Chapter 1: Intuitive Proofs

The History of every major Galactic Civilization tends to pass through
three distinct and recognizable phases, those of Survival, Inquiry and
Sophistication, otherwise known as the How, Why, and Where phases.
For instance, the first phase is characterized by the question “How can
we eat?” the second by the question “Why do we eat?”’and the third by
the question “Where shall we have lunch?”

— Douglas Adams, The Hitchhiker’s Guide to the Galazry

Your mathematics education will also pass through these phases. The first phase
is characterized by the question, “How can I solve this integral?” The second phase

by the question, “Why does my solution work?” And the third phase by the question,
“Where should we explore next?”

Indeed, your previous “Phase 17 math classes were probably focused on compu-
tation, like how to use the fundamental theorem of calculus to solve a problem. In
your future “Phase 2" math classes, you will seek to understand why the fundamental
theorem of calculus is true.! In your earlier “Phase 17 math courses, you were taught
to use the quadratic formula to solve second-degree polynomials. In your future
“Phase 2" math courses, you will learn that there are similar formulas for third- and
fourth-degree polynomials. .. but not for fifth-degree polynomials — and you will see
precisely why that is the case. Your future courses will also introduce you to lots of
topics that did not appear at all in your previous courses. In fact, I think the most
interesting math topics are saved entirely for second-phase courses — so you have a
lot to look forward to!

This book is the gateway to Phase 2. It will show you the techniques mathe-
maticians use to understand our math (which we call proof techniques), and it will
introduce you to new math topics that you will explore in detail in your future courses.
So buckle up, because math is about to get a lot more interesting.

"When your curiosities guide you to seek out new math and pursue your own original

ideas — perhaps by engaging in mathematical research —you will enter Phase 3. Much more
on this later!
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and exactly one black square. Two examples are shown here:

Thus, whenever you place 31 non-overlapping dominoes on a chesshoard. the
collectively cover 31 white squares and 31 black squares.

Next, observe that since both of the crossed-out squares are white squares,
remaining squares consist of 30 white squares and 32 black squares, Therefore, iy e
impossible to have 31 dominoes cover these 62 squares. []

Y owil)

Did the proof make sense? We showed that any perfect cover using 3] domingey
must cover 31 white squares and 31 black squares. And since our chesshoard has 3
white squares and 32 black squares, no perfect cover is possible. !0

We also used a picture within our proof. Pictures can help the reader. but voy
must also be careful that your picture is not too simplistic and misses special mls-m.
A good rule of thumb is that you want your proof to be 100% complete withont t}e
picture; the picture illustrates your words, but should not replace your words,

For many of you, your carlier math courses proceeded like this: You were intro-
duced to a new type of problem, you learned The Way to solve those problems, yoy
did a dozen similar problems on homework, and then if a similar problem wusv(m
your exam, you repeated The Way one more time.

Beginning now, this paradigm will begin to shift. This shift will not be abrupt,
because there are many new skills which will require practice, but you will notice a
change. In calculus, if two students submitted full-credit solutions, then it is likely
their work looks very similar. For proofs, this is less likely.

Furthermore, when learning new ideas, it helps to think about them from multiple
angles. For example, below is a slightly different method to prove Proposition 1.4,

e Assume you do have a perfect cover and think about placing dominoes on the
board one at a time.

o At the start there are 62 squares — 32 black squares and 30 white squares.

'A common mistake after reading Proposition 1.3 is to assume that the only way to prevent
perfect covers is by having an odd number of squares, and that as long as you have an even number
there must be perfect covers. Proposition 1.4 shows that this is not the case. Perfect covers could

be excluded for other reasons, too.


Jay Cummings
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1.2 Naming Results \

So far, all of our results have been called “propositions.” Here’
naming of results: L
1

* A theorem is an important result'? that has beep proved

A proposition is a result that is less Important than theorem, | |
proved. F T Has alsg bee,

A lemma is typically a small result that is proved before a pro

theorem, and is used to prove the following proposition or theor Position o

em. 13 a

A corollary is a result that is proved after a proposition or a
which follows quickly from the proposition or theorem. It is often
of the proposition or theorem.

theorem, ang
a SpeCial Case

All of the above are results that have been proved —a conjecture though, ha
’ + 1as not,

* A conjecture is a statement that someope guesses to be true, although they .
not yet able to prove it or disprove it. 'Y are

As an example of a conjecture, suppose you were inv%tigating how many regiong
are formed if one places n dots randomly on a circle and then connects them Wit};
lines.

QDD DS

n=1 n=2 n=3 n=4 n=>5
1 region 2 regions 4 regions 8 regions 16 regions

At this point, if you were to conjecture how many regions there will be for the
n = 6 case, your guess would probably be 32 regions — the number of regions certainly
seems to be doubling at every step. In fact, if it kept doubling, then with a little more
thought you might even conjecture a general answer: that n randomly placed dots
form 2"~! regions; for example, the n = 4 case did indeed produce 24-1 =23 = §
regions.

If I saw such a conjecture, I know I'd be tempted to believe it! Yet, surprisingly,

2By “result” we mean a sentence or mathematical expression that is true. We will discuss this in

much more detail in Chapter 5.
131t’s like it’s saying “Yo, lemma help you prove that theorem.”
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this conjecture would be incorrect. One way to disprove a conjecture is to find a
counterezample to it. And as it turns out, the n = 6 case is such a counterexample:

31 regions

This counterexample also underscores the reason why we prove things in math.
Sometimes math is surprising.!* We need proofs to ensure that we aren’t just guessing
at what seems reasonable. Proofs ensure we are always on solid ground.'®

Furthermore, proofs help us understand why something is true —and that un-
derstanding is what makes math so fun. When I showed you the chessboard with
the upper-left and bottom-right squares removed, if I immediately told you that it is
impossible to perfectly cover it with 31 dominoes, then you might not have found
the result very interesting (especially if I said the reason why is because a computer
just ran through all the cases and none worked). But when you understood precisely
why such a tiling was impossible by counting white and black squares, I hope you
found it much more interesting and insightful.

Lastly, we study proofs because they are what mathematicians do, and one goal
of this book is to teach you how to think and act like a mathematician.'® What else
does this book aim to teach you? I'm glad you asked:

Textbook Goal. Develop the skills to read and analyze mathematical statements,
learn techniques to prove or disprove such statements, and improve one’s ability to
communicate mathematics clearly. It also aims to give you a taste of the different
areas of math, and show what it is like to be a mathematician by learning some of
our discipline’s practices, culture, history and quirks.

There is another set of goals that has to come from you. To go beyond rote
learning — to really understand mathematics — requires you to struggle with the
material. As you are introduced to a proof, I hope you do not just passively read it
without challenging yourself to figure out portions on your own. I encourage you to

41t looked like 2"~ ! was going to be the fomula. Actual formula: 3;(n* — 6n® + 23n% — 18n + 24).
15Conjecture: All positive integers are smaller than a trillion. Computer: I've tested the first
billion cases, and they all check out. Looks true to me, mate!

6 And if you are using this book in a course, then there’s one final reason: It’s on the test!
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work through plenty of exercises, to read extra proofs op
study groups to discuss the material with others. Chal
grow faster. These are the soft skills that only you cap j
the work to do so.
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Why do we prove things?

Now that you know the goal of this book, and have seen the first examples

.you.took algebra apq 8eorney
igating geometric shapeg W}, &
. e
you learned deep resy]y aboun
results are really big deals, }, t
mathematicians had tq diS(.-ovl(lt
“OVer

scovered things that seemeq tr,
es? We use proofs. ‘

gram. The program has

Of pr()()fS.

they are not handed down to us from on high —
them.!” Meanwhile, mathematicians also have di
but are not. How do we distinguish truth from lj

In some sense, a proof is like a computer pro

we must write proofs which are comprehensible and
convince your readers that you are correct.!8

It is a wonderful thing about mathematics that we can know things to be
A physicist or psychologist relies on theories that they can test, but without an.
axiomatic basis like in math, they can’t know whether they have reached truth.

Proofs also help us not Just know math, but understand math. They help show
why something is true. This is the “Phase 2" mathematics we discussed on this
book’s first page. In calculus and pre-calculus, you learned mathematical rules ayg

You may have been taught that there are infinitely many primes, and that every
positive integer (larger than 1) can be broken down as a product of prime numbers
How would you know that there are infinitely many primes without a proof? No
experiment could verify such a thing. You may have heard that irrational numbers
exist, and every integer can be written in binary. Perhaps you have heard that there
is a deep result from number theory that is used to securely encrypt our digital
transactions. Everything mentioned in this paragraph will be explained and proved
later in this book.

There is also so much more! We do not want to Just verify that the boring
calculations from pre-calc were correct — we want to explore new math, and prove
that our discoveries are true. This is not Just the beauty of math, it is the fun of
math. We continue this endeavor with our second topic: the pigeonhole principle.

'"Possible exception: Ramanujan. '
'® Also, computer programs can have bugs. Especially long programs. We insist on rigor in our
proofs to prevent bugs in our proofs. Especially our long proofs.
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Scratch Work. We have 10 points. How can we use the pigeonhole principle? Since
we are trying to show that two points have some property, and since the conclusion
of the simple form of the pigeonhole principle regards two objects, it's probably the
simple form of the principle that we will use...Can you see a way to get 9 (or fewer)
“boxes” to put our points in? The 3 x 3 square has area 9... perhaps that’s a sign of
what to do...

Here’s one idea: Divide up the 3 x 3 square into 9 “boxes,” each 1 x 1:

1 1 1

Then if you pick any 10 points from the 3 x 3 square, they will fall neatly into
these boxes! For example:

Now, it is possible that a point will fall exactly on the line between two boxes,
so we will have to make up a rule for how to break a tie, but otherwise this does at
least place 10 points into 9 boxes. And so by the pigeonhole principle we will get two
points in the same box. But does that give us what we want?

If there are 2 points in the same 1 x 1 box, how far apart can two points be? As
you an think about that, let’s start the proof.

Proof. Take the 3 x 3 square and divide it into 9 boxes as follows:

As for the points on the lines between squares, consider them part of the square above
and/or to the right. Doing this, each of the points in the 3 x 3 square is assigned
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That is. we use the definition of even integers to translate the problem ¢, one
is jl‘18t ;bout integers, then we solve the integer problem (that’s the middle ¢, y
determined” step), then we translate what we found back to a conclusiop

. about
even integers. The algebra will need to be worked out in our proof, by }, Atis b
overview. Ok, let’s prove it.

Proof. Assume that n and m are even integers. By Definition 2.2, this means th;
n = 2a and m = 2b, for some integers a and b. Then,

n+m=2a+ 2b=2(a+0b).

And since, by Fact 2.1, a + b is an integer too, we have shown that n +m = %,
where k = a + b is an integer. Therefore, by Definition 2.2, this means that n +mis
even.

O
That was fun. Let’s do more!

quivalent to gayi
: yin
The overview of this pgr

broposition is not phrased in the “f. ..,

“If n and m are odd integers, then n+™
oof is very similar to the last one:
Let n and m be So

b} T ==

two arbitrary m =9} +21a ‘f" 1 and

Def. 2.9 \_/
Let’s do it!

- .. therefore
Some integer &

Thereforé;
n+m
is evell

Def. 2.2
Proof. Assume that N and m 4

n=2a+1andm=2b+1 for . |
SOme Ntegers 4, a]i)j, (l,) efinition 2.2, this means that
And since, by Fact 2.1, a + p 4 is a

integers.
n+m

A+2 44
i =2(a+b
where Kk =a+b+1is an integer, TheI:elfI;te er toq we i + 1).
s re 2 a
18 even, » Dy Deﬁnitio:v; 2Shown that n +m = 2k,
Let’s do one more like this.

"> this means that n + M
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Proposition.

Proposition 2.6. If n is an odd integer, then n? is an odd integer.

Thi_s‘proof will be similar to the last two, and so this is an especially good
proposition to try to prove on your own before reading on.

Proof. Assume that n is an odd integer. By Definition 2.2, this means that n = 2a+1
for some integer a. Then,

n? = (2a+1)% = 4a® + 4a + 1 = 2(2a* + 2a) + 1.

And since, by Fact 2.1, 2a® + 2a =2-a-a+ 2 a is an integer t00,% we have shown
that n2 = 2k + 1, where k = 2a2 + 2a is an integer. Therefore, by Definition 2.2, this

means that n? is odd. O

For practice,7 try to prove the following on your own:

e The sum of an even integer and an odd integer is odd;
e The product of two even integers is even;

e The product of two odd integers is odd;

e The product of an even integer and an odd integer is even;

e An even integer squared is an even integer.

__ A Few Comments on “if..., then” statements —

s with a little rewriting, like with Propositions 2.4 and

You’ll notice that — perhap
ke on this standard form:

2.5 most of our results in this chapter ta
If « statement Y is true, then « other statement » is also true.

For example, “If you live in Los Angeles, then you live in California.”® Or:

“If m and n are even, then m +n is also even.”

Another way to summarize such statements is this:

« some statement is true » implies « some other statement is true » .

5In case this is a little confusing, we are technically using Fact 22.1 many times: a and a are
integers, so a - a = a? is too. So 242 is too. Likewise, 2a is too. So 2a“ + 2a is too.

"Or because your professor made you, see Exercise 2.3.
*But, again, perhaps it was not rewritten yet in this “if..., then...” form. Perhaps this

implication was written as “You live in California if you live in Los Angeles” or “Every LA resident

is a Californian.”
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Remember the general structure of a direct proof:

Proof. Assume P.

« An explanation of what P means » Apply definitions
and/or other results.

apply algebra,
logic, techniques

& Hey look, that’s what Q means »

Therefore Q. O J

Here, P is our assumption: a | b and b | c. And Q is what we are trying to prove:
a | c. An explanation of what P means is simply applying the definition of divisibility:
a|band b|c mean b= as for some integer s, and ¢ = bt for some integer t. What
we are asked to show is that a | ¢, which by definition means that we need to show
that ¢ = ak for some integer k. Updating the above outline gives us this:

Proof. Assume that a, b and ¢ are integers, and a | band b | c.

Then by the definition of divisibility (Definition 2.8), b = as for
some integer s, and ¢ = bt for some integer .

. apply algebra,
logic, techniques
Therefore ¢ = ak for an integer k.

O

Therefore a | c.

go to bridge the gap, but it turns out that some

There’s just a little work to
here’s the formal proof.

algebra does the trick. Now, finally,

a, b and c are integers, a | b and b | c. Then, by the definition

Proof. Assume that
— as for some integer s, and ¢ = bt for some integer

of divisibility (Definition 2.8), b
t. Thus,
c="bt
= (as)t
= a(st).

We have shown that ¢ = a(st), and since s and ¢ are integers, so is st by Fact 2.1.
So it is indeed true that ¢ = ak for the integer k = st, which by the definition of

divisibility (Definition 2.8) means @ | c. 0
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Modular cancellation law). Let a,b,k and m be integers,
(mod m) and ged(k,m) = 1, then a = b (mod m). ’

Proposition 2.18 (
with k # 0. If ak = bk

Proof Idea. The idea behind this proof is very similar to that of Propositiop 215,
in that both our assumption and conclusion may be expressed in terms of divisibility,
which can in turn be expressed in terms of a product. This will again leave gap
that we will need to cross, but this time we will need the help of Lemma 2.17 to ¢,
50.20 See if you can do it on your own before looking at the proof below!

Proof. Let a,b,k, and m be integers, and assume ak = bk (mod m) and ged(k,m) =
1. By the definition of modular congruence (Definition 2.14),

m | (ak — bk).
And by the definition of divisibility (Definition 2.8), this means that ak — bk =m/,
for some integer £. That is,

k(a —b) = me. ®)

tBhy zhe same definition, and because (a —b) must be an integer, the above also implies
a

jl?n(z. s;nce, by aséu'mption', ged(k,m) = 1, by Lemma 2.17 part (i) we must have
k | £; by the definition of divisibility (Definition 2.8) this means that £ = kt, for some
Integer t. This allows us to rewrite Equation (%)

k(a—b):mkt
a—b=mt,

here in th i
(v;)e?zi;?on ; iTt hn'e we used that k +£ 0, By the definition of modular congrue®®
.14), this means that m | (a - b). That is b (mod m) 0
- ,a=b (mo .
Anoth ;
sl condifipms i:oitﬂ;il;isl:ogf this proposition is this: I g 2 b (mod m), W%
ak = bk (mod m)? at, by multiplying a and b by some k, you can 8¢

For example, consider
: ’ what 2,
and write the answers mOdUIOaG.happens when yoy multiply 0,1,2,3,4 and 5 bY

a:
0

2a (mod 6).
0

26 «
Yo, lemma help you Prove thqy Proposit;
1 'LOTL, »
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e following:

Take 2 Jook at th

4=2+2
6=3+3

§=5+3
10="5+5
12=T7+5
14=T7T+7
16=11+5
18=13+5

20 =17 +3
22 =11+11.

the left are the even numbers larger

s? The numbers on
wo other numbers. Do you notice

hasasumoft

rs in the sums?
s! Could it possibly be true that every

um of two prime numbers? The data
here are still infinitely many to
k at the sequence of

What do you notice about thi
than 2, and we have written eac
anything special about the numbe

Each is written as a Suil of two prime
even number larger than 2 can be written as a s
above is very little. The first ten cases work, but t
go. Also, for small numbers, primes are everywhere! Take a loo

primes:36

9.3,5,7,11,13,17,19, 23, 29, 31, 37, 41, ...

Among the ten odd numbers between 3 and 21, seven of them are prime! So the
fact that we can write all the evens from 4 to 22 as a sum of two primes could very
dds being prime, including the first three,

well be a coincidence — with 70% of the o
the odds seem in our favor.®” But could this result hold true even when the primes

Z?rft' tthinfning ouF? The density of the even numbers remains constant, so when the
sity of the primes starts dropping, perhaps there simply are not enough primes

out there to give this pattern a fighting chance. ..

36
A fundament : i
TSome say thai] If:i,tc]i; The sequence of primes is never-ending (we will prove this in Chapter 7).
s make you numb. But this section’s puns make you number.

89
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Before Christian Goldbach discussed this problem with others ip 1749
(& y) §

east the first 100 cases, and sure enou h, » he

sm.n“bly ‘h}(zl:;s 2; :iva()t» tp:ili:les. Goldbach then told Leonhird G}?Si: gsthese canplr)i

::111;:::1«]11(‘;; ;O;nputation, who undoubtedly checked hundreds more. ,Ang Soa?air of

)

800? 1 1938. Nils Pipping earned a spot in the math history books t

checllced,tb); hand, all the even numbers up to IOQ,OOO—and sure

able to write each and every one as a su.m of tv_vo prlme.s. Then, once

invented, Pipping’s labor could be replicated in the blink of ap eye,

going at will.3? As of this writing, the first 200,QO0,000,000,000,000
checked, and every single one is a sum of two primes.

But is it true forever? Or does there exist at least one even integer
the line, that is not the sum of two primes? And what do Primes haye 0 do o
it anyways? It is common to think about multiplying primes tOgether, Since eWlth
natural number is a product of primes (a fact we will prove in Chapter 4); for exal;fel
15 =3-5, and 28 = 2-2-7. But adding primes together completely ogeg thp ¢,
factorization; if p; and po are different primes, then p; + ps is a product of o melr
other than p; and py. So the main way in which we think about primes ig failing::

Goldbach’s Conjecture states that every even number larger than 2 can be Wﬂtten'
as the sum of two primes.? But as of today, it remains a conjecture, meaning e
still do not know whether it is true. Yet due to its age, its simplicity to understapq
its difficulty to prove, and its relationship with prime numbers, whose study remains,
as important today as ever before, it stands as one of the most famous unsolyeq
problems in all of mathematics.

he hal'd way. h
enough, b, 'w 8
COInputErs We?'s
and coulq keee
cases haye beey

» Way do

The Prime Number Theorem

The study of formal mathematics began with the study of geometry and number
theory. And from early on, mathematicians realized that in order to understand
numbers, one must study the primes. In Chapter 2, we recalled that a prime is an
integer p which is at least 2 and whose only positive divisors are 1 and p. If a positive
integer is at least 2 and is not prime, then it is called composite. Not only do the
primes thin out as you reach higher and higher portions of the natural numbers, but
the rate at which the primes thin out is pretty steady. Indeed, if we let w(IN) denote
the number of primes up to an integer N (e.g., 7(10) = 4, since there are four primes
in {1,2,3,4,5,6,7,8,9,10}), then we know exactly how fast m(N) is growing as N
gets larger and larger. The answer:

N
m(N) ~ ——.
(V) log(N)
%Pro-Tip: “Euler” is pronounced “Oiler.” 't put dows

¥ And a computer can do so without his wife getting mad at him because e the 1930s for
the damn pencil. I mean, seriously Nils, 50,000 ain’t enough? You live in Finland in
God’s sake. Pick up an ax already; your house won't heat itself!

O And puns about Goldbach’s conjecture make you even number.
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the set AU B, inside the set U:

Taking the complement,?! this is (A U B)®:

Meanwhile, here are A¢ and B¢:

U,

Bad sl

'Since these are A¢ and B¢, the Venn dieigra.m of A°N B¢ is the set of all points
which are shaded in both of the above diagrams. Which is this:

The Venn diagram for (4 U B)® is the same as the Venn diagram for 4¢n Bel

21
There are ty
© types of people in this world. Those
( 0se who understand complementS)c. who tareaiang complements and
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This is modeled by the following picture.

S1
So
Ss3
Sy
Sk

Sk+1
Sk+2
Sk+3

Sk+4

The above also suggests a general framework for how to use induction.

— —

Proposition. S1, Sg, S3, ...are all true.

Proof. « General setup or assumptions, if needed »
Base Case. <« Demonstration that S is true »

Inductive Hypothesis. Assume that Sy is true.

Induction Step. <« Proof that Sy implies Sk+1 »

Conclusion. Therefore, by induction, all the S, are true. O

Before we get into examples, why is this section called Dominoes, Ladders and
Chips? First, there is another popular metaphor for induction that uses ladders. And
in case you're not falling for the domino metaphor, perhaps this next one will elevate

your understanding.
Assume there is a ladd
Assuming you can step on the first rung,
one rung to the next, then sky’s (not even)
And in case dominoes and ladders aren’t doing it for you,
u— one that really resonates in my soul. Assume you have an
t chip, and assuming that eating
then you will want to eat chips

er that rests on the ground but climbs upwards forever.
and assuming that you can always step from
the limit! You can climb upward forever!?
I came up with one

final metaphor for yo
endless bag of potato chips. Assuming you eat a firs
a chip always makes you want to eat another chip,
forever.

4.2 Examples

The example that we have discussed thus far will be saved for Exercise 4.1, but fear
n°t>_ there are many more beautiful results for us to tackle. I want to go simpler than
adding up the first n odd natural numbers—let’s simply sum the first n natural
Mumbers; 14943+ 4 +-- - +n. These sums are called the triangular numbers since

they can be pictured as the number of balls in the following triangles.

3
Between these two metaphors, I prefer dominoes, although some prefer the latter.
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These sums also have a wonderfully simple formula.

Proposition.

Proposition 4.2. For any n € N,

B n(n+1)
=,

14243+4+---+n

Principle 4.1 was phrased in terms of a sequence of statements. In this proposi-

tion, for example, S3 is the statement 1 +2+3 = 3(3; 2, , and Sg is the statement

1+2+3+4+5+6+7+8=@. We aim to prove all S, are true.

Proof Idea. Since we are aiming to prove something for all n € N, it makes sense to
consider induction. The base case will be fine: If n = 1 in the formula in Proposition

4.2, the left side is just 1, and the right side is 1(1—;12 Since these are indeed equal,
the statement S; has been shown to be true.

Next up is our inductive hypothesis, in which we assume the k*® step (Sk) s true
That is, we assume that

1+2+3+--~+k=——k(k;1).

Here, k is some fixed natural number; we don’t know what it is — perhaps k=

]or
k =2 or k = 174. Our assumption is independent of the choice, but we do asswr®

it is fixed. It’s like assuming the k' domino will at some point fall, and all yoU*

wondering is whether it is guaranteed to knock over the (k + 1) domino-*

ey where ¢
- Thu}k back to Chapter 2 where we referred to an arbitrary odd integer as n = 2a' + li; wash't
is some integer. It wasn’t that n was all the odd integers at once, but at the same wne

d
tral 0
guaranteed to be 7 or 23 or 101 either. It was a fixed odd integer, but it was also al arbitrey

Iy
: : 1d apP*
integer. Thus, every thing we did to it (like finding n? = (2a + 1)? = 4a2 + da+1) wou pifn s

equally to every odd integer. Indeed, our proof of Proposition 2.6 proceeded by showing * 8‘integer’
an arbitrary odd number, then n? is also odd. By proving it & Bx ed-but-arbitrmyo. put
we ?ould conclude that it holds for every odd integer! In the same way, the Kt domino is N
arbitrary. Our induction step will prove that this arbitrary domino must knock over ¢ eex
and because k was arbitrary this in turn means that every domino will knock over ! "
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Ok, so we have stated our assumption, and we wish to use it to prove that the
(k + 1) step must also be true:®

_ (e 1)((E+ 1) +1)
5 .

14243+ +(k+1)

How do we do it?® And how do we make use of the assumption that we know
what 14+ 2+ -+ + k is equal to? If I told you that 1 +2+---+ 60 = 1830, and then
I asked you to tell me what 1+ 2+ - + 61 was equal to, what would you do? You
wouldn’t start at the beginning, you would simply take 1830 + 61 = 1891, and that’s
the answer! The same trick works here: The sum of the first k£ +1 natural numbers
begins with the sum of the first k natural numbers:

14+2+3+--+(k+1)=14+2+3+---+k+(k+1).

Makes sense? Instead of writing, say, 1424 ---+ 7’ we wrote “142+---+6+77
These are certainly both ways to represent “1+2+3+ 4+ 5+6+7"

This new representation is helpful, though, because it helps us realize how we
can apply our assumption. Now that we have a 1 4+ 2 + - - - + k appearing, and since
we know by our inductive hypothesis that 1+ 243+ ---+k= -k—(k—2—1—), we can
now use this!

1+2+3+---+(k+1)=g+2+3+~-~+§+(k+1)
=———H(k;1 , by induc. hyp.

After some algebra, this approach will work out.

Proof. We proceed by induction.

Base Case. The base case is when n =1, and
10+
==

as desired.

Inductive Hypothesis. Let k € N, and assume that

k(k + 1
1+2+3+-~+k=_L3_l.

Induction Step. We aim to prove that the result holds for k£ + 1. That is, we wish to

show that
! (k+1)((k+1)+1)
1+243+--+(k+1)= 5

sition and plugging in k + 1 for n.

[y
This was obtained by looking at the propo
your own induction proofs, I suggest you ask

6
Whenever you begin the induction step in one of
yourself: “How am I going to use the inductive hypothesis to prove this?” If you didn’t need the

Inductive hypothesis, then there is no point to using induction. Moreover, the inductive hypothesis
5 @ massive assumption! You are assuming the k* domino has fallen! Use that!
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But what about the other three 2% x 2% boards? They don’t have any squares
remO"ed> so we can’t apply the inductive hypothesis to them. And if we picked a
random square from each to remove, then sure we could cover the rest, but those
ree squares would be left uncovered by a tile.

2k ﬂ_—I—JI:L
2k+1§ > I:: u I_I
ok < X] .

2k+1

The trick is to remember that the inductive hypothesis says that if any square
is removed, then a perfect covering exists. So we don’t have to imagine that the
squares are randomly chosen — we can choose them! For example, we could choose

these three squares:

44.3"—
» ¢ R T

k
ok+1 X

2k+1
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Qo_n,,dlliigll—' By induction, this means that

I+24542
23 4+'-~<oo,

completing the “proof.” )Z(

Once again, this must be flawed somewhere. To find the mistake, think about what
conclusion is actually being reached by the first three stages of this proof. .. Exercise
4.11 asks for an explanation of the error.

4.5 Bonus Examples

We are going to call our first bonus example a lemma, since it will be used in the
second bonus example. A quick reminder before we begin: No is the set {0,1,2,3,... | 3

Lemma 4.13. For every n € Ny,

14+244+8+---+20 =211

Scratch Work. Let’s do some examples to convince ourselves that this seems true.

1=2'-1 v
1+42=22-1 Vv
1+4244=22-1 Vv
1+2+4+8=2"-1 ¢

Seems to check out! The inductive hypothesis will be 1+2+4 LB w20 = DAL
Se‘f if you can see a way to use this to prove that 1+2+4+8+--- 4 2k = 9k+2 1
which is the induction step. Then check out the proof below.

Proof. We proceed by induction.
Base Case, The base case is when n = 0, and

1=204+1_1,

38 desireq.
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CHAPTER 5. Logq

- suffici
. . '« a necessary and su ! fol .
e qgr;ifg;::s: ias equivalent to it being sunny,” or “If Jessica, is Wearing
or “Jessica wearin , p
sunglasses, then it is sunny, and conversely o Fand onlly Ere ( ”
y ’tl example, suppose 1 € 7. Then, “n 1s even " o T = H.lod 2)
tlAS ) maa; “I'n being’ even is equivalent to n =0 (n,l,od 2)” or “n being even implieg
is the same ) ; _ .
ln= 0 (mod 2) and n =0 (mod 2) implies n is even. o |
R hat “ P implies Q" is the same as “If P, then Q” or “Q i is Sometimeg
e tt 8Ld ts. But the fact that these are all the same as “P only if Q" is
intuitive to students. . ‘ _ 4
often confusing. Most people’s guts tell them that “P implies Q” should be the same
as “Q only if P.” What does your gut say?

ent condition for it to be sunny,”

e P=Q e P only if
be the
Should e If P, then Q came as or r?
e Qif P e Qonly if P

The answer is “P only if Q”, and the way to think about it is that “P implies ()’
means that whenever P is true, @ must also be true. And “P only if Q" means that

P can only be true if Q is true. . . that is, whenever P is true, it must be the case that
Q is also true. .. that is, P = Q.

Now, if P and Q are statements, then “ P = Q" and “P < Q7
meaning they must also be either true or false. Th
conditional statement, whereas P < Q
minor definitions, but the following is

are also statements,
e statement P = Q is called a
is called a biconditional statement. These are
an important definition.

Definition 5.7. The converse of P=QisQ= P.

If P= Q, it is not necessarily the case th

then z is even” is true, but its converse is

There’s also the classic example from 5th

at Q = P.12 For example, “If £ =2,
“If z is even, then z = 2,” which is false.
: grade: “A square is a rectangle, but
rectang%e 18 not necessarily a square.” This could be rephrased as “If S is a square,
then § .5 a rectangle,” which is trye; meanwhile, its converse is “If § is a rectangl®
then S is a square,” which is falge.

Or, if you'd like an example from the rea] world: If person A likes person B, 1t®
not always the case that person B likes person A. Just ask a mathematician-

n iq g tIUE
what they mean is: If “P = Q" 15

nverSe
. : . necessarily the case that “Q = P” is a true statement. (The cot e
certainly exists and s g g . ommunicated is that it could either bé
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, qition From Set Theory
n

4 and B are sets, then AN B is the set of elements which are in A and in B. This
?f ilar to how P AQ is true if P and @ are true. Likewise, A U B are the elements
is § i Aorin B (or both), and PV @ is true if P or @ is true (or both). Indeed,

t are 1 . ..
tha ad even write the definitions of AU B and AN B using our new notation.

you €
_{z:2€A N z€B} and AUB={z:z€ A V z € B}.

ANB
This is especially nifty because N and A look a lot alike, and U and V look a lot alike.

The gimilarities do not stqp there. Notice that A° for sets is analogous to ~P for
statements. The former is asking \yhat elements are outside of A, while ~P is asking
what logical possibilities are .outSIde of P. (In fact, some use A to denote A€, and
come use P to refer to ~P)13
Lastly, you can think about P = () as analogous to A C B. An implication like
4f you live in Los Angeles, then you live in California” is true, because the “P” (the
et of residents of LA) is smaller than the “Q” (the set of residents of CA). Likewise,
AC B if the “A” is smaller than the “B.” In the same way, () = P is analogous to
BC A, and thus P < @ is analogous to A = B. Here is an example of all this:

o Sets: Suppose A = {z : x is an even integer} and B = Z. Then, A C B.
Logic: Suppose P is the open sentence “z is even” and () is the open sentence
“z is an integer.” Then, P = Q.

 zisan

integer

_ This example also shows that if your universal set is B, then A¢ is the set of odd
lntegers—the shaded portion above. And, again if your universe is the integers, then
~P is the statement “z is an odd integer.” Another example:

¢ Sets: Suppose that A = {r € Z : 2 | z} and B = {z € Z : 3 | z}. Then,
ANB={z€Z:6|x}).
Logic: Suppose P is the open sentence “z € Z and 2 | z,” and @ is the open
sentence “z € Z and 3 | z.” Then, P A Q is the open sentence “z € Z and 6 | z.”

z€Zandb |z

) whlle N and \Vj 5 % P
M2y also see p an?lre!;?ry standard, the “not” symbol is, well, not. In addition to ~P and
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SfOrP=>Qa,ndQ:>P:

table
Q ||[P=Q P | Q
True True True | True
False False True | False
True True False | True
False True False | False True

Remember, P < @ is true when both P = @ is true and Q = P is true. Thus,
the truth table for P < Q is this:

P | Q |[|[Peq

True | True True
True | False False
False | True False
False | False True

In closing, it is also useful at this point to reflect on the fact that the truth
values of P and of Q are one thing that we have looked at, and the truth values of
P= Q and P & Q are another, and as truth tables illustrate, these do not match.
Think back to the first example of the chapter, with Socrates and Martians; correct
logic (the implication) does not need to match correct information (the component
statements). Make sure you distinguish these in your mind.

5.3 Quantifiers and Negations

Before discussing quantifiers, here is a quick riddle that we will come back to later.
Suppose you saw this sign at a restaurant:

Good food is not cheap
Cheap food is not good

. Here is the question: Are these two sentences saying the same thing, or different
things? I']] let you mull that one over while we discuss quantifiers and negations.

— Quantifiers —

The (open) sentence

“n is even”

Is ot .
way toa Statement as defined in Definition 5.1, because it is neither true nor false. One
turn a sentence like this into a statement is to give n a value. For example,



Chapter 6: The Contrapositive

In 1966, cognitive psychologist Peter Wason devised a logic puzzle which is now
famous in the biz. Here is an equivalent form of the question:

You are shown a set of four cards placed on a table (pictured below),
each of which has a number on one side and a letter on the other side.
Which card, or cards, must you turn over in order to determine whether
the following is true or false: If a card shows an even number on one face,
then its opposite face is an H?

3 8 T H

Think about this on your own right now. Seriously, give it a shot. It’s easy to
keep reading on, but don’t! Try it! ... Ok hopefully you did. This is a famous puzzle
because it tricked so many people. In Wason’s study, fewer than 10% of the people
answered it correctly.

I won’t tell you the answer immediately, because I really do want you to stop and
think about it first. So yeah, go do that. Have a guess in mind.

My next stalling tactic will be to rephrase the question slightly. Suppose four
beople are each holding a drink (and each is drinking something different), and you're
trying to determine whether it is true that “If a person is drinking alcohol, then they
are over 21 years old.” Observe that the only way this statement could be false is if
(tt) \;} pers?n is younger than 21 and (2) their drink is alcoholic. And to compare this
i ason’s cards where you only see one side, let’s contemplate what this looks like

You only know half this information.

* if y01.1 only know that the person is under 21, then the statement will become
alse if they are drinking alcohol.

. ;flyog only know that alcohol is being drank, then the statement will become
alse if they are under 21.

With that ;
a.t o 9 . . ’
M mind, let’s try Wason’s riddle again, but with new cards.

261
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1 Finding the Contrapositive of a Statement

ere Te examples of taking the contrapositive of a statement.
ere @

Example 6.1.
L P=@ If n = 6, then n is even.

~Q = ~F: If n is not even, then n # 6.
9. P= Q: 1f T just dumped water on you, then you're wet.
~Q = ~P: If you're not wet, then I didn’t just dump water on you.
3. P = Q: If Shaq is the tallest player on his team, then Shaq will play center.

~Q = ~P: If Shaq is not playing center, then Shaq is not the tallest player on
his team.

4. P = Q: If you're happy and you know it, then you're clapping your hands.

~Q = ~P: If you're not clapping your hands, then you're either not happy or
you don’t know it.

5. P=Q: Ifp|ab, then p|aorp|b.
~Q= ~P: If pfaand ptb, then p{abd.

For each of these, P = Q and ~@Q = ~P will have the same truth value. Consider
the Shaq example: If the P = Q rule is true, then the ~Q = ~P rule is also true.
But if, say, their team signs a taller player but they still play Shaq at center, then
both statements are false. A common mistake is to think the contrapositive is always
true, but all that is being asserted is that the contrapositive is logically equivalent
to the original implication. So yes, ~Q => ~P could be false—but if so, then the
Qriginal implication will be false as well. Their truth values will always match. Here
15 a final example where both are false (such as if n = 9):

6. P= Q: If 3| n, then 6 | n.
~Q = ~P: If 6{n, then 31 n.

. By the way, since P = (Q is logically equivalent to its contrapositive, which is

W?la?df;P, th.is new implication must also be logically equivale?nt to its contrapositive.

ince els .thlS“gl,\,ze u§? The contrapositive of ~Q = ~P is NN'P = ~~Q. But

P, psg’mg ~ tv'snce gets you back to where you started, thls. is the same as

Statemep :’?S’_applylng a contrapositive a second time gets you a logically equivalent
1t just happens to be the one we started with.4

4 Men ;
P € that [ ¢q
%0 Michgg, COTI):

Dicture (~ S
am tg ¢ e ca ).

't print without paying The Office an annoyingly large amount of money:
Porate needs you to find the differences between this picture (P = Q) and this

era: They’re the same picture.
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t 2, we once again benefited from the contrapositive’s ability to “flip” th
Q. Starting with n being even made our approach 1nuZh cle o
That said, I'd like to mention that there is actually a way to prove Parg'tcn;rés a
direct proof- If you as§uxne that 3n+5 i? even, then you can write 3n + 5 = 2a where
a€L The goal now 18 to show that n is odd by writing n as 2b + 1 for some b € Z.
ow do we do it? Notice that 3n + 5 = 2a implies that 3n = 2a — 5, but should we
- divide both sides by 3? How would that give us 2b+ 17
The trick is t0 think about 3n as n + 2n, and then move the 2n to the right:

3n=2a—5
n=2a—2n -9
n=2a—2n—-6+1
=2(a—n—-3)+1.
n € Z,also (a—n—3) €2 Thus, n = 2b+ 1 where b=a—n—3is an
n is odd.

In Par
p and

And since @,
integer. SO,
in Lemma 2.17 part (iii) we proved that if p | b,

For the next result, recall that
the indivisibility® version of this result.

thenp|borp | c. Let’s now prove

Proposition.

Proposition 6.

4. Let a,b € Z, and let p be a prime. If p{ ab, then p f a and
ptb. |

You might hope that this proposition is precisely the contrapositive of Lemma
2.17 part (iii); if it were, then to prove this proposition we could simply apply the
contrapositive to Lemma 2.17, and the proof would be done! However, they are
not contrapositives of each other. If Lemma 2.17is P = Q, then Proposition 6.4 is

~P = ~(Q), whereas the contrapositive of P=Q is ~Q= pafp.
We will still use the contrapositive to prove this, but unfortunately we are unable
11 have to work a little harder.

to make use of Lemma 2.17 in our proof. We wi

tllzz?f ' Suppose a,b € Z and p is a prime. We will use the contrapositive. Suppose

59) IE}LS ot tl'll'e that pta and ptb. By the logic form of De 1\'/Io.rgan’s Jlaw (Theorem

Tha,t his is equivalent to saying it is not true that pfa or 1618 not true that ptb.
is,p|aorp|b Let's consider these two cases separately.

CaJS - -
el Suppose p | a, which by the definition of divisibility (Definition 2.8) means

th, -
4 a = pk for some k € Z. T'hus,
ab = (pk)b = p(kb)-

9
Fun faet. «
[ tr & e 93 ele . . '
racadabyryy indivisibility” has more copies of ‘i’ in it than any other English word. Other winners:
ks, whippersnapper the most ps,

ml;:‘: the most copies of a, knickknack has the most
act, ~p :WS’ and pizzazz has the most zs.
~Q is the converse of the contrapositive.

10 oy the

(Or, the contrapositive of the converse.)
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we close out the main content of this chapter, I wanted to comment again
s tact that as we are learning more sophisticated proof techniques, and as our
on the laemselves become more complicated, it is increasingly important to proceed
oofs “tion when writing out your own proofs.
with Cauwrit or Joan Didion once noted that the process of writing is not only to share
Theou think is true, but to discover what you think is true. This is insightful,
what ¥ j it also comes with risk—are you actually discovering what you think is
alfll;O‘:)gr do you risk slowly convincing yourself of falsities, while all of your blind
ert; remain’ . oo o
If this is cause for concern V'Vl.th everyday vi/r.ltmg, then proof writing demands
oven greater caution. When writing about politics, people tend to be their easiest
narket. When writing a proof,. thqugh, you must insist on being a (nice) critic of
o arself. Constantly test your 1ntu1t10n,.probe your ideas, and break things down
\til they are of their simplest form. It is healthy and productive to approach the
first draft of your proof with doubt. And if you can find a friend to read through
your proofs in a critical (and nice) way, then all the better.

6.3 Counterexamples

The contrapositive is naturally a shorter topic than our other proof methods, so I
am going to steal a few pages here to discuss counterexamples. We first mentioned
counterexamples way back on Page 11 as a way to disprove a conjecture. The idea is
this: In order to disprove a “universal”’ statement (like one using the words “for all” or
“for every”), it suffices to find one example against it. If I said “every NBA player can
dunk.” to disprove it you would have to find a single NBA player that cannot dunk.
If you did, then that single NBA player is a counterezample to the claim “every NBA
player can dunk.” Indeed, to disprove a statement, you must prove its negation. And
the negation of a “for all” statment is always a “there exists” statement. We can do
this with a single counterexample.

Likewise, if I said “every prime number is odd,” you could disprove that by
presenting the counterexample of 2. Of course, sometimes it is more difficult to find
a counterexample. Suppose, for instance, you saw this conjecture:

Conjecture 1. If p is prime, then 27 — 1 is prime.

iIs)lsStIiﬁ‘oof I.dea. Notice that even though we did not use language like “for all,” this

. Oaltl rmvsersal gtatement, as it is asserting something about every prime p. As it

be s Coun,t’chls conjecture is false. Since it is a false universal statement, there must
erexample. You could try the first few cases:

22 — 1 =3, which is prime
23 —1 =7, which is prime
25 — 1 = 31, which is prime
27 —1 =127, which is prime
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member being in first grade anq haviy,
r:ia‘dn’t have a book to help me, nor giy we
\l;vhi(‘h would be the standard resg

B: the Internet. After a long apqg Noi

ernember

I
, Google.

I remember the days befO{e - E iy
to write a short report on do'gb.BritaIllliC i
have a set of the Encyclopedia

Plan )
) roject —and so I turned t<1> ;H“Z’ do 1 find websites about dogs? |y
such a p 1

L Bt - 't helpful, T was out of ide
dial-up process, I was on: cljm and when they weren , as,
‘. alld dogs . )
trying dog.com

le! There were a few search engineg Ou.t tbere,

i o e e T
but they were bad and I ci) rd in indexing lots and lots o e thr;;e il but(; ed
search engines had suSc.ee euld return websites that u'se' behind Google ;s th e
el iRt SHE ltkc'z)hem by importance. The milglsLon Form Mot &tt the
struggled mightily to I.‘ags up near the top. For exan.lp . ebsitge longformmare o
“good stuff” éiyagsrgsillts——but this book’s companion w ;
nearly 500 millio

th.(‘.om)
A 5 ) . .
is at the top of the hstl.2 do it? The one piece of information that they cap easily
O H
So how does Google

: ; bsites, and which
ks it has to other we . ic
ite is the number of lin ' : :
collect about a websmz lsat much smaller example, c-onslde.r indlzltemit.:m; five
websites it linlfs th-u wisng links (A — B means website A linked to website ).
websites, and the follo

AT

e

of
Our goal is to assign to each website a numerical value. Let 1&1 ill)li ’;1:)6; l‘l’:l:‘l’mk
website 17, let vy be the value of website Ws, and so on. .You can o webi
as an endorsement —if A — B, then in some ways website A has en
B as being important. Now, there are two tensions here:

; bad
: te than a
¢ It should be more valuable to be endorsed by an important websi
website.

&
s . bsite endors
* It should be less valuable to be endorsed by a website if that we
lots of other websites.

You can think about t

{mal

! _ idential PHY
his like a political endorsement in a preside by ?
It should be considere

than
vernor

d more valuable to be endorsed by the go

*Please check it out!
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1 member. But if someone endorses both you and someone else, then it
aty Councll) e worth quite as much as if you were the only candidate they supported;
Cdn't

chould ally a half endorsement.
it bas1]Cthis intuition, look at the internet graph above, and for now let’s consider
with ¢
website LEE
W1 endorsed by: Wo | Wy | Ws
Which has value: vy | vy | vs
Number of websites they endorsed: || 2 1 3

Vebsite W1, in a sense, received half of an endorsement from Ws, because Wy also
\ eed one other website. Website W also received a full endorsement from W, and
wﬁ of an endorsement from Ws. Therefore, if we wish to assign a numerical value
‘ tt the website W1, and if this value is to be determined by these endorsements, it
v 0
wlould make sense to want

v
v = 2+'U4+3.

Doing this for all other websites, this would produce the following.

V2 Us
n=—+vu+—

b 3
= 55
'02—-2
v v
m=vt o+
'1}4—3
= B
U5—2

Big question. Is it possible to assign numerical values to vy, v9,v3,v4 and vs so
that the above are all satisfied?

Although jt might seem silly to put these into vectors, having these all satisfied is

indeed the same thing as saying
roq (1 1]
o 3V2 + V4 + 305
(%) %’UB
v3| = (v + '%'02 + %UE’
g %'05
L’Us_ L %'U3 -




300 CHAPTER 7. Co

Proof. Assume for a contradiction that there do exist integers m and n fo,

15m + 35n = 1. Since m,n € Z, also (3m + 7n) € Z. Dividing both sides by Whicl,

0 Bives

)
3m+Tn = 5

This is a contradiction, since we had said that 3m + 7n is an integer, and % is not
an

integer. 0

There is often more than one way to prove something. For example, the i
proof could have begun the same way, by assuming that there are m,n € 7 for whicl
15m + 35n = 1, but then factoring out the 5 to get

5(3m 4+ Tn) = 1.

Since (3m + 7n) € Z, this means that 5k = 1 where k € Z; by the definition of
divisibility (Definition 2.8), this means 5 | 1. However, clearly 5 { 1, giving the
contradiction.

The two proofs relied on similar ideas, even though they diverged at the end,
This is common for proofs by contradiction, because once you enter a land of fiction
there are likely contradictions all over the place, and any contradiction you ﬁndis,
sufficient to conclude the proof.

And now, ladies and gentlemen, it is time for a real treat:

7 3  The Most Famous Proof in History

This is a book on proofs, so it would be a dereliction of duty to not include the
most famous proof in the history of mathematics — Euclid’s proof of the infinitude of
primes. (Or, in his words, “Prime numbers are more than any assigned multitude of
prime numbers.”)

In the following proof, recall that if n > 2 is a natural number, then n is either
prime or composite — and being composite means you are a product of primeS-5

Theorem 7.5. There are infinitely many prime numbers.

Proof Sketch. Since the proof is by contradiction, it will begin by sup
our goal ™

are only finitely many primes, say p1, p2, . .., pk. 1o find a contradiction, f
eoreln! 0
5We defined these terms in Definition 2.16, and in Theorem 4.8, the f“ndamenta] thby stron

arithmetic, we proved that every such n is prime or a product of primes. This was a Pro°
induction.
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ve that this list of primes is incomplete; there must be a prime left out. Over
rov

O i BB Euclid had the idea to consider what happens when you multiply
0 nulleltlhis Supposed list of all the primes, and then add one: P1p2p3 - .. pr + 1.
toget711950115i der this for some subsets of the primes:
Why:
If the only primes were Then consider The Contradiction:
2 and 3 2:3+1=7 7 is a new prime!
2,3and O 2-3:-5+1=31 31 is a new prime!
2,3, 5and 7 2-3-5-7+1=211 211 is a new prime!
23,5, 7and 11 2-3-5-7-1141=2311 | 2311 is a new prime!
11 and 13 2:3+5:7:11+13 41 59 and 509 are
2,357 = 30031 = 59 - 509 both new primes!

2:3-5-7-11-13-17+1 | 19,97 and 277 are
= 510511 =19 .97 - 277 all new primes!

9 3,5, 7 11, 13 and 17

The fourth row, for instance, shows why 2, 3, 5 and 7 can’t be the only primes.
Since 2, 3, 9 and 7 all divide 2-3 -5 -7, there is no way that any of them divide
9.3.5.7+1. If they tried, they would get a remainder of 1! But of course, 2-3-5-7+1
is still a positive integer, and so is either a prime or a product of primes, so there
must be new primes in there — primes other than 2, 3, 5 or 7.

This was Euclid’s big idea. If the only primes are pi,po,...,p, then consider
(p1-p2-P3--- -pr) + 1. Either this number is prime, in which case it is a new prime,
since it is bigger than each p;, or® it is composite, in which case it is a product of new
primes by our reasoning above. In either case, our assumption that pi, po, ..., pr was
a complete list of all the primes is contradicted. This is how the proof is traditionally
presented, although being rigorous in this last step can be a little subtle. One way to
make it precise is to use modular arithmetic, which we do in our proof below.

Proof. Suppose for a contradiction that there are only finitely many primes, say k
in total. Let py, pa, p3, ..., pr be the complete list of prime numbers, and consider
the number N = p; - py - p3 - ... - pg, which is the product of every prime. Next,
consider the number N + 1, which is (py -p2 - p3 ... pk) + 1. Using N + 1, we will
find a prime not appearing in the list p1, po, ..., pk, which will give us our desired
tontradiction. First note that, being a natural number, N + 1 must either be prime
o composite, so consider these two cases.

%‘m Since every prime is an integer at least 2, and N + 1 is the
it of all the primes plus one, N + 1 is certainly larger than each p;. So if N +1

1S a prj : . .
- dprune Dumber, it must be larger than all the primes we had previously considered,
€I is a new prime.

Case 2: .
Mwnm We begin by showing that no p; can divide N + 1. To

0 50, re .
Member that by the definition of modular congruence, for any integers a and

6

By the

W . .

d py ang .ay, “(’lhen [ write “bigger than each pi,” what I mean is that it is bigger than py and p2
* ook 4 th'e. ::ntpk' In general, when you see a mathematician write “each p;,” what they mean

Xt in the problem, and consider all the values of i for which p; is defined.
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arithmetic. T;;Zrev:h?dl I would like to show you now.
counterexampits

4.8 (Fundamental theorem of arithmetic). Every integer > 95
;Ii‘gfe?rsg:ne or a product of primes.

Proof. Assume for a contradiction jchat this is not trye. Then there must be 5
minimal counterexample; let’s say N is the smallest nefeural n'umber greater thap o
equal to 2 which is neither prime nor th.e product of primes. Since it ig 10t prime, by
definition this means that it is composite: N ab for some a,be {23 . L N-1).

We now make use of the fact that N is assumed to be the minimql counterexample
to this result —which means that everything s

isfy the result.

In particular, since a and b are smaller thapn th;

must each be prime or a product of primes.
This gives us a contradiction: Since N — ab, if a and b are each prime or apr0§u0t

of primes, then their product — which equals N —must be as well. This contradicts

our assumption that N was a counterexample 32 completing the proof. 0

Again, this is because of

tain
o the fact that every nonempty set of natural numbers must con
smallest element, which is sometimes called the wel

l-ordering principle.
o2 reductio qd
absurdum!




mtroduction to Game Theory

nate Tom are under investigation. The two of you submitted nearly-

You and a classt
jdentical essays for your assignment on the Banach-Tarski paradox. There are two
options: You two worked together when you weren’t supposed to, or one of you

cheated off the other. Your professor calls you two into her office one at a time, and
ou two have no chance to discuss anything. She tells you that if you two simply
worked together, then that is bad, but not worthy of being reported to the university,

who would expel a proven cheater. She therefore lays out the possible outcomes:

o If you two both say you worked together, you will fail that assignment, but
that’s it.

o If you both accuse the other of cheating off them, then the university will decide
neither to be credible and so neither will be expelled. But the professor says

she would act harshly, and you would both fail her class.

e If you accuse Tom, and Tom says you worked together, then the university will

expel Tom and you will get no punishment.

e If Tom accuses you and you say you worked together, then the university will

expel you and Tom will get no punishment.

You can visualize this with a matrix:

Tom’s Answer
AN
-

Worked Together Blame You
You: McDonald’s Hiring?
Tom: No Punishment

Worked You: Fail Assignment
Tom: Fail Assignment

Your Together
Answer Blame You: No Punishment You: Fail Class
Tom Tom: McDonald’s Hiring? Tom: Fail Class

You don’t know Tom too well, so you don’t know what he will do. And for the
important. We simply ask:

;?ke of this problem, the truth about who cheated is not
th}’Ou and Tom are “rational actors” (i.e., selfish logicians), and will therefore choose
€ option which minimizes your own penalty, what will you and Tom do?

325
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ROOFS:

A function’s domain and codomain can each be a7

1y set. For example, here’s a
phical way to write some function s
gra ’

This is a function with domain {1,b, % &b}, codomain {%.O,#} and range
{ae, @} For example, f(1) = ~, 50 W is in the range. However, there does not
exist any = € {1,b, W &} such that f(z) =, which is why Q is not in the range.’

For a diagram like this to not represent a function, it would have to fail either the

existence or the uniqueness part of being a function, as discussed in the Recurring
Theme Alert. Below are two examples.

Fails existence Fails uniqueness

It is perfectly ok to have two arrows pointing at the same dot in the codomain
(or zero arrows, or more than two arrows), but for the domain the rules are rigid: one
and only one line must emanate from each dot. So the two diagrams above would not

be functions;? the first because % is being sent to nowhere, and the second because
@ is being sent to two places.

3 Another meta

phor: Suppose Cupid is shooting arrows at a target; he hits different spots on the
targ

et, but never misses the target completely. Then, Cupid is like a function. The codomain is
the target, since those are the possible points that can get hit. The range is the set of points on
the target that actually do get hit by an arrow. So, for the function above, since Q was not in the
range, Cupid missed love. =(

"We use similar language in the real world. If you dial someone’s numbe'r, but the call goes
re, then you would say your phone isn’t functioning. Or if you dialed a single phone number,
alf the time the call went to Mikaela and half the time the call went to Brandon, then you
again say that your phone is not functioning. If something is properly functioning, it always
ds to an action with a single, anticipated reaction.

nOWhe
but h
would
l'eSpon
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Injective Surjective Bijective

7
A
<
R
>

-
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(\
(\
"

Being bijective means that every element in A is paired up with precisely one
element in B. As an analogy, you could think about f as putting elements in A
into relationships with elements in B. Being injective means all the relationships are
monogamous, while being not injective means there is at least one polygamous person.
Being surjective means that everyone has found love,6 while being not surjective
means at least one person (in B) is left out. And being bijective therefore means
everyone has found love in a monogamous relationship.

In terms of arrows, being a bijection means that every dot on the left has precisely
one arrow emanating from it, and every dot on the right has precisely one arrow
entering it. (And yes, that sentence is screaming for another Recurring Theme Alert.)

Recurring Theme Alert. Defining a function f : A — B placed existence
and uniqueness criteria on A. If f is both injective and surjective, then this
adds existence and uniqueness criteria to B. Thus, if f is a bijection, then
it has these criteria on both sides: Every a € A is mapped to precisely Qe
b € B, and every b € B is mapped to by precisely one a € A. In effect, this
pairs up each element of A with an element of B; namely, a is paired with
f(a) in this way.”

I

®Simply being a function means that everyone in A has found love. The surjectivity guarante®
that everyone in B has also found love.

"Foreshadowing Alert: For f to be a function, we demanded existence and uniqueness
A. If f: A— Bis a bijection, then we demand those same criteria [footnote continues 0"

criteria 0%
ﬂel't Pag ¢
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5 LonGFO

Suppose 4, B and C are sets, g : A — B is injective, and

8.13- f o g is injective.

Theofncl' js injective- et
.B

/ B, We want to show that the function fog: A — C is injective. That
PrO"f sket? a'l ag € A, we want to show that (f o g)(a1) = (f o g)(az) implies
. given E:;Vl)ritte’ll Sifferently, if f(g(a1)) = f.(g'(az?), then a; = ay. Basically, the
| = 0 s of twO copies of the standard 1njef:t1ve proof, with the definition of
poof ;z;?tion thrown in (which is what makes it challenging). Here is the proof
a coml

Ove[\’ iew :

f is injective g is injective

| |

f(g(ar)) = f(g(a2)) = g(a1) = g(a9) — g =apy.

To do this, we will first use the fact that f : B — C' is injective, which tells us
inat for any b1, b2 € B, if f(b1) = f(b2), then by = by. And that works for any two
dements in B. In particular, note that g(a;) and g(a2) are in B!

A B C

Siuce g(a1) and g(ag) are in B and f is injective, this tells us that f(g(a1)) = f(g(a2))
implies 9(ay) = g(as).

Next is a direct application of g : A — B being injective. We have a;,a € A and
flar) = g(as), which by injectivity means a; = as. Boom!

P 1

Ozv;f + Since (fog): A — C, to show that f o g is injective we must show that,

B an)é‘z’@ €A if (fog)(a1) = (f o g)(ag), then a; = ay. To this end, assume
" Aand (fog)(ar) = (f o g)(ag). Applying the definition of the composition,

f(g(ar)) = f(g(az)).

SiIlCe . .

Dartic{ﬂéirBoz g i injection, if f(b1) = f(by) for any by, b € B, then by = ba. In

o). serve that g(ay), g(as) € B and f(g(ar)) = f(g(a2)), and so g(a1) =
LikeWiSe

“aye 4 'i'lis 1A T B is injective and we just showed that g(a1) = g(az) Where
mplies that q; =

€ 1 as.

Thg ave showr, that fo : _ k n—_—

,(fog) 5 g injectionr a1,a3 € A, if (f o g)(a1) = (f 0 g)(a2), then ay 5



ONG-FORM MATHEMATICS TEXTBOOK 383

PROOFS: AL

i equivalence, but for equivalence classes and partitions, all that matters is that
- . satisfy those three properties — the rest is fluff. Likewise, the equivalence classes
,thet)he Jast example failed to produce a partition, and as we will soon prove, this was
i was not “symmetric,” which we will define next. This is the art of

ly because ~ _
z(‘)lioyvel'ing what really matters to obtain a result. Let’s now formally record these
i

Jefinitions and results.

B petuition

Definition 9.3. An equivalence relation on a set A is an ordered relationship
between pairs of elements of A for which the pair is either related or is not related.
Ifa,b € A, we denote a ~ b if a is related to b, and a 7 b if a is not related to b.

For ~ to be an equivalence relation, it also must satisfy the following three

properties.

e Reflexive: a ~ a for all a € 4;
o Symmetric: If a ~ b, then b ~ a for all a,b € A4; and”
¢ Transitive: If a ~ b and b ~ ¢, then a ~ ¢ for all a,b, c € A.

Lastly, if ~ is an equivalence relation and a € A, define the equivalence class
generated by a to be the set

{beA:an~b}

We have already discussed how mod-5 congruence is an equivalence relation,
and we mentioned that mod-6 congruence is as well. We will soon see several more
examples. But as we mentioned at the start, this chapter is focused on abstraction
and generalization, and while the idea of an equivalence relation is quite general,
we can make it even more general by not demanding that it satisfy the reflexive,
symmetric and transitive properties. This is the idea of a relation.

Definition 9.4. A relation on a set A is any ordered relationship between pairs
of elements of A for which the pair is either related or is not related. 1f a,b € A,
we denote a ~ b if q is related to b, and a + b if a is not related to b.

Lastly, if ~ is a relation and a € A, define the class generated by a to be the
set

{be A:a~ b}
e —
7Th
“Ifq tili3 ; etric property would be read either like “If a is related to b, then b is related to a” or

duhs b, then p till-duhs a.”
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appendix A: Other Proof Methods

Throughout this text we have discussed many approaches to prove a theorem. These
include:

e Pigeonhole Principle
o Direct Proof

o Proof by Cases

e Principle of Mathematical Induction

e Proof by Contraposition

e Proof by Contradiction (and, relatedly, proof by minimal counterexample)
These methods were mostly justified through our discussion on logic, and they
are sufficient to prepare you for later math courses. There is another class of
proof methods, which are justified using the theorems /techniques from some area
of math, like probability, linear algebra or combinatorics. If these approaches prove
useful enough, they might be given the lofty title of a “method.” Indeed, the first
three sections of this appendix will be on the probabilistic method, the linear algebra
method, and the combinatorial method. The probabilistic and combinatorial methods
are really important and used a lot. Connections to linear algebra appear all over
mathematics, but the linear algebra method that we will be discussing does not play
a central role in math. Nevertheless, it is worth including because most of you have
seen linear algebra and it is another good example of applying one area of math to
another.

We have studied proofs by cases, and an extreme version of this is a proof with so
Iany cases it will feel like a brute-force argument. In recent decades, computers have
Proven useful at tackling such problems. As such, we will discuss computer-assisted
proofs.

Finally, we will discuss proofs that rely almost entirely on a picture. Calling this
a proof method is stretching the term to its breaking point, but they are useful and
fun and it’s my book so I'm doing it.

To keep the focus on the methods rather than on theory-building, we will focus
our attention on applications from areas of math that have already been discussed

in this book and /or have lower points of entry: Ramsey theory, number theory, set
theory, coding theory and combinatorics.

423



yppendix B: Proofs From The Book

| Exd6s (who passed away in 1996) imagined a book in which God wrote down

orem, and following each theorem He wrote down the best, most beautiful
ant proof of that theorem. Ironically, Erdés was an agnostic atheist, yet,
yis idea Of “The B<.)o'k” caught on, an<-i soon it entered the standard vocabulary of
research mathematicians. It also highlights a common belief among mathematicians

{hat proofs should be beautiful. As G.H. Hardy said, “there is no permanent place in

this

pau
every the
lnost eleg

world for ugly mathematics.”
Indeed, T once attended a math conference and was chatting with the photographer

who was hired to document the event. She said that academic conferences are her
specialty and had taken pictures at conferences in dozens of different areas, from the
sciences to the humanities. I asked her what stood out about the math conferences,
expecting us to spend the next couple minutes joking around about mathematicians’
lack of fashion, or something. But she remarked that the thing which most surprised
her was how often mathematicians talked about beauty in their field. She said that
only art conferences talked about beauty more than us.

If Erdés read a proof and found it correct yet ugly, he might comment that it is
good that we know the theorem is true, but we should still search for “the proof from

The Book!” This refrain has echoed through the decades.
The title of this appendix was stolen! from Martin Aigner and Giinter M. Ziegler,

who had the wonderful idea to write a book with the same name and idea. It’s the
type of idea which, if I had had it first, I probably would have dropped all other
projects to focus exclusively on it. A couple proofs in this appendix are also included
in their delightful book, although the collection in this appendix is much more geared
to mathematicians at your stage of learning (and I again take a long-form approach
to the task). But I encourage you to check out their book; it is broken up by subject,
so after you finish each of your upper division math courses you can read through

the Book Proofs they amassed from that field. Enjoy!

1
Well, let’s call it a tribute.
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