Chapter 2 Solved Exercises

Question 1. (Exercise 2.3 part (c)) Prove that the product of two odd integers is odd.
Question 2. (Nearly Exercise 2.5(a)) Suppose that n is an integer. Prove that if n is odd, then $n^{2}+6 n+5$ is even.

Question 3. (Nearly Exercise 2.8(b)) Give an example of the following property. Then, prove that it is true.

- If n is an integer, then $5 n^{2}+n+3$ is odd.

Question 4. (Exercise 2.10 (a) and (c)) Prove the following. For each, m, n and t are integers.
(a) If $m \mid n$, then $m^{2} \mid n^{2}$.
(c) If $m \mid n$ and $m \mid t$, then $m \mid(n+t)$.

Question 5. (Exercise 2.15)
(a) Prove that if n is a positive integer, then 4 divides $1+(-1)^{n}(2 n-1)$.
(b) Prove that every multiple of 4 is equal to $1+(-1)^{n}(2 n-1)$ for some positive integer n.

Question 6. (Nearly Exercise 2.16) For each pair of integers, find the unique quotient and remainder when a is divided by q.
(a) $a=17, m=5$
(b) $a=5, m=17$
(c) $a=-10, m=3$

Question 7. (Nearly Exercise 2.20) Determine the remainder when 4^{301} is divided by 17, and show how you found your answer (without a calculator!).

Question 8. (Exercise 2.21) Assume that $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$. Prove the following.
(a) $a-c \equiv b-d(\bmod n)$.
(b) $a \cdot c \equiv b \cdot d(\bmod n)$.

Question 9. (Exercise 2.22) Assume that a is an integer and p and q are distinct primes. Prove that if $p \mid a$ and $q \mid a$, then $p q \mid a$. Also, before your proof, give three examples of this property.

Question 10. (Exercise 2.25) Prove that for every integer n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.

