
Influence of Quantum Algorithms on Qubit 

Decoherence 

Quantum Decoherence: Quantum algorithms run on fragile qubits that can lose their coherence 

when disturbed by the environment. Decoherence is the process of a qubit’s quantum state 

decaying into a classical mixture due to unintended entanglement with its surroundings, causing 

errors and loss of information. The extent to which decoherence impacts a computation depends 

not only on the hardware but also on the algorithm’s characteristics. Below, we explore how 

certain algorithm features can inherently lead to more (or less) decoherence and how some 

algorithms or strategies are intrinsically more resilient to noise in today’s noisy intermediate-

scale quantum (NISQ) devices. 

Algorithm Characteristics Affecting Decoherence 

A quantum algorithm’s structure — such as its circuit depth, number of qubits, and types of 

operations — strongly influences how much decoherence accumulates during execution. Key 

factors include: 

• Circuit Depth (Execution Time): Deeper circuits take longer to run, increasing the 

chance that qubits decohere before the algorithm finishes. If a circuit requires sequential 

application of thousands of gates, it may exceed the qubits’ coherence time. In practice, 

on current hardware with coherence times on the order of tens of microseconds, circuits 

deeper than a few hundred operations often degrade into essentially random output due to 

decoherence. Each additional layer of gates is another opportunity for noise to creep in. 

For example, algorithms utilizing quantum phase estimation (which involve long 

sequences of controlled rotations) or iterative amplification steps suffer greatly from 

depth-induced decoherence. One Stack Exchange user notes that under today’s 

constraints “even circuits with depth around 200” can fail (yielding a uniform random 

result), and high-depth algorithms like HHL (which uses phase estimation) are far more 

affected by decoherence than others. 

• Number of Qubits and Entangled States: Algorithms using many qubits or creating 

large entangled states are more vulnerable to decoherence. Every qubit is a potential point 

of failure: as you entangle qubits, an error or decoherence in one can spoil the entire 

multi-qubit state. Thus, the more qubits involved, the higher the cumulative decoherence 

risk. Highly entangled states are especially fragile: if any part of an entangled state 

decoheres, the entanglement – and the algorithm’s quantum advantage – is lost. Grover’s 

search is an example where the algorithm deliberately entangles all qubits each iteration; 

it requires the synthesis and handling of highly entangled states that are very prone to 

decoherence. As the system size grows, the success probability in Grover’s algorithm can 

drop significantly due to noise, effectively limiting the useful number of iterations. (In 

fact, studies found that Grover’s algorithm can tolerate only a certain error rate that 

shrinks as the database size N grows, with too much noise completely negating the 

speedup.) 



• Gate Types and Operation Fidelity: The kind of quantum gates an algorithm uses will 

impact decoherence. Single-qubit gates are typically fast and relatively high-fidelity, 

whereas multi-qubit entangling gates (like CNOTs or controlled-$U$ gates) are slower 

and more error-prone. Algorithms that heavily use entangling gates inherently expose 

qubits to more noise. Each two-qubit gate not only has a higher chance of error but also 

entangles the qubits’ error channels. For instance, Shor’s algorithm for factoring 

requires numerous controlled-NOTs and controlled rotations (especially in its modular 

exponentiation and quantum Fourier transform steps). These entangling operations, 

combined with the large overall gate count, mean Shor’s algorithm will accumulate 

substantial errors unless the hardware is exceptionally clean or error-corrected. In fact, 

many powerful algorithms like Shor’s are known to require fault-tolerant quantum 

computing (error-corrected qubits) to run successfully, precisely because our noisy 

gates and finite coherence times would otherwise corrupt the computation. By contrast, 

an algorithm using mostly local operations or shorter-range entanglement can sometimes 

suffer less decoherence. 

• Measurement and Reset Operations: Measurement collapses a qubit’s state, which by 

itself “ends” the quantum coherence of that qubit. Algorithms that allow mid-circuit 

measurements and qubit resets can sometimes mitigate decoherence by not requiring all 

qubits to remain coherent for the entire algorithm. A complex algorithm might be broken 

into segments: after one part completes, measuring some qubits (and possibly 

reinitializing them for reuse) can prevent errors on those qubits from propagating further. 

For example, certain implementations of phase estimation measure qubits one at a time to 

extract phase bits, which means each measured qubit is no longer needed coherently for 

the later steps. This segmented approach can reduce the effective coherence time 

required. However, measurement operations themselves must be fast and accurate; slow 

measurements could stall other qubits and let decoherence slip in. Generally, algorithms 

designed with shorter coherent segments (and opportunities for periodic error checks or 

resets) cope better on real hardware than algorithms that require one long uninterrupted 

quantum evolution. 

Examples – Decoherence in Specific Algorithms: Algorithmic demands vary widely, so some 

algorithms inherently push hardware to its decoherence limits more than others: 

• Shor’s Algorithm (Factoring): Shor’s algorithm is depth-heavy and qubit-heavy. To 

factor even modest-sized numbers, it needs many qubits and a long sequence of 

operations (modular exponentiation circuits, followed by a QFT). This exceeds current 

coherence times by far. As a result, running Shor’s algorithm at scale is currently 

impractical without error correction. It’s well acknowledged that implementing Shor’s on 

a real device essentially requires fault tolerance – error-corrected logical qubits that can 

survive the lengthy computation. In other words, Shor’s algorithm will naturally incur 

extreme decoherence on physical qubits; any successful large-scale run would need to 

correct errors as it goes. In small-scale demonstrations (e.g. factoring 15), Shor’s can be 

run on NISQ hardware, but only with very limited gate depth and thus limited problem 

size – larger instances would decohere long before completion. 

• Grover’s Search: Grover’s algorithm iteratively amplifies the amplitude of the target 

state, requiring on the order of $\sqrt{N}$ iterations for an unstructured database of size 



$N$. Each iteration applies an oracle and a diffusion operation, both of which typically 

involve multi-qubit entangling operations across all qubits. As noted, the fully entangled 

state at the end of each iteration is vulnerable to decoherence. Noise in any iteration both 

reduces the amplitude amplification achieved and can introduce error in the marked 

state’s amplitude. The effect of decoherence in Grover’s algorithm is to flatten out the 

amplitude distribution – essentially undoing the advantage of the algorithm. Indeed, if 

one naively keeps applying Grover iterations on a noisy device, the optimal number of 

iterations will shift or the success probability will plateau below 100%. Research 

simulations show an exponential damping of Grover’s success probability as noise 

increases, and there exists a noise threshold beyond which Grover’s algorithm yields no 

speedup. Thus, while Grover’s algorithm is theoretically quadratic in speedup, in practice 

its advantage rapidly degrades with even modest decoherence. Shallow Grover circuits 

(few iterations on small $N$) can tolerate the low noise of today’s devices, but larger 

searches would require error-corrected operations or fewer total operations to avoid 

overwhelming decoherence. 

• Quantum Machine Learning & Variational Algorithms: Many quantum machine 

learning algorithms (quantum neural networks, QSVM, etc.) and variational hybrid 

algorithms (like VQE for chemistry or QAOA for optimization) intentionally use 

shallower circuits with fewer qubits, precisely to fit within coherence limits. These 

algorithms often employ an ansatz – a parameterized circuit with a fixed modest depth – 

and rely on a classical optimizer to tweak parameters. Because the quantum circuit part is 

short, there is inherently less time for decoherence to act. For example, a variational 

quantum eigensolver circuit might be only tens of gates deep, producing an expectation 

value that is read out before the qubits decohere significantly. One practitioner observes 

that VQE and QAOA “run smoothly even on current noisy hardware,” whereas deeper 

algorithms like those using phase estimation quickly run into decoherence issues. The 

smaller gate count and shallower depth mean fewer error opportunities. Moreover, these 

algorithms typically use relatively local entanglement (e.g. nearest-neighbor couplings or 

hardware-efficient entanglers), which can have higher fidelity on a given device. 

Quantum machine learning circuits also often prioritize short depths; for instance, a 

quantum classifier might use just a few layers of gates to embed data and train on it. In 

summary, algorithms designed for NISQ devices inherently try to minimize circuit depth 

and entanglement to reduce decoherence impact. (We will further discuss how variational 

algorithms not only cause less decoherence but can also tolerate more noise in the next 

section.) 

Noise-Tolerant Algorithms and Decoherence Mitigation 

While no algorithm is immune to noise, some are more resilient or tolerant to decoherence and 

errors. Typically, these are algorithms deliberately tailored for NISQ-era devices, incorporating 

strategies to mitigate or compensate for noise: 

• Hybrid Quantum-Classical Algorithms (Variational Approaches): Variational 

algorithms like VQE (Variational Quantum Eigensolver), QAOA (Quantum 

Approximate Optimization Algorithm), and other quantum machine learning routines 

are often cited as promising for NISQ hardware because of their inherent noise tolerance. 



Instead of running one long quantum circuit, these algorithms run many short quantum 

circuits and use a classical feedback loop to adjust parameters. This hybrid approach 

limits the quantum coherent time needed in any single run. As noted, QAOA and VQE 

can execute within the shallow circuit depth that today’s qubits can maintain. In fact, 

QAOA is “particularly promising for near-term devices, as it is resilient to certain noise 

and does not require full error correction”. The algorithm uses only a few alternating 

layers of quantum gates (problem Hamiltonian and mixing Hamiltonian), and numerical 

studies have found it can still find good approximate solutions even when those gates are 

noisy, as long as the noise is not too extreme. Likewise, variational quantum circuits can 

sometimes adjust to hardware noise: the classical optimizer may find parameter values 

that partially account for systematic errors or noise biases. Recent research has shown 

that variational algorithms can mitigate some effects of noise by adapting their optimized 

parameters. Essentially, if there are multiple ways (parameter sets) to prepare a target 

state in an ideal scenario, a noise-aware optimizer might settle on the variant that is most 

robust against the specific noise present. This phenomenon was demonstrated by adding 

redundant gates (over-parameterization): the algorithm then had freedom to find a noise-

resilient solution that produced the correct outcome despite noise. Such inherent 

adaptability means VQE or QAOA might still yield a useful result (like a near-optimal 

energy or solution) even when each gate isn’t perfect – whereas a rigid algorithm with a 

predetermined sequence (e.g. Shor’s) has no flexibility to “work around” noise. 

• Error Mitigation Techniques: In the absence of full error correction, algorithms can be 

paired with error mitigation methods to tolerate decoherence. Error mitigation does not 

prevent decoherence but reduces its impact on the final result through clever post-

processing or calibration. NISQ algorithms often “require error mitigation techniques” 

to get reliable outcomes. For example, one common approach is zero-noise 

extrapolation, where the circuit is run at various artificially increased noise levels and 

the results are extrapolated back to zero noise. Another technique is probabilistic error 

cancellation, which statistically cancels out error effects but at the cost of more samples. 

These methods exploit the hybrid nature of algorithms like VQE: since they measure 

expectation values, one can afford to run the circuit many times and apply post-

processing to estimate what the result would be with less noise. Unlike quantum error 

correction, mitigation doesn’t need extra qubits or feedback during the computation; it is 

done by analyzing the outputs of noisy runs. The trade-off is increased sampling 

(runtime) overhead, but it can dramatically improve effective fidelity. For instance, IBM 

and other researchers have used error mitigation to achieve chemical accuracy in VQE 

experiments that would otherwise have been spoiled by decoherence. Because of such 

techniques, variational algorithms have shown surprising levels of resilience – they can 

sometimes reach the correct answer within uncertainty, even when each gate or qubit is 

noisy, by filtering out or compensating for those errors. 

• Near-Term Demonstrations of Noise Resilience: We already see evidence that certain 

algorithms combined with mitigation can push the boundaries of hardware. For example, 

a recent experiment on IonQ’s 11-qubit ion-trap device ran a fairly complex VQE circuit 

(finding the ground-state energy of an $O_2$ molecule) with 99 two-qubit gates in the 

circuit. Without any error mitigation, the result was significantly off – about a 30% error 

in the energy – due to decoherence and gate imperfections. However, by applying an 

error mitigation software layer (in this case QEDMA’s error suppression + mitigation 



routine), the experimenters obtained a ground energy very close to the ideal noise-free 

value. In other words, the variational algorithm still succeeded in the presence of noise 

once mitigation was applied. This illustrates that algorithms like VQE are noise-tolerant 

up to a point: they can yield useful results on real hardware, as long as we can suppress 

or post-correct for some of the decoherence effects. By contrast, a deep algorithm lacking 

such mitigation would have simply failed to give a meaningful answer. The success of 

the $O_2$ VQE (as well as similar small-scale QAOA and quantum machine learning 

experiments) showcases that near-term algorithms can handle noise by design. They 

utilize short circuits, incorporate classical optimization (which can adjust to noise), and 

leverage error mitigation when needed – all of which improve their robustness on actual 

devices. 

Noise resilience in action – an experimental VQE on a noisy device with and without error 

mitigation. The chart shows the ground-state energy of an $O_2$ molecule obtained from a VQE 

circuit on IonQ’s Aria ion-trap computer. Red indicates the raw result with no error mitigation, 

which is about 30% off from the true value (black). Blue shows the result after applying an 

error-mitigation technique, nearly matching the ideal noise-free value (black) within error bars. 

This demonstrates that variational algorithms, especially when aided by error mitigation, can 

tolerate a significant amount of noise and still produce accurate outcomes on NISQ hardware. 

• Robust Algorithmic Design: Beyond variational methods, researchers are exploring 

algorithm designs that inherently have noise resilience. For example, some quantum 

algorithms can be reformulated to detect and discard errors (a form of postselection). 

Others use randomized compiling (turning coherent errors into easier-to-average-out 

random noise). There are also proposals for algorithms that periodically refresh qubits 

(e.g. teleportation-based circuit cutting or mid-circuit measurement of ancillas to remove 

entropy). These approaches blur the line between an algorithm and an error-correcting 

protocol, but they point toward future algorithms that degrade more gracefully under 

noise. A simple case in point is iterative phase estimation: by measuring one qubit at a 

time (and resetting it) to build up an answer bit-by-bit, the algorithm avoids needing all 

qubits to stay coherent throughout – trading longer overall runtime for the ability to 

tolerate decoherence on previously measured qubits. Hybrid quantum-classical loops are 

another form of robustness: if a quantum trial is too noisy, a classical optimizer might 

adjust parameters or repeat the trial, effectively treating the noise as something that can 

be learned and countered (to an extent). 

It’s important to note that “noise-tolerant” doesn’t mean immune. Variational algorithms, for 

example, can still fail if noise is too high – in fact, excessive noise can cause “barren plateaus” 

in the optimization landscape (i.e. vanishing gradients), making it impossible for the classical 

optimizer to find good parameters. There is typically a threshold noise level below which the 

algorithm’s performance degrades gradually (often roughly linearly with noise strength) and 

above which the algorithm can no longer find the correct solution. Experiments like the one 

above succeed because the device noise was just low enough and mitigation was effective 

enough to stay below that catastrophic threshold. If one tried the same algorithm on a much 

noisier device, no amount of parameter tweaking might save it. Thus, resilience is relative: 

QAOA and VQE can tolerate some decoherence and still work, whereas algorithms like Shor’s 



or unmitigated Grover’s require far more stringent noise levels to stand any chance. This is why 

the community believes NISQ-era quantum advantage will likely come (if at all) from 

algorithms that are shallow, hybrid, and can leverage error mitigation. 

Practical Implications and Outlook 

The interplay between quantum algorithms and decoherence directly affects what can be 

achieved with current quantum hardware. Algorithms with greater inherent tolerance for noise 

(or lower demands on coherence) are the ones being actively explored on real devices today. In 

practice, this means focusing on variational algorithms, hybrid quantum-classical workflows, and 

specialized near-term algorithms, since these can often fit within the tight constraints of 

coherence time and gate fidelity. Problems like quantum chemistry ground-state estimation, 

small optimization tasks, or machine learning prototypes have been tackled with some success on 

NISQ machines using these methods – precisely because the algorithms were designed to be 

noise-friendly. On the other hand, the algorithms that promise exponential speedups in theory 

(factoring, long-depth quantum simulations, large Grover searches) remain out of reach without 

major advances in error correction. As one source succinctly puts it: many quantum algorithms 

(e.g. Shor’s) simply “require fault-tolerant quantum computing” and are years away, while the 

ones we can run now (VQE, QAOA, etc.) have limited scope but don’t demand full error 

correction. 

In summary, quantum algorithms influence decoherence sensitivity in that their required 

circuit size and structure determine how long and how delicately qubits must maintain quantum 

states. Algorithms that keep circuits short, use fewer qubits, or adapt to hardware limitations will 

cause less decoherence accumulation by design, whereas algorithms that are lengthy and 

communication-intensive will push qubits beyond their coherence limits and thus suffer more 

from decoherence. The most promising near-term algorithms are those that are designed with 

noise in mind – either inherently (through shallow depth or robustness) or through accompanying 

error-mitigation techniques – to maximize the useful work extractable from today’s imperfect 

quantum machines. Each of these strategies aims to bridge the gap between what quantum 

algorithms theoretically could do and what current noisy hardware can actually manage. Until 

quantum error correction is fully realized to actively combat decoherence during computation, 

the choice of algorithm and its noise tolerance will remain a critical factor in achieving any 

practical quantum advantage on real devices. 
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