Chapter 1 The Reals

century as a tool to answer some truly

now applied throughout the sciences. We
Greece.

questions from physics, and is
er, long before this point, in

Zeno’s First Paradox

How did he try to prove that motion is an illusion? He create
He said to imagine a race between Achilles (the Greek w
tortoise (just a regular tortoise). Suppose th
tortoise is given a 100 meter head start.

d a thought €Xperiment.

arrior of legend) ang 4
€ race is 1,000 meters long and the

Po P1

The gun is fired and both begin. Achilles is much faster than the tortoise, so of
course you would expect him to overtake the tortoise and win the race, but Zeng
said that he can prove that this is impossible. This was his reasoning: For Achilles
to catch up to the tortoise, he would first have to reach the 100 meter mark, where
the tortoise began the race.

!...And to answer your first question, yes, Greek philosophers were believed to have experimented
oo o AN )
with psychedelic drugs.



CHAPTER 1: THE REALs

And it takes careful, detailed thought to avoid getting stuck in paradoxica]
en. , de
;?tlﬁgtions. Indeed, this is essentially our goal for the book.

Textbook Goal. By studying the infinite, develop a grounfl-up understanding of the
real numbers and functions on the reals. Also, improve one’s mathematical maturity-
that is, understand mathematical statements'an‘d a,rgumez_lts, construct pr9ofs and
find counterexamples, and appreciate the intrinsic beauty in the mathematics,

So, that’s what we are going to do. We are going to think carefully aboyt the
infinite, and as we progress through this book we will see how that careful re
can illustrate some pretty amazing properties of real numbers and functio
unlike calculus where you spent most of your time studying super nice funct
intuitive situations, and very little time on weird paradoxes like the above, in
we will instead spend a significant amount of time on the weird situations, w
intuition may deceive us. We will build analysis from the ground-up,
intuition on solid — and increasingly higher — ground.

So get ready, because I think you will enjoy it.

asoning
ns. And
ions and
analysig
here oyr
retraining our

1.2 Basic Set Theory Definitions

We begin about as basic as possible-—with sets. Here is g quick review of basic set
theory definitions that you learned in your intro-to-proofs class.

g o B

Definition 1.1.

o Set-builder notation looks like this:

S = {elements : conditions used to generate the elements}.

For example,
{1,4,9,16,25,...} = {n*:neN}.

As a second example, the rationals can be built like so:

Q={§rzp,q€Z,q#0}~

o rld is as
2Alternative definition: Everything. Everything is a set. Almost no definition in the wo
general as that of a set.
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1.5 The Completeness Axiom

What’s In a get? That w

hich we call the reals,
Y any other hame woy]

d be as complete,

~ Shakespeare in Dimension C-3142!

We need Just one
aziom. Formally, 1t is
to understand. We b

final axiom to obtain the re
an axiom abou
egin there.

al

S, and it is called the completeness
t bounded get

S; which requires a litt]e motivation

that we mentioned was that if ¢ is
V9 is ratior

1al — we worked out ¢ = 2 in detail
»if g is rational, there may not be a rational number
We want to incluge V2
the other irrationa]
rational,”

in what wi

1l be the real nu
Numbers, We cou

mbers, but we also want all of
Id say “include

all the numbers V@ where q is

S are not of this form, - We want an approach
m, identifieg their ordering, etc. How do we use the rationals to

identify al] of the irrationals? There is a slick

consider the set

way to do this. Turning back to V2

A= {:reQ:a:2<2}‘
this:

~-1.414

~ 1.414

This set looks something like

Here are the important ideas:

¢ This set is bounded above. For exam

ple, 2 and 6 and 1.5 are
everything in A, so these are all uppe

all bigger than
T bounds on A.

¢ Among all these upper bounds, there is o
them all. This is the least upper bound, an
will in fact be exactly v/2 (

ne that is special — the smallest of

d as you might imagine, this bound
which by Example 1.4 is not rational)

* In order to get all of R, we will start with Q and then we'will add in all the
least upper bounds from all sets that are bounded above, like A. E.g., due to

A The Shakes

peare in the parallel universe where all his plays were about math. And Jerry’s
happy.
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the above set A, we include v/2 into our set R. Doing this for all sych, A Makeg
R complete.??

All rationals All reals here are
here are in A upper bounds on A

W\)

V2

The least upper bound of A,
so include this in R

That is the blueprint for what we are going to do. Now here it is, formally.

T

Definition 1.17. Let S be an ordered field (like R) and A C S be nonempty.

(1) The set A is bounded above if there exists some b € § such that z < b
for all z € A; in this case, b is called an upper bound of A.

(ii) The least upper bound of A—if it exists —is some bo € S such that
(1) bo is an upper bound of A, and (2) if b is any other upper bound of A4,

then by < b. Such a bo is also called the supremum of A and is denoted
sup(A).

(iii) Likewise, the set A is bounded below if there exists some b € S such that
T 2>bforall z e A; in this case, b is called a lower bound of A.

(iv) Again, like above, the greatest lower bound of A—if it exists — is some
by € S such that (1) bo is a lower bound of A, and (2) if b is any other

lower bound of A, then bo > b. Such a by is also called the infimum of A
and is denoted inf(A).

(v) If a set is both bounded above and bounded below, then it is simply
called bounded.

_— OO O

You had me at zero

22 Q R
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The next theor

_ I says that between any two real numbers is a rational number.
The rationals whi

. . 30
ch are Super nice to describe and work with — are everywhere.

Theorem.

Theorem 1.31 (Q

is dense ip R).
numbers.

The rational numbers are dense in the real

0

Now, y — z is Some positive number, and sq by Archimedean principle there is
somen € N with L < _

1
0 =
&
S
Now think about all integer multiples of this %
1 2 5 6
0 = = n

T + s

Note that since each one is + away from the next one, but y
impossible for these dashes to completely hop over the interval be
That is, at least one of these must fall between z and y.

Slw
S~

3

—x > %, it is
tween x and Y.

123£§§ . m=1 m mi1

0 w m owon oo Cmmw
AT P

—t "x+y

This is the idea, although by using Lemma 1.30 the proof hides some of these
details. Now here’s the proof of Theorem 1.31.

R T i ill be even more
*’In Chapter 2 when we study the cardinalities of these sets, this result will be e
impressive and importan
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Consider the rational numbers (with some duplication) written in thig way:

1 2 3 4 5 6 78 ...

1| 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 ...
2| 1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2 -..
3| 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 ...
4| 1/4 2/4 3/4 4/4 5/4 6/4 T/4 8/4 ...
5| 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 ...
6| 1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6 --.
T\ YT 2/T 3T 4/T 5/7 67T /1 8/7 -..

8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 ...

Our bijection, which we call the winding bijection, can be pictured like this:

1 2 3 4 5 6 7 §.

L YT20 3041 /0% 7y .
2| 12 2/2 3/ 45 518 678 7/8 8/21-;-\‘/
31 1/3 2/3 3/3 4/3 5/ 6/3 7/ 8/3"-,--
4 14 2/4 3/4 44 55 6/4 1)K g4 ...
51 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 ...
Gl 1/6 2/6 3/6° 4/6 5/6 6/6 7/6 8/6 ---
TV OUT 2/T 3/ 4T 5/7 6/7 7/7 8)7 -

8| 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8 -+
.'!l:/’/ ;k’, . s ; . .
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Comment 2. Below is the important picture to keep in your head. N

. Ote thyy
after the N, all the points are inside the shaded region between ¢ — ¢ and

a+ e

Now, if you picked a smaller value of €, which we will call ¢,

bigger value of N (called N3) to guarantee that all the points after
shaded region.

you will neeq 5
Ny are inside the

@~

°
a—+ eo

a—ego

N,

<+
So you see, smaller values of ¢ typically require larger values of N.

Comment 3. You can think about the converging sequence as the tragic story of a
rebellious youth. When young, he may be all over the place on any given day, living
his life and getting into mischief. But eventually society settles him down. When
€ = 100 (miles) he has a car, and with his gang of misfits he can roam wherever
he pleases, causing mayhem. But when € = 10 (miles), the value of Nj represents
the age at which he is placed on at-risk watch and is not allowed to leave th.e Cl}tlz
(maybe Ny = 17 years old). Then & = 0.1 (miles) represents the age Na at Wthhthe
really gets into trouble and is placed under house arrest. And ¢ = 0.01 represents.ne
age N3 at which he is sentenced to life in prison and will forever more be contal
within a small wing of prison.?

d the solitary
SWhen I started this paragraph I did not anticipate it getting so dark. I even droppe
confinement stage (or beyond) for that reason. Poor guy. Stay in school, kids.
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This next one looks a bt trickier, but the same procedure works.

Example 3.12. Let q, — 3\7’1“‘1

e Prove that 'llglgo a, = 3.

Scratch Work. = Again, we first play around. We start, with where we want to get
to (that |an — a| < ¢), anq then (

: _ 0 some algebry tq figure out which values of n
would give this.
We want the following:

|an‘—a]<6
3n + 1 5
n+2“ <e

3n+1 _3(n+2)
n+2 n+2 |S€

3n+1~3n—6
n+9 <eg
—5
ntz|<¢
> <
n+2 "¢
5
—<n+2
€
-—2<n
So as long as we choose N = — — 2, then for any n > N we will have n > ° -2

—1

which by the above will imply that 37?+2 — 3, as desired.

Solution. Fix any € > 0. Set N = g — 2. Then for any n > N,

3n+1 3n+1 3n+6
on =l = | T2 -3 = w2 w2
5 5 5
Tn2 S N+2 T Fog)1e
=2 .
5/

3n+1

That is, lay, — al <e. So by Definition 3.7 we have shown that ——
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once we have proven 3, then 4 is similar. Those two are Exercise 3,13 B
prove 3 next and leave the rest as exercises. € wil|

Scratch Work. Here’s the scratch work for Law

. : 3. We want to fing an N
that n > N implies |a,b, — ab| < €. Our two big assumptiong are that ¢ Such
bn — b. Here’s what we get from that: n = aapg

e Since a, — a, for any €; > 0 there exj
that |a, — a| < ¢;.

e Since b, — b, for any €z > 0 there exists some N.
’ 2 such that :
that |b, — b| < e, > Ny implieg

Now, going back to what we w.

ant to show, there ig 5 clever
work. The idea is to first rewri

: trick that makes it 4]
e

|anbn, — ab,, + ab, — ab| < |a,b, — aby| + |ab, — ab|

= lan = al - [ba] + |a] - b, — b,

an = a, / \

b, — b,
so we can make SO we can make
this small. this small.

bn is bounded,

a is fixed.
so < C.

To get this all less than ¢, we will make both of the produf:ts less than E%. ?o ge:
|an — a| - |by| less than £ we will have to ensure that |ap, — a| is less than =£. To ge

|al - [by — b| less than § we will have to ensure |b, — b| is less than 5= (And then be
careful so we aren’t dividing by 0.)

" b, ) 18
Proof. Let € > 0. Since (by,) converges, by Proposition 3.20 we knoIvJv tﬂ;at =( i’l
bounded; that is, there exists some C' € R such that |b,| < C for a,l(;‘n:di ;: b;’ " )20+
and €3 = giy. (Note: we need each “+1” to ensure we are not dividing e
e Il n> N
Since g1 > 0 there exists some Nj such that |a, —a| < Elff?«r 531 . et
since g9 > 0 there exists some Ny such that |b, — b| < €2 fo



REAL ANALYSIS, A LONG-FoRy TEXTBOOK 91

proof Idea. Suppose (a,,) is
given any M > 0, this M ig

Once a monotone

_ °
(an) gets above

M, 2
it stays above M \ *
M__l‘ ___________ *
———————— e 1
©
°
°
o ®
o ®
Q_‘

L

If, on the other hand, (an) is bounded, then the

; Sequence must be leveling out
(it's monotone, so it can’t 80 up and down).
) (an)’s bounded above, so
f there’s a least upper bound
""""""""" A e
L ] o ¢
L ]

N

Proof . Assume that (an)
1S not bounded. Then for

since (ay,) is monotonically increasing,
Definition 3.15, (an) diverges to oo.

Next suppose that (an) is bounded. Then we have that {an : n € N} is a
Subset of R which is bounded above, which by the completeness of R
SWp({an ine N }) exists.17 Call this supremum «. We want to show that

is monotonically increasing,

and let’s suppose first that a,
any M > 0 there exists so

me N such that ay > M. But
for n > N we have a, > ay > M. And so, by

lim q, = Q;
n—oo
that is, we want to show that for any & > 0 there exists some N such that n > N
implieg la, — al <e.

¥
17Remenlber that so far only sets have been defined to have suprema. Sequences don’t. So we
Ve 0 turn the se

quence (ai1,az,as,...) into the set {a, : n € N} in order to talk about their
Supremyyy, .
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108

that n; > .28 In particular, ny41 > J. And so, for any g% d;

laj —al = laj —an,, + nypn — al
<laj — anyy, |+ lang o — al
£ E
< 5 + 5
=c. O

Back to Axioms

In this text we assumed as an axiom that the reals were complete (AoC).? Using
AoC we proved, in this order, the monotone convergence theorem (MCT) in Theorem
3.27, the Bolzano-Weierstrass theorem (B-W) in Theorem 3.37, and then the Cauchy
criterion (CC) in Theorem 3.42. That is,

AoC = MCT = B-W = CC.

e In fact, AoC and MCT are equivalent! If we had started by supposing as an
axiom that the reals were an ordered field containing @ which satisfies MCT,
then we could have proved AoC and everything else and ended up right where
we are now.

e Also, AoC and B-W are equivalent! So by supposing B-W instead of AoC, we
again could have developed our entire theory.

e CC is almost enough, but not quite. Surprisingly, with CC you can not prove
the Archimedean principle (AP). But if you assume both CC and AP, then you
can prove everything.3’

That is,
AoC & MCT « B-W & (CC + AP).

Neat stuff.

28For example, one subsequence is (an;) = (a1,a3,as,az, ... ), giving n; = 1, na = 3, n3 = 5,
ng =7, and so on. And so, n; > 1, and nz > 2, and nz > 3, and n4 > 4, and so on.

% As someone whose mathematical interests are nearly matched by my interest in politics, the
post-2018 dueling use of “AOC” has taken a toll on my casual readings.

30Suppose you tried to prove that an ordered field with CC (but not AP) has AoC. To prove AoC.
you must prove that given a bounded set A, its least upper bound — sup(A) —exists. A reasonable
approach that uses CC would be to try to approach it from above. Start with any upper bound b of
A and then pick any a € A. Construct a sequence which approaches where we know sup(4) to be
an — %58 if this is an upper bound of 4;
Ty otherwise.
Try to convince yourself that this sequence should indeed converge to sup(A). But how would you
prove it? Let € > 0. We must show there exists a point in this sequence that gets within € of sup(A)-
And showing that we can always get closer comes down to showing that there exists an n such that

-217 < 5= And there it is—at this step we require the Archimedean principle.

by setting x; = b, and for any n > 1, letting 2,4, =
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4.4 Rearrangements

Definition.

o0 o0
Definition 4.21. A rearrangement of a series Z ay 1s a series Z by, for which
there is a bijection f: N — N such that brky = Q-

It is precise to define a rearrangement in terms of bijections (especially if the
series has repeated terms) but, intuitively, a rearrangement of a series is simply the
same series where you add up the terms in a different order.

Example 4.22. The alternating harmonic series is

1—1+1—1 l_1+1_1+
2 3 4 5 6 7 8 7
A rearrangement of this series is
1 1 1 1 1 1
S — s - —— 4

5 2 152 BT 1847604 8
A different rearrangement is

TR TN O S
3 5 2 7 9 11 4

If you have finitely many numbers that you are adding/subtracting, then of course
the order in which you add/subtract them does not matter — you get the same answer
either way. Amazingly, though, if you have infinitely many numbers, then it can
make a difference. It is possible to add up infinitely many numbers and have it
equal one thing, but then by simply changing the order that you are adding up the
numbers it is possible for the sum to equal something different! The order that you
add the numbers can change what it equals! But if that’s not freaky enough, it gets
worse/better: In some cases, the sum can equal anything at all. This is one of my

favorite theorems of this entire book, so pay attention.

Super Cool Theorem.
o0

Theorem 4.23 (Rearrangement theorem). If a series z aj. converges condi-
k=1
tionally, then for any L (L € R or L = 400) there exists some rearrangement of

o0
Z ar which converges to L.
k=1
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: ) )
o In Exercise 4.17 we prove the ratio test. That 18, given a series Zak with
k=1

a # 0, we will show that if lim s less than 1 then the series converges.

C—00

ag

o0
« In Exercise 4.18 we prove the root test. That Is, if E ar 1s a series where each
k=1
ar > 0 and the limit lim () /™ axi
- k—oo

converges if p < 1 and diverges if

Theorem 4.23)

ly conver-
ged to converge to g i
either 0o or —co. After stating the theorem we sketched a proof for the
LeRand L > 0.

at there exists a Irearrangement of this sum whose
limit does not exist.

¢ In Exercise 4.25 we prove a generalization of Theorem 4.23 called Riemann’s

series theorem in which in a rearrangement can be found whose limst supremum
and limit infimum can be arbitrarily chosen.

* Notice that, Theorem 4.23 says nothing about what happens for Seljies whi.ch
are not conditionally convergent. In Exercise 4.26 we prove that if a series
converges absolutely, then every rearrangement converges to the same thing.

oo ==
And ip Exercise 4.27 we prove that if each a;, > 0 and Y heq Gk = 00, then any
fearrangement of this sum also diverges to oo.
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For the forward direction,. when we assume for a contradiction that A does not

tain all its limit points, this gives us ap 4 ¢ A for which there is a sequence (ay,)
. erging to z, where each a, € A. Wheye's the contradiction? Well
colz’eanS these points a, from A are getting ¢
fh;t means = € A% and sinfze A is cllosed, A®is open. And being open means there
is a 0-neighborhood of. x which 1S entirely containeq inside A°; Le., is disjoint from A.
That's the contradiction: It’s impossible for a sequence (an) be getting closer and

closer to x, if all these points have to he from 4, ang hence have to stay outside this
§-neighborhood of x.

(an) can’t get closer
. » .
than § to a2, so it can’t In A% s0 no
be converging to g, @n are in here.

/\/\ /_\_/\

T —6 .r T+§

A d-neighborhood

As for the reverse direction, by using the contrapositive We may assume that A is

not closed, which is to say that A€ is not open. And being “not open” means that for
some T € A°, every d-neighborhood of = contains a member of 4. So if we let 6 =1,
then this 1-neighborhood of 2 contains a member of A, call it q. Likewise, if we let
0 be 1/2, then 1/3, then 1/4, and so O, We get an ay,a3,a4, and so on, each from

A and contained inside these respective neighborhoods. Thege elements comprise a
sequence from A, which converges to z.

The 1-neighborhood of z. Contains some a; € A.

The %-neighborhood of z. Contains some az € A.

/\%

The %—neighborhood of z.
Contains some az € A.

/\_—gﬁ

The %-neighborhood of z.

Contains some ag € A. \
P
ax [ [ Q4. ... ,a_s} Gg}
r— < r T+ 3 J
j fl ’ 4:tc+1t 1
z-1 z-37 % 3 PNTEE x4

Proof. For the forward direction, suppose that A is closed, and assume for a
“ntradiction that 4 does not contain all of its limit points. That is, suppose that
there js 4 Sequence ay,as,a3,... from A where an — z, but z & A. Ob§erve that
this implieg that A° is open and z € A¢. And so, by QPEIMIESE; ther.e 1s some 4-
111Eig>'111)0rhc>c)d (x -6,z + d) € A°. We now show that this is a contradiction to the
clalm that o _, T.

Since ann——> z where each a,, € A, for all € > 0 there exists some N .such 1}:11"13,}:]
=2 < ¢ for all > N. In particular, if we let £ = §, then such an N exists, whic



chapter 6: Continuity

6.1 Approaching Continuity
] made a meme describing your discrete approach towards understanding continuity.!
A function is

continuous if it’s
like 22

What you were
taught in middle school

If you can draw it
without picking up
your pencil

What you were
taught in high school

taught in pre-calculus have any holes
or jumps

What you were

If for each ¢,
taught in calculus

lim £(z) = f(c)

What you were - If it does not

If when z gets close
to ¢, the function f(x)
gets close to f(c)

If for all € > 0 there
exists some § > 0 such
that [z — ¢| < § implies§

|f(z) = fle)l <e
T -
Here’s to hoping that memes have a longer half-life than I fear!

171
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Example 6.7. Define Thomae’s function® to be

1 ifz=0
h(z)={1/n ifz € Qand z=m/n in lowest terms with n >0
0 ifx & Q.

Notice that at any rational point ¢, we have h(c) > 0; meanwhile, there gre
irrational numbers z arbitrarily close to ¢ which have h(z) = 0. So h will indeeq be
discontinuous at every rational number.

At any irrational number c, though, we can show that h is actually continugys
We will prove this in detail later, but the basic idea is this: Let € > 0, and finq an
N for which % < &. We can show that, in some region around c, all z-valyes have
h(z) < % < &. To see this, note that there are only finitely many rational numberg
which have a denominator of N or smaller and are also within, say, distance 1 of ¢,
Find the one that is closest to ¢, and suppose it has distance 6 > 0 from c. Then,
all rational numbers in (c — 6, ¢ + 6) have denominators that are larger than N, g,
within this range, all function values h(x) are smaller than 1/N. Awesome!

And, as you can imagine, as N gets large this forces all the function values to be
converging to 0 in these shrinking regions around ¢, kind of like what happened at
¢= 0 in the modified dirichlet function. So yes, this will be an example of a functioy
which is discontinuous on Q, and continuous on R\ QP O

This function’s graph looks like this:®

So yes, with these functions in mind, we certainly are in need of a careful

definition of continuity. But first, as we have discussed, we need a careful definition
of a functional limit.

“AKA the popcorn function, AKA the ramndrop function, AKA the countable cloud function,
AKA the ruler function, AKA the Riemann function, AKA the Stars over Babylon.

®Make sure you take a moment to appreciate how remarkably, wonderfully weird this is.
®So cool that it made the cover.
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6.1 The Extreme Value Theorem

pis next section begins with one more connection between cont
3;:, fundamental objects of topology: compa
he

nuity and one of
ct sets.

Theorem 6.30 (The continuous ma

9¢ of a compact set is compact). Suppose
f:X= R is continuous. If A C X is pact) pp

IS compact.

I i

Proof Sketch. The idea behind the proof is contained ip the following picture.

5}91_!3_.2; Tl?er;n Step 1. Consider
{f7'(Ua)} is an open cover
open cover of A.

{Ua} of f(A).

"~ ———

Step 4. Then
Step 3. A is compact, so {Uy,..., Un} is a finite
{f"'(Ua)} has a finite subcover: subcover of {U,}.
oy, s way.

The only additional Justificatio
Lot technically guarantee that f
open set V,,. So technically our
will still essentially work.

n that is needed is in Step 2. Theorem 6.29 does
Uy is open, but that f~Y(U,) = V, N X for some
open cover of A will be {V,}—but the above sketch

Proof Suppose A is compact. We aim to show that f (A)

1s also compact, which
Ve will show vig the definition. To

that end, let {Ua} be an open cover of f (A). We
Will find g finjte subcover of this cover, which will complete the proof. .

By Theorem 6.29, each f~}(U,) = V4N X for some open set Vy. In particular,
lote that f‘l(Ua) cV,

We will show that
e tha
18 suff

{Va} is an open cover of A. By the above, each Ve is open. 'Ijo
}is a cover of A, we will instead show that {f "1(Ua)}'ls a cover. Thii
Clent since we already noted that each f~!(U,) C V,. Consider any g € A;
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derivative, moving a couple things around, and applying a limit law.

(kf)(x) — (kf)(e) k- f(z) —k- f(e)

= lim

lim

r—c Tr —C T—C &L — €
. f(x) = f(c)
=k -lim ———2~
r—cC T —c
= k- 1'(0).

Q

11 d 5 _
Example 7.10. We have shown that f-z'? = 12z'" and 2% = 54 And S0, by
Proposition 7.9 part (i), we now know that :

d

. —d:c(:cu + z°%) = 122! + 5z, and
d 5 d 5 4 4
i ” — R :7-5$ :35$ S
* G =T

T -~

Theorem 7.11 (The product rule). Let I be an interval and let F,9:1 R be
differentiable at ¢ € I. Then

(£9)'(c) = f'(c)g(c) + f(c)d' (¢).

Proof Idea. At the moment we haven’t proved much about deri
be helpful here, so any proof of this will likely be via the definiti
When solving problems, it is always a good idea to keep in mind
to reach, and how you might reach that point. Indeed, let’s write out where we will
begin and start working down, and let’s write where we will end and start working
up, and let’s see how far we can move inward before needing to be smart.

vatives that would
on of the derivative,
where you are trying

T —c

_ iy T®)9(2) — f(c)g(c)

Tr—c r—_cC

l (Fa)(c) = lim Y9@) ~ (F9)(¢)

... then a miracle occurs . . .

i J@) 000~ £@) g(0)

r—rc r—cC T—C r—=c

=i = 0+ 20

= f(c)g(c) + f(0)g' (o).
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em 7.22 (The (derivative) mean vqly,
Th‘:'(:;lous on [a,b] and differentiable on (a,b)
con! 1

€ theorem). Let f [a,b] - R be
- Then there exists some ¢ € (a,b)

where o) = L&) = f(a)
b—a
—
y

Our plan is to reduce this theorem to Rolle’s theorem. If you start with f(z),
and then subtract off the secant line from (a, f(a)) to (b, £(b)) (call this secant line
s(x), pictured above), what you get is a function with fla)=f (b) = 0, which the
theorem can handle. The theorem will then give us what we seek. Let’s Rolle.

Proof. Note that the equation of the secant line from f(a) to f (b) is

q@=(ﬂ%}§9)@—@+ﬂ@

Let g(z) = f(z) — s(z). That is, g() is what you get when you subtract off this line
from f(z):

o) = 10 - (5 2D) -+ 500,

Note that g is differentiable on [a, b] and continuous on (a,b), since f and s are. Also
note that g(q) = f(a) = s(a) =0, and g(b) = f(b) = s(b) = 0. So we may apply
Rolle’s theorem to g to say that there exists some ¢ € (a,b) where ¢ (e) =0, Las
f(e) - s'(¢) =0, or equivalently that f’(c) = s'(c). And since

Sl(m) — f(b) — f(a)

b—a

?

f(b) — f(a)
Ve have indeed found a ¢ € (a,b) such that f'(c) = T bem =
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My +-----\-------

T4

. T r1T2 T3
L

And here is ms, the height of the third (lower) rectangle:

N

o r1T2 x3 T4

~

Now that we have a way to talk about the widths and heights of both the big
rectangles and the small ones, we can write down what we are really interested in: a
formula for the upper bound area and the lower bound area. These are called “upper

sums” and “lower sums,” respectively.

8 Defnion__g

Definition 8.4. Consider a function f : [a,
P = {z0,z1, ..., zp} of [a,b]. Define

b] — R, and consider a partition

e the upper sum as

U(f,P) = Y M- (2 — zi-1), and
i=1

e the lower sum as

L(f,P) ==Y mi-(zi— Ti-1),
i=1

where M; and m; were defined in Notation 8.3.
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ing of inequalities that looks a little like the one we are trying to prove:
strl
L{f, Po) < L(f) < U(f) < U({, Ry).

hat's left? We must find a Py that gives the correct bounds,

What is the simplest partition P of [a, b] that we could apply? Remember that a,
Jatition of [a, b] is a set of the form {zq,z;,. .. »Tn} where 2g = ¢ and Tn = b. Since
o and b are the only numbers that must be in the partition, the simplest partition
would be Po = {a, b}! This is the partition that corresponds to a single rectangle,
and since upper and lower sums correspond to area,

L{f, Po) < L(f) S U(f) < U(f, By).

turns into

< L(f) SU(f) < Area M1
mi

which gives
m(b—a) < L(f) SU(f) < M(b— a),

Proof. The inequality L(f) < U (f) follows immediately from Proposition 8.7 part
(b), and Exercise 8.3. Now we show the bounds on L(f) and U(f), which are a
sup/inf over all partitions. The simplest partition possible is the 2-point partition
Py ={a,b} containing only the endpoints (that is, n = 1, g = a, and x; = b); this
I turn gives a single rectangle in the upper or lower Darboux sum. Thus,

L(f) = sup{L(f, P) : P € P}

U(f) = inf{U(f, P): P € P}
2 L(f7 PO)

S U(faPO)
- imi (xi — zi-1) = ZMi - (i — mi—1)
=1 i=1
1 1
=Zmi-(b—a) =2Mi-(b—a)
i=1 i=1
2m-(b—a). <M-(b—a)

COllectively,

m(b—a) < L(f) < U(f) < M(b—a).
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What was the one error in the last paragraph? By Definition 8.2, a partition can
not have infinitely many points in it; it must be a finite set, and so we can’t put
each point in its own rectangle. Indeed, some rectangle will include infinitely many
points! So we must be more careful. Consider, for instance, the following example,

Example 8.20. The function fs : [0,2] = R where

1 ifmyé%foranynGN
foo(®) = ifxzifor some n € N

is integrable.

following proof. First, as we just mentioned,

a partition must be a finite set. So we have to find a way to have a finite number

of skinny rectangles which contain all the points of discontinuity and their areas
collectively add up to less than & (once again, they will add up to £/2). And then we
Theorem 8.14).

will use the integrals analytically theorem (
0¢e/2? To do this, we will utilize

So how do we get the “missing” areas to add up t
the fact that the points of discontinuity are converging to 0. So for any &> 0, only
finitely many of them are outside of [0,&/4]. So if we pick a partition that includes

£/4 (and, as is required, includes 0), then the rectangle

Proof Idea. Here is the idea behind the

— ——

will capture all but finitely many of the points, and do so in a rectangle of area

(¢/4)-1 = /4. Then we just add skinny rectangles around the finitely many remaining

points, and make sure they are skinny enough that the sum of their areas equals € /4.

!
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9.3 Other Properties with Functional Convergence

We want to invest.igate which properties are preserved by pointwise and uniform
convergence. We aim to complete the following chart.

Assume that each f; If f = f pointwise, If f — f uniformly,

has the below property | must f satisfy property? | must f satisfy property?

Continuous No, by Example 9.6 Yes, by Proposition 9.8
Bounded 77 277
Unbounded 299 297
Uniformly Continuous 77 297
Differentiable 77 o9
Integrable 7 297

A few of these will be left to the exercises, but ticking off the rest will help us better
understand the differences between pointwise and uniform convergence. It’s also

pretty fun to think about finding a proof or counterexample of each of these. Let’s
start at the top — boundedness.

Boundedness

For each of these I strongly encourage you to think on your own about what you
think the answer is. And if you think the answer is no, try to come up with an
example demonstrating it.

Assuming you have spent time thinking about whether each fj, being bounded
implies f is, you can read on. We will show that for pointwise convergence boundedness
might not carry to the limit, but with uniform convergence it does. We begin with
an example showing the pointwise claim.

Example 9.9. Assume that each fi is bounded and f; — f pointwise. It need not
be the case that f is also bounded. Here is an example of that:
Define f, : (0,1] - R by

8=

if z € [1/k,1]
fel@) = {0 if 7 € (0,1/K).

Clearly 0 < fi(x) < k for each z, so each f is bounded.? However, for any z € (0,1],

by the Archimedean principle there is some N € N for which % < z. And thus for
all k > N we have f(z) = 1/z. So clearly for each z we have

Jim fir(x) = -

2Recall again that for each particular fk, the number k is fixed. So, e.g., 0 < flOO(a-:) < 100. If
we knew that g : R — R had the property g(z) < @, then this would not mean that g is l?ounded,
because z is vari'able. But saying fx(z) < k does mean that fi is bounded above, since k is fixed.
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g(.)é)e to do it. Also, this is a topic where seeing animations of the ideas makes a huge
ifference, and his animations are top notch. You won't be disappointed.

Ok good. Now that you have watched his excellent motivation and developed
some intuition, we will get into the formal development, of this e lrel: TR 5. B
definition that is truly Talyor-made.

Definition 9.36. Assume f®)(c) exists for all k € N. The Taylor series of f
about x = c is

)(c
ka()(w__c)k

If ¢ = 0, then the series is called a Maclaurin series.’

Here is an example of finding a function’s Taylor/ Maclaurin series.

Example 9.37. Here we find the Maclaurin series of f(z) = cos(%).

f(x) = cos(z) f(0)=1 ap =
f'(x) = —sin(x) F(0)=0 a1 =0 X
f"(z) = —cos(z) f(0)=-1 az = —73
FR(p) = gin{z) f"(0)=0 az =0
FO(z) = cos(x) fB) =1 a1 =1
f®)(z) = —sin(z) F®0) =0 as =0

It is evident that
if k£ is odd

*) (0 ,
f(0) = {( 1)k/2 if k is even.

So the Maclaurin series for f(z) = cos(z) is

o0
f(k)(g) - 22 g o8
Z (m) —1_2_+'E—a+.

5 Named after Scottish mathem-
atician Colin Maclaurin, who was a
pioneer in the field of analysis and,
presumably, a pioneer in the art of
rockin a dope afro:

(He was also considered the youngest
professor in history, until 2008 when
American materials scientist Alia
Sabur claimed the crown 3 days be-
fore her 19'" birthday.)
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AppendiX B: Peculiar and Patho-
logical Examples

Jerry Seinfeld: Oh you're crazy.

Cosmo Kramer: Am I? Or am I so sane that
Jerry Seinfeld: It’s impossible.

Cosmo Kramer: Is it? Or is it so possible that
like a top?

Jerry Seinfeld: It can’t be.
Cosmo Kramer: Can’t it?
all around you?

Jerry Seinfeld: Alright that’s enough.
Cosmo Kramer: Yeaaaaaaaah!

you just blew your mind?

your head is spinning

Or is your entire world Just crashing down

The world of mathematics can be a stran
this world and finds itself in some dark, fore
eaten by monsters, and missing a beautifu

It has been said that one of the most

ge place, and when your mind is exploring
ign region, you risk falling into pits, being
I forest for the boring trees.

Important goals of learning real analysis
you can, and to keep them in your back
y will inform your conjectures and guide

jour proofs, but they will also help to demonstrate why real analysis is such a great

subject,

When little kids learn about the world, many are fascinated by dinosaurs because
they show how strange and large and monstrous life on Earth can be. Flowers are
40 nice. [ Jike flowers. Your course abstract algebra, for instance, is filled with
theorems which are small and pretty and I am happy to see them and learn about
th_em' But I prefer the monsters.! We have seen Imany awesome monsters already in
this book, byt if your back pocket has some room left, this appendix has a few more.

Don me
» Tesearchers of the Monster group.

379
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-3 -2 =]} J 1 2 3

how non-differentiable can a continuous function be? We could of course
ut ho

B n-differentiable points occur more often. Consider the function which

ake the 119
el call A1t

a3 22 -1 | 1 2 %

Note that Aj is discontinuous at every point of the form %, where m is an integer.
Better yet, here’s Ay

ir—l

Note that Ay is discontinuous at every point of the form Ez, where m is an

integer. Indeed, you could keep doing this na{nd Ay, would have the property that it is
discontinuous at every point of the form =

In some sense this is making things weirder, but in another it’s not doing much:
kit so different to have every 8" term be discontinuous compared to every 64h
term? It’s still a discrete set where you have fixed gap-sizes between the points.

The holy grail example would be to find a continuous function that is differentiable

nouhere. Now take a minute to appreciate how peculiar such a function would be. In

ﬂﬂotfr examples thus far, being non-differentiable at a point was obtained by having
o lines (which are not only continuous, but also differentiable) meet at a single

boint, forming a peak. The other “elementary” technique to get a non-differentiable

0- " . i . . 1 i
PO is o have a jump discontinuity there, but this can’t be used since we want our
Ction to he continuous. In Exa

ity il poc Hixa plple 7.15'We saw another approach to maintain
S lle losing c?1fferent1ab1hty, but this approach seems to have no advantages

il IS): peak, while at the same time being much harder to grasp.
a"eapeakem the best approach, and it is reasonable to think that in order. to
% YOu need to have g region around that peak where you have two nice,
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APPENDIX B: PECULIAR AND PATHOLOG

ICAL EXAMPLgg
B.18 Tarski’s Terrific Talents Times Tyq

The great Jan Stewart 'nnagix}@d a hyperdictio@ary, W}.I'l(}}t ! only every v, q
but also contains every possible ‘_”f?rd' S?re, 1t contaljlgz math” anq g and “fug
it also contains “ydac” and “faqir and “galbhepyny”, These are o ds
The hyperdictionary contains infinitely many words, sipce any combyipas '
many letters counts as a hyperword. The hyperdictionary beging:

contains net onl

a, aa, aaa, aaaa, aaaaa, ., .

aaaba, aaabaa, ... <INFINITELY

sy aaﬂb’
MANY HYPERWORDg - “+5 aab, aghy
- “INFINITELY MANY HYPERWORDg +ab, aba, abag <INFINITy
MANY WORDS> ..}, ba, baa, baaa, .
The words form what

“kdalghsdn! This is ap
€ with an inf

nite dictionary,
» We showed t}
set of it (like 2N).

It might
at a set (like N)

can be ip
Now we move on to an amazin
Tarski who in 1924 gave 5 constr

We begin by noting that g Square can be divj
five pieces can then be rearranged to form two ot

g theorem, named after Stefay Banach and Alfreq
uction that shocked the mathematical word 23
ded up into five pieces, and those
her squares:

O

These new Squares are, of course,

smaller — each has half the area of the original
square. However, of course, you sho

2
i n
uld always be careful when saying “of course” i
2 Actually, ane of those s a real ward! _ .
ctually, one of those is a rea —
BIf 1 cou{c’l have either a construction, lemma or theorem name(:l after mte};ii gt tll?at i)
ould be in that order. To me, proving something is cool, but proving some
wi ;
enough and

1
1d be to construc
used often enough to be called a lemma is even cooler, but the best wou

a concrete mathematical object that shocks and awes.



