Chapter 6 Solved Exercises

Question 1. (Exercise 6.1) Explain in your own words the difference between the contrapositive, the converse and a counterexample.

Question 2. (Exercise 6.2) Give 4 examples of implications, and for each write down their contrapositive. Have two be real-world examples, and two be math examples.

Question 3. (Nearly Exercise 6.3)
(a) What is the contrapositive of "If $2 n^{2}-5 n+3$ is odd, then n is even"?
(b) Suppose that $n \in \mathbb{Z}$. Prove that if $2 n^{2}-5 n+3$ is odd, then n is even.

Question 4. (Nearly Exercise 6.5 part (c)) Suppose $n \in \mathbb{Z}$. Prove that if $n^{2}+2 n+3$ is even, then n is odd.
Question 5. (Exercise 6.6 part (d)) Suppose $n \in \mathbb{Z}$. Prove that if $3 \nmid\left(n^{2}-1\right)$, then $3 \mid n$.
Question 6. (Exercise 6.8 part (e)) Suppose $x \in \mathbb{R}$. Prove that if $x^{3}+x>0$, then $x>0$.
Question 7. (Exercise 6.10) Define the Fibonacci sequence to be the sequence $F_{1}, F_{2}, F_{3}, F_{4}, \ldots$ where F_{1} and F_{2} both equal 1, and every term thereafter is the sum of the previous two: $F_{n}=F_{n-1}+F_{n-2}$ for $n=3,4,5,6, \ldots$ Thus, the sequence begins

$$
1,1,2,3,5,8,13,21,34,55, \ldots
$$

Prove that if F_{n} is not a perfect cube, then $n \notin\{1,2,6\}$.
Question 8. (Exercise 6.12 part (c)) Suppose $n \in \mathbb{Z}$. Prove that $(n+1)^{2}-1$ is even if and only if n is even.
Question 9. (Exercise 6.15) Come up with a real-world claim that is false, and prove that it is false by exhibiting a counterexample to the claim.

Question 10. (Exercise 6.16 parts (d), (i) and (o)) The following statements are all false. For each, find a counterexample.
(d) If $x, y \in \mathbb{R}$ and $|x+y|=|x-y|$, then $y=0$.
(i) If $n \in \mathbb{N}$, then $2 n^{2}-4 n+31$ is prime.
(o) If A, B and C are sets, then $A \backslash(B \cap C)=(A \backslash B) \cap(A \backslash C)$.

