counts	nearly	in	half."	"Quantum	architecture	search	(analogous	to	



neural	architecture	search	in	classical	ML)"	is	emerging,	with	KANQAS	
automatically	generating	more	efficient	circuit	ansätze.	

• Predictive	Maintenance	and	Noise	Diagnostics:	AI	can	analyze	qubit	
performance	logs	to	"predict	when	a	qubit	needs	recalibration	or	identify	
subtle	sources	of	noise."	

2.4	Quantum	Computing	for	Accelerating	AI	("Quantum	for	AI")	
While	largely	theoretical,	several	pathways	exist	for	quantum-accelerated	AI:	

• Quantum	Speedups	in	Optimization:	Quantum	annealers	(D-Wave)	and	
QAOA	could	"accelerate	certain	optimization	tasks,"	such	as	
hyperparameter	tuning	or	network	architecture	search.	

• Quantum	Linear	Algebra	for	AI:	Quantum	algorithms	offer	"exponential	
speedups	for	certain	linear	algebra	tasks	under	ideal	conditions,"	which	
are	"heavy"	in	neural	network	training.	Google	researchers	theoretically	
showed	a	quantum	algorithm	could	learn	a	class	of	neural	networks	
exponentially	faster	than	classical	gradient-based	training	in	specific	cases.	

• Quantum	Neural	Networks	(QNNs)	and	Hybrid	Models:	Creating	QNNs	
that	run	on	quantum	hardware	or	as	components	in	hybrid	models	(e.g.,	
quantum	circuits	as	feature	mappers	or	kernel	functions).	

• Enhanced	Parallelism	and	Sampling:	Quantum	computers	could	
"evaluate	a	function	on	many	inputs	simultaneously"	or	accelerate	
"probabilistic	models"	through	quantum	sampling.	

2.5	Expert	Forecasts	and	Timeline	Estimates	
Experts	forecast	a	gradual	but	accelerating	influence:	

• Short	Term	(Now	to	~2026):	"Small-scale	integration	of	quantum	
methods	in	AI."	Proof-of-concept	quantum	advantage	in	narrow	tasks,	
potentially	a	"quantum	utility"	case	by	2025	where	QC	accelerates	a	
component	of	an	AI	pipeline.	

• Medium	Term	(2027–2030):	"Tangible	quantum	advantages	emerging	
for	certain	medium-scale	AI	applications."	Early	fault-tolerant	qubits	could	
enable	more	complex	algorithmic	speedups.	Training	models	with	millions	
of	parameters	via	quantum	subroutines.	

• Long	Term	(2031	and	beyond):	"Large-scale	integration	of	quantum	
computing	into	mainstream	AI	workflows"	with	fully	fault-tolerant	
quantum	computers	(hundreds	of	thousands	or	millions	of	qubits).	



Quantum	accelerators	in	data	centers	alongside	GPUs/TPUs,	leading	to	
entirely	new	AI	algorithms	leveraging	quantum	mechanics.	

3.	The	Quest	for	Stability:	Reducing	Decoherence	and	

Qubit	Overhead	
The	fundamental	challenge	for	quantum	computing	is	"quantum	decoherence,"	the	process	by	which	
delicate	quantum	states	are	corrupted	by	environmental	interaction.	This	directly	impacts	the	"qubit	
overhead	problem"	–	the	high	ratio	of	physical	to	logical	qubits	required	for	reliable	computation.	

3.1	Physical	vs.	Logical	Qubits	and	Decoherence	

• Fragile	Physical	Qubits:	Physical	qubits	are	"notoriously	sensitive	and	
prone	to	errors,"	with	current	gate	error	rates	"in	the	range	of	1%	to	
0.1%,"	far	too	high	for	complex	algorithms.	

• Robust	Logical	Qubits:	A	logical	qubit	is	a	"higher-level,	robust	
abstraction"	encoded	across	"a	large	collection,	or	cluster,	of	many	
physical	qubits"	using	Quantum	Error	Correction	(QEC).	This	introduces	
redundancy	without	violating	the	"no-cloning	theorem."	

• Sources	of	Decoherence:	These	include:	
• Environmental	Noise:	Thermal	fluctuations,	stray	electromagnetic	fields,	

mechanical	vibrations.	
• Material	Defects:	Microscopic	defects	like	"Two-Level	Systems"	(TLS)	in	

solid-state	platforms.	
• Control	Imperfections:	Noise	in	control	pulses	and	unwanted	"crosstalk"	

between	qubits.	
• QEC	Imperative:	QEC	protocols,	like	the	Shor,	Steane,	and	Surface	codes,	

detect	and	correct	errors	without	collapsing	the	quantum	state,	but	
achieving	"fault	tolerance"	(where	QEC	itself	doesn't	introduce	more	
errors)	is	the	ultimate	goal.	

• Qubit	Overhead:	The	"physical-to-logical	qubit	ratio...is	a	direct	and	
highly	sensitive	function	of	the	physical	error	rate."	Improving	physical	
error	rates	from	10^-2	to	10^-3	can	drastically	reduce	overhead	(e.g.,	from	
500+	to	~100	physical	qubits	per	logical	qubit).	

3.2	Strategies	for	Enhancing	Physical	Qubit	Stability	
A	"multi-front	research	campaign"	is	underway:	



• Materials	Science	and	Engineering:	"Forging	a	Quieter	Quantum	Realm"	
by	pursuing	purity	(isotopic	enrichment	for	spin	qubits,	defect	reduction	
for	superconducting	qubits),	engineering	interfaces,	and	exploring	novel	
quantum	materials	(MOFs,	perovskites).	

• Advanced	Fabrication	and	Manufacturing:	"Building	Better	Qubits	at	
Scale"	by	leveraging	"industrial	300mm	CMOS	foundries"	(Intel,	imec)	for	
uniformity	and	yield,	and	using	precision	techniques	like	advanced	
lithography	and	novel	etching	(e.g.,	"lifted"	superinductors).	

• Intrinsic	Hardware	Protection:	"Designing	Noise-Resilient	Qubit	
Architectures"	like	topological	qubits	(Majorana	Zero	Modes),	which	
encode	information	in	non-local	properties,	offering	"powerful,	built-in	
protection	against	local	errors."	Microsoft's	"Majorana	1"	processor	is	a	
recent,	significant	claim.	Other	designs	include	"Cat	Qubits"	(robust	against	
one	type	of	error)	and	advanced	superconducting	designs	(Fluxonium,	
Gatemon).	

• Active	Coherence	Preservation:	"Advanced	Control	Techniques"	such	as:	
• Dynamical	Decoupling	(DD):	Applying	precisely	timed	pulses	during	idle	

periods	to	"refocus"	qubits	and	cancel	errors.	Machine	learning	is	used	for	
"empirically,	learned	DD"	sequences.	

• Quantum	Optimal	Control	(QOC):	Designing	precise	control	pulse	shapes	
for	high-fidelity	gates,	exemplified	by	GRAPE	algorithms	and	"Response-
Aware	GRAPE	(RAW-GRAPE)"	for	hardware-aware	optimization.	

3.3	Comparative	Analysis	of	Leading	Qubit	Modalities	
Each	platform	has	unique	trade-offs:	

• Superconducting	Circuits	(Google,	IBM):Strengths:	Fast	gate	speeds	
(nanoseconds),	scalability	via	semiconductor	fabrication.	

• Challenges:	Short	coherence	times	(tens	to	hundreds	of	µs),	highly	
sensitive	to	environmental/material	noise,	limited	connectivity.	

• Trapped	Ions	(Quantinuum,	IonQ):Strengths:	Exceptional	stability	and	
fidelity,	very	long	coherence	times	(seconds	to	minutes),	all-to-all	
connectivity.	

• Challenges:	Slower	gate	operations	(microseconds),	complex	scaling	with	
lasers/optics.	

• Neutral	Atoms	(QuEra,	Pasqal):Strengths:	Massive	scalability	
(hundreds/thousands	of	atoms),	long	coherence	times,	dynamic	
reconfigurable	connectivity.	

• Challenges:	Difficult	high-fidelity	control/measurement	across	large	
arrays,	relatively	slow	gates.	



• Spin	Qubits	in	Silicon	(Intel):Strengths:	Long	coherence	times	(ms	to	
seconds,	especially	purified	silicon),	high	density,	CMOS	compatibility.	

• Challenges:	Qubit	variability,	sensitivity	to	charge	noise,	robust	long-
range	coupling.	

• Photonic	Qubits	(PsiQuantum,	Xanadu):Strengths:	Robust	against	
decoherence,	room	temperature	operation,	ideal	for	quantum	networking.	

• Challenges:	Photons	do	not	naturally	interact	(probabilistic	gates),	photon	
loss,	difficult	deterministic	two-qubit	gates.	

3.4	Photonic	Quantum	Computing	and	Dynamic	Graph	Replay	

(Specific	Challenge)	
The	"Absolutely"	source	provides	a	critical	perspective	on	photonic	QC's	current	limitations,	especially	
concerning	AI	training:	

• Quantum	Networking	(Photonic	Strength):	Photons	are	"ideal	for	
scalable,	internet-based	quantum	architectures"	due	to	their	speed,	
immunity	to	decoherence,	and	ability	to	preserve	quantum	properties	over	
long	distances.	Use	cases	include	QKD,	quantum	teleportation,	and	
distributed	QC.	

• Boson	Sampling	(Photonic	Use	Case):	A	"non-universal	quantum	
computing	task	designed	to	demonstrate	quantum	advantage	using	non-
interacting	photons."	It's	"quantum	computationally	hard	for	classical	
systems,"	demonstrating	near-term	quantum	advantage	for	"narrow,	well-
defined	problems,"	but	is	"not	programmable	or	scalable	for	full	
algorithms	(like	LLM	training)."	

• Dynamic	Graph	Replay	(Photonic	Weakness):	This	is	the	process	in	
deep	learning	frameworks	(like	PyTorch)	where	a	computation	graph	is	
built	dynamically	during	the	forward	pass	and	"replayed	in	reverse	to	
compute	gradients"	during	backpropagation.	Photonic	quantum	
computing	"faces	major	challenges	here"	because:	

• No	quantum	memory:	"Photons	can't	be	easily	paused	or	stored	mid-
circuit."	

• Destructive	measurement:	"Reading	a	photon's	state	collapses	it	(no	
replay)."	

• No	cloning	theorem:	"Quantum	states	can't	be	copied	to	simulate	replay."	
• Lack	of	conditional	logic:	"Most	photonic	circuits	are	fixed-function."	
• Conclusion	for	Photonic	QC	in	AI	Training:	"Photonic	quantum	systems	

excel	at	communication	and	static	sampling,	but	currently	struggle	with	
dynamic,	memory-intensive	computation	like	backpropagation.	For	that	



reason,	qubit-based	quantum	systems	(with	memory	and	gate	control)	are	
more	viable	for	gradient	computation	in	LLMs."	

4.	Synthesis	and	Future	Outlook	
The	field	is	witnessing	a	"deeply	symbiotic	relationship"	where	"no	single	strategy	will	be	a	'silver	
bullet'."	Progress	requires	a	"synergistic	convergence"	across	materials,	fabrication,	architecture,	and	
control.	AI	is	a	critical	enabler	for	quantum	computing's	advancement,	while	quantum	computing	offers	
the	potential	for	paradigm-shifting	acceleration	of	AI	in	the	future.	

• AI's	Self-Acceleration:	ASI-ARCH	demonstrates	that	AI	itself	can	
accelerate	the	pace	of	its	own	innovation,	moving	beyond	human-limited	
research	bandwidth.	This	shift	from	"human-only	research"	(estimated	
2000	hours/model)	to	"computation-scalable	process"	is	transformative.	

• Quantum's	Dual	Role:	AI	is	actively	addressing	quantum's	fundamental	
challenges	(decoherence,	error	correction,	control).	In	return,	once	
quantum	hardware	matures,	it	promises	to	enhance	AI,	particularly	in	
optimization,	linear	algebra,	and	exploring	new	model	paradigms.	

• Challenges	Remain:	The	"1,000-to-1"	physical-to-logical	qubit	overhead	
remains	a	formidable	obstacle,	particularly	for	general-purpose	fault-
tolerant	quantum	computers.	Specific	qubit	modalities,	like	photonics,	face	
unique	challenges	in	areas	critical	for	AI	training,	such	as	dynamic	graph	
replay.	

• Gradual	Integration:	The	consensus	points	to	a	phased	integration:	small-
scale	AI	demonstrations	by	~2026,	medium-scale	advantages	by	2030,	and	
large-scale,	general-purpose	benefits	beyond	2030.	

• Emergence	of	New	AI:	The	long-term	vision	involves	"entirely	new	AI	
algorithms"	that	explicitly	leverage	quantum	mechanics,	leading	to	
"quantum-centric	supercomputing"	where	quantum	and	classical	
resources	co-evolve.	

This	two-way	street	between	AI	and	quantum	computing,	coupled	with	AI's	newfound	capacity	for	self-
innovation,	sets	the	stage	for	a	period	of	unprecedented	computational	advancement.	
 
 


