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Sooner or later every student of geometry learns of three “impossible” problems:

1. Trisecting the angle: Given an arbitrary angle, construct an angle exactly one-third
as great.

2. Duplicating the cube: Given a cube of arbitrary volume, find a cube with exactly
twice the volume.

3. Squaring the circle: Given an arbitrary circle, find a square with the same area.

These problems originated around 430 BC at a time when Greek geometry was advanc-
ing rapidly. We might add a fourth problem: inscribing a regular heptagon in a circle.
Within two centuries, all these problems had been solved (see [3, Vol. I, p. 218–270]
and [1] for some of these solutions).

So if these problems were all solved, why are they said to be impossible? The “im-
possibility” stems from a restriction, allegedly imposed by Plato (427–347 BC), that
geometers use no instruments besides the compass and straightedge. This restriction
requires further explanation. For that, we turn to Euclid (fl. 300 BC), who collected and
systematized much of the plane geometry of the Greeks in his Elements.

Euclid’s goal was to develop geometry in a deductive manner from as few basic
assumptions as possible. The first three postulates in the Elements are (in modernized
form):

1. Between any two points, there exists a unique straight line.

2. A straight line may be extended indefinitely.

3. Given any point and any length, a circle may be constructed centered at the point
with radius equal to the given length.

These three postulates correspond to the allowable uses of compass and straightedge:
to draw a line that passes through two given points; to extend a given line segment
indefinitely; and to draw a circle about any given point with any given radius. To
solve a problem using compass and straightedge means to use only these operations,
repeated a finite number of times. The construction’s validity can then be proven using
only the postulates of Euclidean geometry.

For example, consider the problem of duplicating the cube. In order to duplicate a
cube with a side length of a, it is necessary to construct a line segment of length 3

√
2a.

One of the simpler solutions, presented by Menaechmus around 350 BC, is equivalent
to locating the intersection point of the parabola ay = x2 and the hyperbola xy = 2a2;
these two curves intersect at the point

( 3
√

2a,
3
√

4a
)
. Since this solution requires the

use of the hyperbola and parabola, it is not a compass and straightedge solution.
A more subtle problem occurs with the trisection problem. Suppose we wish to

trisect ∠BO E , which we may assume to be the central angle of arc B E in a circle (see
Figure 1). There are several neusis (“verging”) solutions, one of which is the following.
Draw BC parallel to O E and then draw C A with the property that D A = O B (the
radius of the circle). It is relatively easy to prove that ∠DO A = 1

3∠BO E (a proof
we will leave to the reader). We can accomplish this construction with compass and
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straightedge as follows: Open the compass to fixed length equal to the radius O B.
Using C as a pivot, swing the straightedge around, using the compass to measure out a
length O B from the point where the straightedge crosses the circle, until you find the
point D where the length D A = O B.

E A

D

B

O

C

Figure 1 Neusis trisection of an angle.

There are at least two objections that can be raised to this “compass and straight-
edge” solution. First, the postulates only guarantee the existence of a line between two
points, or the extension of an existing line; hence there is no guarantee that the line like
C A, specified by a point C and a length D A, even exists. Second, the postulates only
allow us to measure out a length by means of a circle of known center. This means we
cannot measure the length D A equal to O B until we locate D. Thus, even though this
solution uses compass and straightedge, it is not a compass and straightedge solution.

Even if we restrict ourselves to the canonical uses of the compass and straightedge,
how can we distinguish between constructions that have never been done and those
that are actually impossible? Before 1796, no compass and straightedge construction
for a regular heptadecagon was known, but in that year Gauss discovered how to in-
scribe one in a circle. Might there be some as-yet-undiscovered means of trisecting
an angle or duplicating the cube using compass and straightedge? In 1837 an obscure
French mathematician named Pierre Wantzel (1814–1848) proved this could not be:
cube duplication and angle trisection are in fact impossible, as is constructing a regu-
lar heptagon or squaring the circle. In the following we’ll trace the steps leading up to
Gauss’s construction of the heptadecagon and Wantzel’s proof of impossibility.

Descartes

The first important step towards proving certain constructions impossible was taken by
René Descartes (1596–1650) in his The Geometry (1637). Descartes’s key insight was
that by identifying the lengths of line segments with real numbers, one could restate a
geometric problem as an algebraic one, express the solution symbolically, then convert
the algebraic expression into a geometric construction procedure.

In order to take this last step, we must develop an arithmetic of lines. Let AB and
C D be two line segments (where we will assume C D is shorter than AB). Compass
and straightedge techniques from the Elements allow us to find line segments that
correspond to the sum AB + C D, difference AB − C D, and q · AB (for any positive
rational q). The problem arises when trying to interpret the product AB · C D. Euclid
and others identified this product as the rectangle whose adjacent sides were equal
in length to AB and C D. This would mean the arithmetic of line segments was not



VOL. 81, NO. 1, FEBRUARY 2008 29

closed under multiplication; moreover, it would make the division of two line segments
impossible to define.

Descartes realized that the theory of proportions could be used to identify the prod-
uct of two line segments with another line segment, provided we had a line segment of
unit length. Imagine two lines intersecting at B at any angle whatsoever, and say we
wish to multiply B D by BC . Mark off B A equal to the unit, and join AC (see Figure
2). Draw DE parallel to AC . Then triangles B AC , B DE are similar, and we have
the ratio B E : B D = BC : B A. This corresponds to the equality of the two products
B E · B A = BC · B D. Since B A is equal to the unit, we can thus identify the line seg-
ment B E with the product BC · B D. Thus the product of two line segments is another
line segment. Division can be handled in virtually the same way.

E

C

D A B H G F

I

Figure 2 Multiplication and roots.

Proposition 14 of Book II of the Elements gives the construction technique for find-
ing square roots (literally the side of a square equal in area to a given rectangle), which
Descartes modified to extract square roots [7, p. 5]. Suppose we wish to find the square
root of G H . Extend G H by G F equal to the unit, then draw the circle with F H as its
diameter. The perpendicular G I will equal the square root of G H (see Figure 2).

Suppose we begin with a line segment AB (which we can take to be our unit).
If we can construct a line of length k · AB using the above techniques, we say that
k is a constructible number (and k · AB is a constructible line segment). In general,
k is a constructible number if it is rational, or the root of a quadratic equation with
constructible coefficients. A figure is constructible if all the line segments required
for its construction are constructible. Moreover, given a constructible figure, any line
segment we can obtain from it (e.g., the diagonal of a square) is constructible. For
example, if we could square the circle, then

√
π would be constructible; equivalently,

if
√

π is inconstructible, squaring the circle is impossible.
This identification of a geometric problem with an algebraic problem allows us to

phrase the problem of constructibility in terms of the roots of a specific equation: if
the root is a constructible number, the corresponding geometric problem can be solved
using compass and straightedge alone. Duplicating the cube would allow us to find a
line of length 3

√
2, which is a root of the equation x3 − 2 = 0. Constructing a regular

n-gon would allow us to find a line of length sin 2π

n , which is the imaginary part of
one of the roots of xn − 1 = 0 (because of this, the problem of finding the roots of
xn − 1 = 0 is also known as the cyclotomy problem).

Trisection of an angle corresponds to a cubic equation as follows. Given a circle
with center O and unit radius, with central angle AOC equal to 3θ . We wish to find
point B on the circle where angle BOC is equal to θ . If we drop AD and B E per-
pendicular to OC , we have AD = sin 3θ , B E = sin θ . These quantities are related
through the identity:

sin 3θ = 3 sin θ − 4 sin3 θ
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Since angle AOC is the given angle, then sin 3θ is a known quantity which we can
designate as l. Thus if the real roots of l = 3x − 4x3 are not constructible, trisection
of the corresponding angle is impossible.

Vandermonde and Lagrange

The next step towards answering the constructibility problem came from the work of
Alexandre-Théophile Vandermonde (1735–1796) and Joseph Louis Lagrange (1736–
1813). Vandermonde’s [8], presented to the Paris Academy in 1770, and Lagrange’s
[6], presented to the Berlin Academy in 1771, examined why general solutions to
equations of degree 3 and 4 existed. Both came to the same conclusion independently:
Our ability to solve these equations is due to the fact that we can find the value of
certain expressions of the roots without knowing the roots themselves.

To understand their methods, consider the quadratic equation x2 − px + q = 0,
with roots x = a and x = b. Thus p = a + b and q = ab. Next, take any function
of the roots of this equation. Some functions, such as f (r1, r2) = r1 + r2, have the
same value regardless of which root we regard as r1 and which root we regard as r2;
these are called symmetric functions. It was widely believed (though not proven until
the middle of the nineteenth century) that every symmetric function of the roots of a
polynomial could be expressed as a rational function of the coefficients. In this case,
f (a, b) = f (b, a) = p.

On the other hand, consider a function like g(r1, r2) = r1 − r2. Depending on which
root we call r1 and which root we call r2, g might take on one of two possible values,
a − b or b − a. In order to find the values of this non-symmetric function of the roots,
Lagrange let the k distinct values be the roots of a kth degree equation. In our example,
the two values of g would be the roots of:

(y − (a − b))(y − (b − a)) = y2 − (a − b)2

A little algebra shows us that (a − b)2 = (a + b)2 − 4ab. Since we know the values
of a + b and ab, we can determine, even without knowing the roots, that

(a − b)2 = p2 − 4q.

Thus the two different values of a − b will be the two roots of y2 − (p2 − 4q) = 0.
Hence a − b = √

p2 − 4q or −√
p2 − 4q. It will make no difference which we

choose; for example, we might let a − b = √
p2 − 4q . To solve for a and b separately,

we need a second equation, which we can obtain from the coefficients: a + b = p.
These two equations give us the system:

a + b = p a − b = √
p2 − 4q

Hence a = p+
√

p2−4q
2 , and b = p−

√
p2−4q
2 .

Both Vandermonde and Lagrange considered the problem of finding the nth roots
of unity, which would be the roots of xn − 1 = 0. Lagrange noted the correspondence
between the roots of xn − 1 = 0 and the cyclotomy problem; further, he observed
that if n is prime, all of the roots can be generated by the successive powers of any
root except x = 1. This allowed him to write equations relating the roots; solving the
equations would give the roots of unity. Lagrange used his method to find the roots
of unity for n = 3 through n = 6 (all of which can be found using only square roots),
while Vandermonde found the roots of unity up to n = 11 using similar methods.
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Gauss

According to legend, Carl Friedrich Gauss (1777–1855) discovered the constructibility
of the regular heptadecagon in 1796; this inspired him to choose mathematics as his
future field of study, despite the indifferent reception of his discovery by A. G. Kästner
at Göttingen. Gauss’s main contribution to the problem of cyclotomy was inventing a
method of splitting the roots of unity into sets where the sum of the roots in each set
was the root of an equation with determinable coefficients. He described his method
in [2], where the solution to the cyclotomy problem appeared as one application of
the theory of quadratic residues. While Gauss’s discovery was unprecedented, it was a
straightforward, albeit clever, application of the ideas of Lagrange and Vandermonde.

The nth roots of unity are solutions to the equation xn − 1 = 0. Obviously any root
r must satisfy r n = 1. If n is the least power of r that is equal to 1, then r is said to be
a primitive nth root of unity. For example, the roots of x4 − 1 = 0 are ±1, ±i . Since
11 = 1 and (−1)2 = 1, then neither 1 nor −1 is primitive. On the other hand, the least
power of i or −i that gives 1 is the fourth power; thus i and −i are primitive roots, and
their powers will generate all the roots; for example:

i, i2 = −1, i3 = −i, i4 = 1

In general, as Lagrange noted, if n is prime, then there are n − 1 primitive roots of
unity.

As we note above, constructibility of the regular n-gon corresponds to constructibil-
ity of the roots of xn − 1 = 0. We’ll illustrate Gauss’s general method by finding the
5th roots of unity. These would be solutions to the equation x5 − 1 = 0. There is one
(non-primitive) root x = 1. Removing a factor of x − 1 we obtain the equation

x4 + x3 + x2 + x + 1 = 0

which is called the cyclotomic equation. All primitive fifth roots r must satisfy this
equation.

Gauss considered a sequence whose first term is a primitive root, and where each
term is some (constant) power of the previous term. For example, if we take r and cube
it repeatedly, we obtain:

r, r 3, r 9, r 27, r 81 . . .

Since r is a root of x5 − 1 = 0, then r 5 = 1. Hence the above sequence simplifies to r ,
r 3, r 4, r 2, r, . . . , and all the roots appear in this sequence. On the other hand, suppose
we take r and repeatedly raise it to the fourth power, obtaining the sequence:

r, r 4, r 16, r 64, . . .

In this case, the only distinct members of the sequence are r and r 4.
Note that the remaining roots, r 2 and r 3, are the squares of the two distinct terms of

this last sequence: (r)2 = r 2, and (r 4)2 = r 8 = r 3. More generally, suppose n is prime
and r is a primitive nth root of unity. Gauss showed that our sequence of powers will
have k distinct elements, where k is a divisor of n − 1. Moreover the remaining roots
(if k is not equal to n − 1) can be separated into sets of k distinct elements, each of
which is a power of a root of the original set.

For example, consider the n = 7 case, and a primitive root p. The sequence

p, p6, p36, p216, . . .
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contains only two distinct roots, p and p6. The squares of these are p2, p12 = p5, and
the cubes are p3, p4. Thus the six roots have been partitioned into three sets,

{
p, p6

}
,{

p2, p5
}
, and

{
p3, p4

}
.

Note that the decomposition is not unique; for example, the sequence

p, p2, p4, p8, . . .

contains three distinct roots, p, p2, and p4; the remaining roots are the cubes of these
roots and the six roots will be partitioned into two sets,

{
p, p2, p4

}
, and

{
p3, p5, p6

}
.

Returning to the n = 5 case, we have split the roots into two sets:
{
r, r 4

}
and{

r 2, r 3
}
. Gauss then considered the sum of the roots in each set (designating these

sums as “periods”), and let the sums be the roots of an equation:

(y − (r + r 4))(y − (r 2 + r 3)) = y2 − (r 4 + r 3 + r 2 + r)y + (r + r 4)(r 2 + r 3)

= y2 − (r 4 + r 3 + r 2 + r)y + (r 3 + r 4 + r 6 + r 7)

= y2 − (r 4 + r 3 + r 2 + r)y + (r 4 + r 3 + r 2 + r)

= y2 + y − 1

where we made use of the fact that r satisfies the equation x4 + x3 + x2 + x + 1 = 0.
Hence the two periods r + r 4 and r 2 + r 3 correspond to the two roots of the quadratic
equation y2 + y − 1 = 0. We find the roots are y = −1±√

5
2 .

One of these roots corresponds to r + r 4, and the other corresponds to r 2 + r 3. In
principle it makes no difference which we assign to r + r 4, though in practice it is
convenient if r is the principal fifth root of unity cos 2π

5 + i sin 2π

5 . Gauss noted that
we could find this root numerically and see which of the two roots of y2 + y − 1 = 0
was equal to r + r 4. Alternatively, we might note that r + r 4 will have a positive real
component; hence r + r 4 = −1+√

5
2 .

To find r , we can construct a quadratic equation with r and r 4 as roots:

(z − r)(z − r 4) = z2 − (r + r 4)z + r 5 = z2 −
(

−1 + √
5

2

)
z + 1

Note that the coefficients of this equation are constructible numbers; hence its roots
will also be constructible. These roots are:

z =
(

−1+√
5

2

)
±

√(
−1+√

5
2

)2 − 4

2

One of these will be the principal fifth root of unity, and the other will be its fourth
power. Since the principal fifth root of unity is equal to cos 2π

5 + i sin 2π

5 , we can, as
Gauss suggested, approximate the sine and cosine values and determine which of the
two roots corresponds to the principal root (which will tell us, among other things,

cos 2π

5 = −1+√
5

4 and sin 2π

5 = 1
4

√
10 + 2

√
5). Since the sin 2π

5 is constructible, so is
the regular pentagon, a fact known to the ancients: Euclid’s construction appears as
Proposition 11 of Book IV (though Ptolemy gave a much easier construction in the
Almagest).

On the other hand, consider the regular heptagon. In the above, we found that the
roots can be separated into two periods, p + p2 + p4 and p3 + p5 + p6. Letting the
sum of the roots in the set be the roots of a quadratic equation and reducing as before



VOL. 81, NO. 1, FEBRUARY 2008 33

we obtain:

(y − (p + p2 + p4))(y − (p3 + p6 + p5)) = y2 + y + 2

with roots y = −1±√−7
2 ; if p is the principal root, then p + p2 + p4 has a positive

imaginary component so −1+√−7
2 = p + p2 + p4 and −1−√−7

2 = p3 + p5 + p6.
The next step would be letting p, p2, and p4 be the three roots of a cubic equation:

(z − p)(z − p2)(z − p4) = z3 − (p + p2 + p4)z2 + (p3 + p6 + p5)z − p7

= z3 −
(

−1 + √−7

2

)
z2 +

(
−1 − √−7

2

)
z − 1

While we can solve the cubic equation, we cannot do so by means of basic arithmetic
operations and square roots alone; we must extract a cube root. Hence it would appear
that the primitive seventh root of unity (and consequently the regular heptagon) is
inconstructible.

The preceding example suggests the following: Suppose we wish to construct a
regular n-gon, where n is prime. If n − 1 has any prime factors other than 2, then at
some point in separating the roots, we will have to solve an equation of a degree higher
than 2. Hence constructing a regular n-gon using this method requires n = 2k + 1.

We can go a little further. If k has any odd factors, then 2k + 1 is composite; this
follows because if k = pq and q is odd, x pq + 1 has a factor of x p + 1. Thus a regular
n-gon, where n is prime, might be constructible if n is a so-called Fermat prime, with
Fm = 22m + 1. The known Fermat primes are 3, 5, 17, 257, 65537; it is unknown if
higher Fermat primes exist.

In any case, consider n = 17. The corresponding cyclotomic equation has 16 roots.
Gauss split these into two sets of eight roots apiece; hence, a quadratic equation could
be used to find the sum of eight of the roots. Each set of eight could in turn be split into
two sets of four; again, a quadratic equation could be used to find the sum of four of
the roots. Each set of four could be split into two sets of two, and the sum of two of the
roots could be found. Finally the sets of two could be broken down into their individual
roots, so a primitive 17th root of unity could be found. Since none of the equations has
a degree higher than 2, the roots are constructible; hence a regular heptadecagon can
be constructed using only compass and straightedge.

Wantzel

Gauss’s method suggests but does not prove the constructibility of the 257- and 65,537-
gons (we need Sylow’s Theorem to guarantee constructibility); likewise, it suggests but
does not prove the impossibility of constructing a regular heptagon.

The first proof of the impossibility of certain geometric constructions came from
Pierre Wantzel (1814–1848) in [9] (1837). Wantzel began by considering a system of
quadratic equations (which for brevity we will call a Wantzel System):

x2
1 + Ax1 + B = 0

x2
2 + A1x2 + B1 = 0

x2
3 + A2x2 + B2 = 0

...

x2
n + An−1x2 + Bn−1 = 0
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where A, B are rational functions of some given quantities; A1, B1 are rational func-
tions of the given quantities together with x1 (and hence the coefficients of the second
equation are constructible numbers); A2, B2 are rational functions of the given quan-
tities, together with x1, x2, and in general Am , Bm are rational functions of the given
quantities and the variables x1, x2, . . . , xm . Note that Gauss’s method of showing the
constructibility of a pentagon or heptadecagon made use of precisely such a system;
in the case of the pentagon the Wantzel system is:

y2 + y − 1 = 0

z2 − yz + 1 = 0

More generally, every constructible number r corresponds to some Wantzel system.
Consider any of these equations x2

m+1 + Am xm+1 + Bm = 0. Remarkably, the ratio-
nal functions Am , Bm can always be reduced to a linear function of the form A′

m−1xm +
B ′

m−1, where A′
m−1 and B ′

m−1 are rational functions of the given quantities and the vari-
ables x1, x2, . . . , xm−1. This reduction can be performed in two steps. First, the pre-
ceding equation x2

m + Am−1xm + Bm−1 = 0 can be used to eliminate the higher powers
of xm in the expression for Am and Bm , reducing them to the form Cm xm+Dm

Em xm+Fm
. Then

the numerator and denominator can be multiplied by a constant quantity to reduce the
rational function to a linear one.

For example, suppose we have the system of equations:

x2 − 5x + 2 = 0

y2 +
(

x3 + 3x + 1

2x − 1

)
y +

(
1

x2 + 7x + 5

)
= 0

From the first equation we have x2 = 5x − 2. Hence x3 = 5x2 − 2x = 23x − 10. Thus
the second equation can be reduced to:

y2 +
(

26x − 9

2x − 1

)
y +

(
1

12x + 3

)
= 0

How can we eliminate the rational functions? Consider the first rational function. Sup-
pose we multiply numerator and denominator by some constant C so that

C(26x − 9) = (2x − 1)(αx + β)

for some values of α, β; then the common factor of 2x − 1 can be removed and the
rational expression simplified to a linear one. Expanding gives us:

26Cx − 9C = 2αx2 + (2β − α)x − β

We can make use of the substitution x2 = 5x − 2 to eliminate the square term:

26Cx − 9C = (2β + 9α)x − (β + 4α)

Comparing coefficients gives us a system of 2 linear equations in 3 unknowns:

26C = 2β + 9α 9C = β + 4α

Because this system is underdetermined, we may express two of the variables in terms
of the third. For example, one solution is α = 2, β = −23/4, and C = 1/4; in other
words 1

4 (26x − 9) = (2x − 1)(2x − 23
4 ). Thus:
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26x − 9

2x − 1
=

1
4
1
4

26x − 9

2x − 1
= (2x − 1)(2x − 23/4)

1
4 (2x − 1)

= 8x − 23

In this way the final equation x2
n + An−1xn + Bn−1 = 0 can be converted into an equa-

tion where the coefficients An−1 and Bn−1 are linear functions of xn−1.
Next, consider that xn−1 is one of the solutions to a quadratic equation. If we allow

xn−1 to take on its two possible values, we obtain two different expressions for An−1

and Bn−1, and consequently two different equations quadratic in xn . Multiplying these
two equations together will give us a fourth degree equation in xn whose coefficients
are functions of the given quantities and the variables x1, x2, . . . , xn−2. As before we
can reduce these coefficients to linear functions of xn−2; letting xn−2 take on its two
possible values and multiplying the corresponding expressions will give us an eighth
degree equation in xn whose coefficients can be reduced to linear functions of xn−3.
Eventually we will end with an equation in xn of degree 2n whose coefficients are
rational functions of the given quantities. This leads us to a preliminary theorem:

THEOREM. Any Wantzel system of n equations corresponds to an equation of de-
gree 2n whose coefficients are rational functions of the given quantities; consequently,
any constructible number is a root of an equation of degree 2n whose coefficients are
rational functions of the given quantities.

For example, the Wantzel system corresponding to the construction of the pentagon
was:

y2 + y − 1 = 0

z2 − yz + 1 = 0

Let the two roots of the first equation be y = a and y = b. In the above we found these
two roots, and used them to form a quadratic equation in z to find the principal fifth
root of unity.

On the other hand, we can also write a single expression (which we will call the
Wantzel polynomial) which contains all the roots. In this case, we can substitute the
two roots y = a and y = b in to the left hand side of the second equation, then multiply
the two expressions to obtain:

(z2 − az + 1)(z2 − bz + 1) = z4 − (a + b)z3 + (2 + ab)z2 − (a + b)z + 1

Since a and b are the two roots of y2 + y − 1, we have a + b = −1 and ab = −1.
Thus the equation

z4 + z3 + z2 + z + 1 = 0

contains all solutions to the Wantzel system.
Next, suppose xn = r is a root of the Wantzel polynomial corresponding to a

Wantzel system of n equations; further suppose that no Wantzel system of fewer than
n equations exists with xn = r as a root. Wantzel then proved that no variable xk could
be expressed as a rational function of x1, x2, . . . , xk−1; equivalently, the quadratic
equations are irreducible. This is because if one of the equations can be factored, then
the preceding equation can be eliminated and we would obtain two Wantzel system
of n − 1 equations, which would contain all the roots of the original system (and in
particular r could be found by a Wantzel system of n − 1 equations). For example,
consider the system:
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x2 − 3x − 7 = 0

y2 − (4x − 1)y + 8x = 0

z2 − (4y)z + (4y2 − 1) = 0

and let z = r be one of the roots. Note that the last equation factors, so we may write
two separate Wantzel systems where the third equation differs, namely

x2 − 3x − 7 = 0

y2 − (4x − 1)y + 8x = 0

z − (2y + 1) = 0

and

x2 − 3x − 7 = 0

y2 − (4x − 1)y + 8x = 0

z − (2y − 1) = 0

where z can be expressed as a rational function of the preceding variables.
Consider the first system. Let the roots y2 − (4x − 1)y + 8x = 0 be y = a and

y = b; letting y take on these two values in the third equation and multiplying the
factors gives us the expression

(z − (2a + 1)) (z − (2b + 1) = z2 − (2a + 2a + 2)z + (4ab + 2a + 2b + 1)

But if the roots of y2 − (4x − 1)y + 8x = 0 are y = a and y = b, then a + b =
4x − 1, and ab = 8x ; hence the second and third equation can be combined to form
the single equation z2 − 8xz + (40x − 1) = 0. Thus in place of the three equations,
we have two equations:

x2 − 3x − 7 = 0

z2 − 8xz + (40x − 1) = 0

The reader can verify that the second Wantzel system would have z2 − (8x − 4)z +
(24x − 4) = 0 as its second equation. Thus in place a Wantzel system containing n
equations, we would have two systems containing n − 1 equations, which between
them contain all the roots z of the original system; hence z = r would be the root of
a Wantzel system containing n − 1 equations, which contradicts our original assump-
tion.

Note that any solution xn of the Wantzel polynomial f (x) is a solution of x2
n +

An−1xn + Bn−1 = 0, where An−1, Bn−1 are found by substituting some set of solutions
{x1, x2, . . . , xn−1} to the equations of the Wantzel system. For example, the primitive
fifth root of unity z = cos 2π

5 + i sin 2π

5 of z4 + z3 + z2 + z + 1 = 0 corresponds to a
root of z2 − yz + 1 = 0 where y is a solution to y2 + y − 1 = 0.

Wantzel used this idea to prove that if another polynomial F(x) had any root xn = a
in common with f (x), then it must have all roots in common; hence f (x) is irre-
ducible. Let xn = a be the root corresponding to the set {x1, x2, . . . , xn−1}, and let
F(x) be a polynomial with rational coefficients with F(a) = 0. As before we can
reduce F(x) to an expression of the form A′

n−1xn + B ′
n−1, where A′

n−1, B ′
n−1 are func-

tions of the given quantities and the variables x1, x2, . . . , xn−1. Moreover, A′
n−1 and

B ′
n−1 must be equal to zero (since if they were not, xn could be expressed as a rational
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function of x1, x2, . . . , xn−1); hence we have A′
n−1 = 0 (and likewise, B ′

n−1 = 0). But
A′

n−1 can be reduced as before to a linear function of x ′
n−1. Thus the equation A′

n−1 = 0
gives us an equation of the form A′

n−2xn−1 + B ′
n−2 = 0, where A′

n−2 and B ′
n−2 are func-

tions of the given quantities and the variables x1, x2, . . . , xn−2.
As before A′

n−2 and B ′
n−2 must be both equal to zero; from A′

n−2 = 0 we can ob-
tain an equation of the form A′

n−3xn−2 + B ′
n−3 = 0. Continuing in this fashion we will

eventually arrive at an equation of the form A′x1 + B ′ = 0, where A′ and B ′ are func-
tions of the given quantities only. Again, x1 cannot be a rational function of the given
quantities only, so A′ and B ′ must both equal zero; since they contain no variables, they
are identically zero. Thus the two roots of x2

1 + Ax1 + B = 0 satisfy A′x1 + B ′ = 0.
Now consider the equation A′

1x2 + B ′
1 = 0. A′

1 and B ′
1 have both been reduced

to linear functions of x1 that will equal zero for any value of x1 that satisfies x2
1 +

Ax1 + B = 0. Thus the two possible values of x1 will make both A′
1 and B ′

1 equal
to zero; consequently the four possible values of x2 will make A′

1x2 + B ′
1 = 0. In a

like manner, the eight possible values of x2
3 + A2x3 + B1 = 0 will satisfy the equation

A′
2x3 + B ′

2 = 0, and so on, and so the 2n possible roots of x2
n + An−1xn + Bn−1 = 0

will satisfy F(x). Hence if F(x) shares any root with f (x), it will share all the roots
of f (x).

For example, consider our system

y2 + y − 1 = 0

z2 − yz + 1 = 0

which corresponded to the single equation z4 + z3 + z2 + z + 1 = 0. Let z = z1 be the
root corresponding to one of the roots y = y1 of the first equation, and suppose there
was another polynomial F(z) with rational coefficients that also had z = z1 as a root.

First, we can eliminate the higher powers of z in F(z) by the equation z2 − yz + 1 =
0. This allows us to write F(z) as a polynomial in y and z of the form

(z2 − yz + 1) f (y, z) + A1z + B1,

where A1 and B1 are functions of y and f (y, z) is some polynomial in y and z. Since
z = z1 satisfies (by assumption) the equation z2 − yz + 1 = 0 when y = y1, then sub-
stituting in these values gives us A1z1 + B1, which (since z1 is a root of F) must equal
zero. Since the system is minimal, z cannot be expressed as a rational function of y,
so A1 and B1 must both equal zero when y = y1.

Next take (for example) the expression A1, which we can write as

(y2 + y − 1)g(y) + A′y + B ′,

where A′, B ′ are rational functions of the given quantities only. Since y = y1 satisfies
y2 + y − 1 = 0, and (by the above) satisfies A1 = 0, then A′y1 + B ′ = 0. But y1 (by
assumption) cannot be written as a rational function of the given quantities; hence
A′ and B ′ are simultaneously equal to zero. Since they contain no variable terms at
all, then A′ and B ′ must be identically zero and A1 = (y2 + y − 1)g(y). Hence any
solution to y2 + y − 1 = 0 will make A1 = 0. The same reasoning applies to B1.

Since F(z) can be written as (z2 − yz + 1) f (y, z) + A1z + B1, and A1 = 0,
B1 = 0 when y is equal to either root of y2 − y + 1 = 0, then any of the four roots
of z4 + z3 + z2 + z + 1 = 0 will satisfy F(z) = 0. Hence F(z) must contain all the
roots.

At last this gives us a necessary condition for constructibility:
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WANTZEL’S THEOREM. If r is a constructible number, it must be the root of an
irreducible polynomial of degree 2n.

Equivalently, let r be the root of an irreducible polynomial f (x). If the degree
of f is not equal to 2n , then r is not constructible. This proves the impossibility of
duplicating the cube or trisecting an arbitrary angle. In the first case, 3

√
2 is the root

of x3 − 2 = 0, which is irreducible but not of degree 2n; the same reasoning proves
that arbitrary nth roots cannot be found, unless n is a power of 2. Likewise trisecting
an arbitrary angle requires finding a root of l = 3x − 4x3, which will in general be
irreducible and not of degree 2n .

What about the cyclotomy problem? If n is prime, the corresponding cyclotomic
equation is irreducible, but if n is not a Fermat prime, then the degree of this equation
is not a power of 2 and so the regular n-gon will not be constructible. Thus it is im-
possible to construct regular polygons of 7, 11, 13, etc. sides using only compass and
straightedge.

Wantzel’s Theorem alone is insufficient to prove the impossibility of squaring the
circle, though it does lay the groundwork for a proof. If

√
π is a constructible number,

it must be the root of an irreducible equation of degree 2n . In 1882 Ferdinand Linde-
mann (1852–1939) proved that π is transcendental: hence no equation of any degree
with rational coefficients can have π as a root. Consequently squaring the circle is
impossible.
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8. A. T. Vandermonde, Mémoire sur la Résolution des Équations, Histoire de l’Académie Royale des Sciences,

1771, 365–416.
9. P. Wantzel, Recherches sur les moyens de reconnaı̂tre si un Problème de Géométrie peut se résoudre avec la
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