Chapter 4 Solved Exercises

Question 1. (Exercise 4.1) Prove that the sum of the first n odd natural numbers equals n^{2} by induction or strong induction.

Question 2. (Exercise 4.3 part (f)) Use induction or strong induction to prove that $5 \mid\left(6^{n}-1\right)$ for every $n \in \mathbb{N}$.

Question 3. (Exercise 4.4 parts (e) and (f)) Prove that each of the following hold for every $n \in \mathbb{N}$.
(e) $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2}$
(f) $1 \cdot 1$! $+2 \cdot 2$! $+3 \cdot 3!+\cdots+n \cdot n!=(n+1)!-1$

Question 4. (Exercise 4.5 part (e)) Prove that $1+2^{n} \leq 3^{n}$ for every $n \in \mathbb{N}$. Also, before each proof, pick three specific n-values and verify that the result holds for those values.

Question 5. (Exercise 4.8) The Fermat number \tilde{F}_{n} is defined to be $\tilde{F}_{n}=2^{2^{n}}+1$ for $n \geq 0$. For example, $\tilde{F}_{3}=2^{2^{3}}+1=2^{8}+1=256+1=257$. The first five are $\tilde{F}_{0}=3, \tilde{F}_{1}=5, \tilde{F}_{2}=17, \tilde{F}_{3}=257$ and $\tilde{F}_{4}=65537$. These are all prime numbers, which lead Pierre de Fermat to conjecture that all the Fermat numbers are prime. As it turns out, \tilde{F}_{5} is not prime (as Euler showed), and so far there is no known prime Fermat number after \tilde{F}_{4}. (Oops.)

Prove that, for every $n \in \mathbb{N}_{0}$,

$$
\tilde{F}_{0} \cdot \tilde{F}_{1} \cdot \tilde{F}_{2} \cdot \tilde{F}_{3} \cdots \tilde{F}_{n}=\tilde{F}_{n+1}-2
$$

Question 6. (Exercise 4.10) Explain the error in the "proof" of Fake Proposition 4.11.
Question 7. (Exercise 4.15) Use induction to prove that if A is a set and $|A|=n$, then $|\mathcal{P}(A)|=2^{n}$.
Question 8. (Exercise 4.24) The following conjecture is false. Prove that it is false by finding a counterexample.

Conjecture: For every positive integer n,

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}<3
$$

Question 9. (Exercise 4.28) In chess, a rook attacks all the squares in its row and column. Consider the problem of placing n non-attacking rooks on an $n \times n$ chessboard; that is, n rooks such that none attack any other. One way to do this is to place the rooks on a single diagonal.

But that's boring. Prove that for every $n \geq 4$, it is possible to place n non-attacking rooks on the $n \times n$ chessboard so that none of the rooks are on either (or both) of the two diagonals.

Question 10. (Exercise 4.31 part (a)) Read the Introduction to Sequences following this chapter, and prove that

$$
F_{1}+F_{2}+F_{3}+\cdots+F_{n}=F_{n+2}-1
$$

for every $n \in \mathbb{N}$.

