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DIFFERENTIABILITY VERSUS CONTINUITY:

RESTRICTION AND EXTENSION THEOREMS

AND MONSTROUS EXAMPLES

KRZYSZTOF C. CIESIELSKI AND JUAN B. SEOANE-SEPÚLVEDA

Abstract. The aim of this expository article is to present recent develop-
ments in the centuries-old discussion on the interrelations between continuous
and differentiable real valued functions of one real variable. The truly new
results include, among others, the Dn-Cn interpolation theorem: For every

n-times differentiable f : R → R and perfect P ⊂ R, there is a Cn function
g : R → R such that f � P and g � P agree on an uncountable set and an exam-
ple of a differentiable function F : R → R (which can be nowhere monotone)
and of compact perfect X ⊂ R such that F ′(x) = 0 for all x ∈ X while F [X] = X.
Thus, the map f = F � X is shrinking at every point though, paradoxically,
not globally. However, the novelty is even more prominent in the newly dis-
covered simplified presentations of several older results, including a new short
and elementary construction of everywhere differentiable nowhere monotone
h : R → R and the proofs (not involving Lebesgue measure/integration theory)
of the theorems of Jarńık—Every differentiable map f : P → R, with P ⊂ R

perfect, admits differentiable extension F : R → R—and of Laczkovich—For
every continuous g : R → R there exists a perfect P ⊂ R such that g � P is
differentiable. The main part of this exposition, concerning continuity and
first-order differentiation, is presented in a narrative that answers two classi-
cal questions: To what extent must a continuous function be differentiable?
and How strong is the assumption of differentiability of a continuous func-
tion? In addition, we give an overview of the results concerning higher-order
differentiation. This includes the Whitney extension theorem and the higher-
order interpolation theorems related to the Ulam–Zahorski problem. Finally,
we discuss the results concerning smooth functions that are independent of
the standard axioms of ZFC set theory. We close with a list of currently open
problems related to this subject.
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1. Introduction and overview

Continuity and differentiability are among the most fundamental concepts of dif-
ferential calculus. Students often struggle to fully comprehend these deep notions.
Of course, as we all know, differentiability is a much stronger condition than con-
tinuity. Also, continuity can behave in many strange ways. For instance, besides
the classical definition of continuous function, there are many characterizations of
this concept that, usually, are not taught at an undergraduate level. One of these
characterizations (due to Hamlett [61], see also [18,55,74,116,121] for further gener-
alizations) states that a function f from R to R is continuous if, and only if, f maps
continua (compact, connected sets) to continua. On the contrary and quite surpris-
ingly, there are nowhere continuous functions mapping connected sets to connected
sets and also (separately) compact sets to compact sets ([57]). Somehow, a key
direction of study of continuity and differentiability deals with trying to provide a
clear structure of what the set of points of continuity/differentiability looks like.

The leading theme of this expository paper is to discuss the following two ques-
tions concerning the functions from R to R:

Q1: How much continuity does differentiability imply?
Q2: How much differentiability does continuity imply?

They will be addressed in sections 2 and 3, respectively. The main narrative pre-
sented in these sections is independent of any results from Lebesgue measure and/or
integration theory. In particular, it can be incorporated into an introductory course
of real analysis. The question Q1, addressed in section 2, will be interpreted as a
question on the continuity of the derivatives. We will recall that the derivatives
must have the intermediate value property and must be continuous on a dense
Gδ-set.

1 The key novelty here will be a presentation of a recently found simple
construction of a differentiable monster, that is, a differentiable function that is
nowhere monotone. The existence of such examples shows that none of the good
properties of the derivatives discussed earlier can be improved. Towards the an-
swer of Q2, presented in section 3, we start with a construction of a Weierstrass
monster, that is, a continuous function which is differentiable at no point. Then
we proceed to show that for every continuous functions f : R → R, there exists a
compact perfect set P ⊂ R such that the restriction f � P is differentiable. More-
over, there exists a C1 (i.e., continuously differentiable) function g : R → R for
which the set [f = g] := {x ∈ R : f(x) = g(x)} is uncountable, a result known as
the C1-interpolation theorem. This function g will be constructed using a recently
found version of a Differentiable Extension Theorem of Jarńık. As a part of these
discussions we also show that differentiable functions from a compact perfect set
P ⊂ R into R can behave quite paradoxically, by describing a simple construction
of a perfect subset X of the Cantor ternary set C ⊂ R and a differentiable surjection
f : X → X such that f ′ ≡ 0.

1As usual, we say that a set is a Gδ-set whenever it is the countable intersection of open sets.
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In section 4 we shall discuss the extension and interpolation theorems for the
classes of functions from R to R of higher smoothness: Dn, of n-times differentiable
functions; and Cn, of those functions from Dn whose nth derivative is continuous.

Section 5 shall provide a set theoretical flavor to this expository paper by giving
an overview of the results related to smooth functions which are independent of the
axiomatic set system ZFC (Zermelo–Fraenkel set theory with the axiom of choice).
We shall go through interpolation theorems via consistency results and provide
some consequences of Martin’s Axiom (MA), the Continuum Hypothesis (CH), or
Covering Property Axiom (CPA) on “how many” Cn functions are needed in order
to cover any f ∈ Dn. Furthermore, and in the spirit of the classical Sierpiński
decomposition, we will also consider when the plane can be covered by the graphs
of few (i.e., fewer than continuum many) continuous/continuously differentiable
functions. Other consistency results will be presented. At the end, some open
questions and final remarks will be provided in section 6.

2. Continuity from differentiability

Clearly, any differentiable function F : R → R is continuous. Thus, the true
question we will investigate here is the following:

Can we “squeeze” more continuity properties from the assumption
of differentiability of F?

More specifically,

To what extent must the derivative F ′ of F be continuous?

Figure 1. Augustin Louis Cauchy (1789–1857)

Of course, for a differentiable complex function F : C → C, its derivative is
still differentiable and, thus, continuous. The same is true for any real analytic
function F (x) :=

∑∞
n=0 anx

n. Moreover, one of the most astonishing results, due
to Augustin Louis Cauchy (1789–1857; see Figure 1)2 in [21], in the theory of
complex variables states that for functions of a single complex variable, a function
being analytic is equivalent to it being holomorphic. Recall that, although the term
analytic function is often used interchangeably with holomorphic function, the word
“analytic” is defined in a much broader sense in order to denote any function (real,

2We include the pictures and birth-to-death years of the main contributors to this story.
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Figure 2. Vito Volterra (1860–1940)

complex, or of more general type) that can be written as a convergent power series
in a neighborhood of each point in its domain.

For the functions from R to R the situation is considerably more complicated.
It is true that most of the derivatives we see in regular calculus courses are contin-
uous. Nevertheless (despite what probably many calculus students believe) there
exist differentiable functions from R to R with discontinuous derivatives. This is
commonly exemplified by a map h : R → R given by (1), which appeared already
in an 1881 paper [117, p. 335] of Vito Volterra (1860–1940; see Figure 2):

(1) h(x) :=

{
x2 sin

(
x−1

)
for x �= 0,

0 for x = 0

(see Figure 3) with the derivative3

h′(x) :=

{
2x sin

(
x−1

)
− cos

(
x−1

)
for x �= 0,

0 for x = 0.

−0.2 − 0.1 0.0 0.1 0.2

Figure 3. On the left, the graph of function h is given by equation
(1); on the right, the graph of its derivative, h′.

3h′(0) = 0 follows from the squeeze theorem, since
∣
∣
∣h(x)−h(0)

x−0

∣
∣
∣ ≤

∣
∣
∣x

2−h(0)
x−0

∣
∣
∣ = |x|.
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The existence of such examples lead mathematicians to the investigation of which
functions are the derivatives and, more generally, of the properties that the deriva-
tives must have. The systematic study of the structure of derivatives (of functions
from R to R) can be traced back to at least the second half of the 19th century.
The full account of these studies can be found in the 250-page monograph [11] of
Andrew Michael Bruckner (1932– ) from 1978 (with bibliography containing 218
items) and its 1994 updated edition [13]. The limited scope of this article does not
allow us to give a full account of such extensive material. Instead, we will focus
here on the results that are best suited to this narrative.

We will start with discussing the “nice” properties of the class of derivatives, that
is, those that coincide with the properties of the class of all continuous functions.

2.1. Nice properties of derivatives. Of course, by the Fundamental Theorem
of Calculus, any continuous function f : R → R is a derivative of F : R → R defined
as F (x) :=

∫ x

0
f(t) dt. Also, despite the existence of discontinuous derivatives, the

derivatives share several “good” properties of continuous functions. For example,
the derivatives form a vector space:4 this follows from a basic differentiation for-
mula, that (a f(x) + b g(x))′ = a f ′(x) + b g′(x) for every differentiable function
f, g : R → R. Also, similar to any continuous function, any derivative has the inter-
mediate value property, as shown in the 1875 paper [43] by Jean-Gaston Darboux
(1842–1917; see Figure 4).

Theorem 2.1. Any derivative f : R → R has the intermediate value property; that
is, for every a < b and y between f(a) and f(b) there exists an x ∈ [a, b] with
f(x) = y.

Figure 4. Jean-Gaston Darboux (1842–1917)

4However, the product of two derivatives need not be a derivative. For example, if F (x) :=
x2 sin

(
1/x2

)
for x �= 0 and F (0) := 0, then F is differentiable, but (F ′)2 is not a derivative (see,

e.g., [11, page 17]).
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Proof. Assume that f(a) ≤ y ≤ f(b) (the case f(b) ≤ y ≤ f(a) is similar). Let
F : R → R be such that F ′ = f , and define ϕ : R → R as ϕ(t) := F (t) − yt. Then
ϕ′(t) = f(t)− y and ϕ′(a) = f(a)− y ≤ 0 ≤ f(b)− y = ϕ′(b). We need to find an
x ∈ [a, b] with ϕ′(x) = 0. This is obvious, unless ϕ′(a) < 0 < ϕ′(b), in which case
the maximum value of ϕ on [a, b], existing by the extreme value theorem, must be
attained at some x ∈ (a, b). For such x we have ϕ′(x) = 0.

An alternative proof of Theorem 2.1 can be found in [98]. Because of Darboux’s
work, nowadays the functions from R to R that have the intermediate value property
(or, more generally, the functions from a topological spaceX into a topological space
Y that map connected subsets of X onto connected subsets of Y ) are often called
Darboux functions.

It is easy to see that a composition of Darboux functions remains Darboux. Thus,
the composition of derivatives, similar to the composition of continuous functions on
R, still enjoys the intermediate value property, despite the fact that a composition
of two derivatives need not be a derivative.5

The next result, which comes from the 1899 dissertation [5] of René-Louis Baire
(1874–1932; see Figure 5), shows that every derivative must have a lot of points
of continuity; see also [89]. This research of Baire is closely related to another
fascinating real analysis topic: the study of separately continuous functions (i.e., of
functions g : R2 → R for which the sectional maps g(x, ·) and g(·, x) are continuous
for all x ∈ R),6 recently surveyed by the first author and David Alan Miller in [33].
(Most interestingly, Cauchy, in his 1821 book Cours d’analyse [22], proves that
separate continuity implies continuity, which is well known to be false. Nevertheless,
as explained in [33], Cauchy was not mistaken!)

Figure 5. René-Louis Baire (1874–1932)

5For example, if F is as in footnote 4, then (F ′)2 is a composition of two derivatives, F ′(x)
and g(x) := x2, which is not a derivative.

6It is easy to see that f : R → R is differentiable if, and only if, the difference quotient map

q(x, y) :=
f(x)−f(y)

x−y
, defined for all x �= y, can be extended to a separately continuous map

g : R2 → R, with g(x, x) = f ′(x) for all x ∈ R. In this context, we sometimes refer to the functions
of more than one variable as jointly continuous if they are continuous in the usual (topological)
sense.
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Theorem 2.2. The derivative of any differentiable function F : R → R is Baire
class one; that is, it is a pointwise limit of continuous functions. In particular, since
the set of points of continuity of any Baire class one function is a dense Gδ-set,
the same is true for F ′.

Proof. Clearly, F ′ is a pointwise limit of continuous functions, since we have F ′(x) =

limn→∞ Fn(x), where functions Fn(x) :=
f(x+1/n)−f(x)

1/n are clearly continuous.

Also, for any function g : R → R, the set Cg of points of continuity of g is a
Gδ-set: Cg :=

⋂∞
n=1 Vn, where the sets

Vn :=
⋃
δ>0

{x ∈ R : |g(s)− g(t)| < 1/n for all s, t ∈ (x− δ, x+ δ)}

are open. At the same time, any pointwise limit g : R → R of continuous functions
gn : R → R is continuous on a dense Gδ-set G :=

⋂∞
n=1

⋃∞
N=1 U

n
N , where each Un

N

is the interior of the closed set

{x ∈ R : |gk(x)− gm(x)| ≤ 1/n for all m, k ≥ N};
see, e.g., [95, theorem 48.5]. Thus, the set of points of continuity of any Baire class
one function must be dense (containing a set in form of G) and a Gδ-set.

Another interesting property of continuous functions that is shared by derivatives
is the fixed point property:

Proposition 2.3. If f : [−1, 1] → [−1, 1] is a derivative, then it has a fixed point;
that is, there exists an x ∈ [−1, 1] such that f(x) = x.

Proof. The function g : [−1, 1] → R, defined as g(x) := f(x) − x, is a derivative.
Thus, by Theorem 2.1, it has the intermediate value property. Since g(−1) =
f(x) + 1 ≥ 0 and g(1) = f(1)− 1 ≤ 0, there exists z ∈ [−1, 1] such that f(z)− z =
g(z) = 0. Thus, f(z) = z, as needed.

More interestingly, a composition of finitely many derivatives, from [0, 1] to [0, 1],
also possesses the fixed point property. For the composition of two derivatives, this
has been proved, independently, in [42] and [47], while the general case is shown
in [109]. This happens, despite the fact that a composition of two derivatives need
not be of Baire class one (so, by Theorem 2.2, a derivative). This is shown by the
following example, which is a variant of one from [14].7

Example 2.4. There exist derivatives ϕ, γ : [−1, 1] → [−1, 1] such that their com-
position ψ := ϕ ◦ γ is not of Baire class one.

Proof. Let γ(x) := cos(x−1) for x �= 0 and γ(0) := 0. It is a derivative, as a sum
of two derivatives: a continuous function f(x) := x sin

(
x−1

)
for x �= 0, f(0) := 0,

and function −h′, where h is as in (1). The graph of γ is of the form from the
right-hand side of Figure 3.

Let ϕ(x) := m h′(x − b) for x ∈ [−1, 1], where h is an inverse of Pompeiu’s
function from Proposition 2.8, b ∈ R is such that h′(b) = 0, and m > 0 is such that
ϕ[−1, 1] ⊂ [−1, 1]. Clearly, ϕ is also a derivative.

To see that ψ = ϕ ◦ γ is not of Baire class one, by Theorem 2.2 it is enough to
show that it is discontinuous on the set G := {x ∈ (−1, 1) : ϕ(x) = 0}, which is a

7The fixed point property of the composition of derivatives could be easily deduced if it could
be shown that the composition of the derivatives has a connected graph. However, it remains
unknown if such a result is true; see, e.g., [14] and Problem 6.2.
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dense Gδ. Thus, fix x ∈ G and note that ψ(x) = 0. It suffices to show that, for
every ε > 0 such that (x − ε, x + ε) ⊂ (−1, 1), there exists y ∈ (x − ε, x + ε) with
ψ(y) = 1. Indeed, since ϕ is nowhere constant, there exists z ∈ (x, x+ ε) such that
ϕ(z) > 0. Then, since γ[(0, ϕ(z))] = [−1, 1], there exists p ∈ (0, ϕ(z)] such that
γ(p) = 1. Also, since ϕ is Darboux and p ∈ (0, ϕ(z)] = (ϕ(x), ϕ(z)], there exists
y ∈ (x, z) ⊂ (x, x + ε) such that ϕ(y) = p. Thus, ψ(y) = ϕ(γ(y)) = ϕ(p) = 1, as
needed.

Next we turn our attention to show, by means of illuminating examples, that
the nice properties of the derivatives we stated above cannot be improved in any
essential way.

2.2. Differentiable monster and other examples. We start here with showing
that all that can be said about the set of points of continuity of derivatives is already
stated in Theorem 2.2.

Theorem 2.5. For every dense Gδ-set G ⊂ R, there exists a differentiable function
f : R → R such that G is the set of points of continuity of the derivative f ′.

Sketch of proof. Choose d ∈ (0, 1) such that h′(d) = 0, where h is as in (1). For
every closed nowhere dense E ⊂ R, define fE : R → [−1, 1] via

fE(x) :=

⎧⎨
⎩h

(
2d dist(x, {a, b})

b− a

)
for x in a component (a, b) of R \ E,

0 for x ∈ E.

This is a variant of a Volterra function from [117]. It is easy to see that fE is
differentiable with the derivative continuous on R \ E and having oscillation 2 at
every x ∈ E.

Now, if G ⊂ R is a dense Gδ, then R \ G :=
⋃

n<ω En, some some family
{En : n < ω} of closed nowhere dense sets in R. In particular (see, e.g., [105,
Theorem 7.17]), the function f :=

∑
n<ω 3−nfEn

is differentiable, and its derivative
f ′ =

∑
n<ω 3−nf ′

En
is continuous precisely at the points of G.

Theorems 2.2 and 2.5 immediately give the following characterization of the sets
of points of continuity of the derivatives.

Corollary 2.6. For a G ⊂ R, there exists a differentiable function f : R → R such
that G is the set of points of continuity of its derivative f ′ if, and only if, G is a
dense Gδ-set.

Next, we will turn our attention to an example of a differentiable function which
is one of the strangest, most mind-boggling examples in analysis.

2.2.1. Differentiable nowhere monotone maps. We will start with the following el-
ementary example showing that, for a differentiable function ψ : R → R, a nonzero
value of the derivative at a point does not imply the monotonicity of the func-
tion in a neighborhood of the point. For instance (see [59]), this is the case for
ψ(x) := x+ 2h(x), where h is given by (1), that is,

ψ(x) :=

{
x+ 2x2 sin(x−1) for x �= 0,

0 for x = 0;

see Figure 6. Indeed ψ′(0) = 1, while ψ is not monotone on any nonempty interval
(−δ, δ).
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−0.02 −0.01 0.01 0.02

−0.02

−0.01

0.01

0.02

Figure 6. The graphs of ψ and ψ′

The example from the next theorem pushes this pathology to the extreme.

Theorem 2.7. There exists a differentiable function f : R → R which is monotone
on no nontrivial interval. In particular, each of the sets

Zf := {x ∈ R : f ′(x) = 0} and Zc
f := {x ∈ R : f ′(x) �= 0}

is dense, and f ′ is discontinuous at every x ∈ Zc
f .

The graph of such a function is simultaneously smooth and very rugged. This
sounds (at least to us) like an oxymoron. Therefore, we started to refer to such
functions as differentiable monsters; see [25]. Of course, a differentiable monster
f must attain local maximum (as well as local minimum) on every interval. In
particular, the set Zf must indeed be dense. Its complement, Zc

f , must also be
dense, since otherwise f would be constant on some interval.

The history of differentiable monsters is described in detail in the 1983 paper by
A. M. Bruckner [12]. The first construction of such a function was given in 1887
(see [79]) by Alfred Köpcke (1852–1932). (There was, originally, a gap in [79], but
it was subsequently corrected in [80,81].) The most influential study of this subject
is a 1915 paper [44] of Arnaud Denjoy (1884–1974; see Figure 7). The construction
we describe below comes from a recent paper [25] of the first author. It is simpler
than the constructions from the 1974 paper [70] of Yitzhak Katznelson (1934– )

Figure 7. Arnaud Denjoy (1884–1974)
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and Karl Stromberg (1931–1994) or from the 1976 article [118] of Clifford Weil.
There are quite a few different technical constructions of such a monster, some of
them including (for instance) the use of wavelets (see the work by R. M. Aron, V. I.
Gurariy, and the second author [3] or also [56]).

As a matter of fact (and with the appropriate background) our construction of
a differentiable monster can be reduced to a single line:

f(x) := h(x− t)− h(x), where h is the inverse of a Pompeiu’s map g,

as described below, and where t is an arbitrary number from some residual set (i.e.,
a set containing a dense Gδ-set). A more detailed argument follows.

Pompeiu’s functions. Let Q := {qi : i ∈ N} be an enumeration of a countable dense
subset of R (e.g., the set Q of rational numbers) such that |qi| ≤ i for all i ∈ N.
Fix an r ∈ (0, 1), and let g : R → R be defined by g(x) :=

∑∞
i=1 r

i(x − qi)
1/3.

This g is essentially8 the function constructed in the 1907 paper [102] by Dimitrie
Pompeiu (1873–1954; see Figure 8), as shown in Figure 9; see [25] and compare [12]
or [113, section 9.7].

Figure 8. Dimitrie Pompeiu (1873–1954)

Intuitively, g has a nonhorizontal tangent line at every point, vertical at each
(qi, g(qi)), since the same is true for the map (x− qi)

1/3. The graph of its inverse,
h, is the reflection of the graph of g with respect to the line y = x. So h also has
a tangent line at every point, the vertical tangent lines of g becoming horizontal
tangents of h.

More formally,

Proposition 2.8. The map g is continuous, strictly increasing, and onto R. Its
inverse h := g−1 : R → R is everywhere differentiable with h′ ≥ 0 and such that the
sets Z := {x ∈ R : h′(x) = 0} and Zc := {x ∈ R : h′(x) �= 0} are both dense in R.

8Usually g is defined on [0, 1] as ĝ(x) :=
∑∞

i=1 ai(x−qi)
1/3, whereQ is an arbitrary enumeration

of Q ∩ [0, 1] and numbers ai > 0 are arbitrary so that
∑∞

i=1 ai converges. This ĝ can also be
transformed into the function g : R → R we need, rather than using our definition. Specifically, if
[c, d] = ĝ[[0, 1]], then we can take g := h1 ◦ ĝ ◦ h0, where h0 and h1 are the diffeomorphisms from
R onto (0, 1) and from (c, d) onto R, respectively.
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Figure 9. Rough sketch of the graph of a partial sum of Pom-
peiu’s original example, function g and its derivative, constructed
over the interval [0, 1].

Proof. The series

g(x) :=
∞∑
i=1

ri(x− qi)
1/3

converges uniformly on every bounded set,

|g(x)| ≤
∞∑
i=1

ri(|x|+ i+ 1)

since ∣∣∣(x− qi)
1/3

∣∣∣ ≤ (|x|+ |qi|+ 1)1/3 ≤ |x|+ |qi|+ 1 ≤ |x|+ i+ 1.

Thus, g is continuous. It is strictly increasing and onto R, since that is true of every
term ψi(x) := ri(x− qi)

1/3.
The trickiest part is to show that

(2) g′(x) =
∞∑
i=1

ψ′
i(x)

(
=

∞∑
i=1

ri
1

3

1

(x− qi)2/3

)
.

However, this clearly holds when
∑∞

i=1 ψ
′
i(x) = ∞, since then, for every y �= x, we

have

g(x)− g(y)

x− y
=

∞∑
i=1

ψi(x)− ψi(y)

x− y
≥

n∑
i=1

ψi(x)− ψi(y)

x− y
,

and the last expression is arbitrarily large for large enough n and y close enough to
x. On the other hand, when

∑∞
i=1 ψ

′
i(x) < ∞, then (2) follows from the fact that

0 <
ψi(x)− ψi(y)

x− y
≤ 6ψ′

i(x)

for every y �= x.9

9It is enough to prove this for ψ(x) := x1/3. It holds for x = 0, as ψ′(0) = ∞. Also, since ψ(x) is
odd and concave on (0,∞), we can assume that x > 0 and y < x. Then L(y) < ψ(y), where L is the

line passing through (x, ψ(x)) and (0,−ψ(x)). So, 0 <
ψ(x)−ψ(y)

x−y
<

L(x)−L(y)
x−y

= 2x1/3

x
= 6ψ′(x),

as needed.
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Indeed, given ε > 0 and n ∈ N for which
∑∞

i=n+1 ψ
′
i(x) < ε/14,∣∣∣∣∣g(x)− g(y)

x− y
−

∞∑
i=1

ψ′
i(x)

∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣ψi(x)− ψi(y)

x− y
− ψ′

i(x)

∣∣∣∣+ 7

∣∣∣∣∣
∞∑

i=n+1

ψ′
i(x)

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣ψi(x)− ψi(y)

x− y
− ψ′

i(x)

∣∣∣∣+ ε

2
,

which is less than ε for y close enough to x.
Now, by (2), g′(x) = ∞ on the dense set Q. Therefore, the inverse h := g−1 is

strictly increasing and differentiable, with h′ ≥ 0. The set Z := {x ∈ R : h′(x) = 0}
is dense in R, since it contains the dense set g[Q]. The complement of Z must be
dense since, otherwise, h would be constant on some interval.

Construction of f from Theorem 2.7. Let h, Z, and Zc be as in Proposition 2.8,
and let D ⊂ R \ Z be countable and dense. Since h′ is discontinuous at every
x ∈ Zc, we conclude from Theorem 2.2 that the set G :=

⋂
d∈D

(
(−d+Z)∩ (d−Z)

)
is residual. We claim that, for any t ∈ G, the function f : R → R defined as
f(x) := h(x− t)− h(x) is a differentiable monster.

Indeed, clearly f is differentiable with f ′(x) = h′(x− t)− h′(x). Also, f ′ > 0 on
t+D, since for every d ∈ D we have t+ d ∈ Z, so that

f ′(t+ d) = h′(d)− h′(t+ d) = h′(d) > 0.

Similarly, f ′ < 0 on D, since for every d ∈ D, we have d − t ∈ Z, so that f ′(d) =
h′(d− t)− h′(d) = −h′(d) < 0.

2.2.2. More examples related to calculus. One of the first things we learn in calculus
is that if for a differentiable function ϕ : R → R its derivative changes sign at a point
p, then ϕ has a (local) proper extreme value at p.

Our fist example here (see also [59]) shows that the change of sign of the deriva-
tive is not necessary for the existence of a proper extreme value at p. For instance,
this is the case for ϕ(x) := 2x4 + x2h(x), where h is given by (1), that is,

ϕ(x) :=

{
x4

(
2 + sin(x−1)

)
for x �= 0,

0 for x = 0;

see Figure 10. It is easy to see that it has a proper minimum at p = 0, while its
derivative does not change sign at 0.
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Figure 10. The graphs of ϕ and ϕ′
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Figure 11. Graphs of η and η′

The second example here (see also [59]) shows that a derivative of a differentiable
function η : R → R need not satisfy the Extreme Value Theorem (even though
it satisfies the Intermediate Value Theorem). For instance, this is the case for
η(x) := e−3xh(x), where h is given by (1), that is,

η(x) :=

{
e−3xx2 sin(x−1) for x �= 0,

0 for x = 0;

see Figure 11.
The Extreme Value Theorem fails for η′, since inf η′[[0, 1/3]] = −1 /∈ η′[[0, 1/3]].

To see this, note that η′(x) = −3e−3xh(x) + e−3xh′(x), that is, η′(0) = 0 and

η′(x) = e−3x
(
−3x2 sin(x−1) + 2x sin(x−1)− cos(x−1)

)
for x �= 0.

In particular, on (0, 1/3], we have

|η′(x)| ≤ e−3x
(
3x2 + 2x+ 1

)
≤ e−3x (1 + 3x) < 1,

where the last inequality holds since, by Taylor formula,

e3x =

∞∑
i=0

(3x)i

i!
> 1 + 3x.

This justifies −1 /∈ η′([0, 1/3]). As the same time, for xn := (2πn)−1, we have

limn→∞ η′(xn) = limn→∞ −e−x2
n = −1, that is, indeed inf η′([0, 1/3]) = −1.

This last example, η, can be pushed even further, as shown by A. W. Bruckner
in [11, §VI, Theorem 3.1]: there are derivatives defined on a closed interval that
achieve no local extrema (i.e., maximum or minimum). However, their construction
is considerably more complicated. Many more pathologies of this kind can be found
in the excellent monograph [59]; see also [2, 6, 20, 41, 48, 59, 71, 73] for a long list of
pathologies enjoyed by continuous and differentiable functions in RR.

It is appropriate to finish this section recalling that there is no characterization
of the derivatives simpler than the trivial one:

f is a derivative if, and only if, there exists an F for which f = F ′.

Perhaps, a simpler characterization can never be found; see, e.g., [53].
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3. Differentiability from continuity

In this section we will address the question

Q2: How much differentiability does continuity imply?

We will argue, despite what the next example shows, that actually every continuous
function has some traces of differentiability.

3.1. Weierstrass monsters. At a first glance, an answer to question Q2 should
be none, since there exist continuous functions f : R → R that are differentiable at
no point x ∈ R.

Figure 12. Bernard Bolzano (1781–1848)

Although the first known example of this kind dates back to Bernard Bolzano
(1781–1848; see Figure 12) in 1822 (see, e.g., [64]), the first published example of
such an f appeared in the 1886 paper [119] (for the English translation see [120])
by Karl Weierstrass (1815–1897; see Figure 13). The example, defined as

W (x) :=

∞∑
n=0

1

2n
cos(13nπx),

Figure 13. Karl Theodor Wilhelm Weierstrass (1815–1897)
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Figure 14. A sketch of the famous Weierstrass Monster

was first presented by Weierstrass to the Prussian Academy of Sciences in 1872. At
that time, mathematicians commonly believed that a continuous function must have
a derivative at a “significant” set of points. Thus, the example came as a general
shock to the audience and was received with such disbelief that continuous nowhere
differentiable functions became known as Weierstrass’s Monsters; see Figure 14.

A large number of simple constructions of Weierstrass Monsters have appeared
in the literature; see, for example, [67,68,112]. Our favorite is the following variant
of a 1930 example in [115] by Bartel Leendert van der Waerden (1903–1996; see
Figure 15) (compare [105, Thm. 7.18]), described already in a 1903 paper [110] of
Teiji Takagi (1875–1960; see Figure 15), since the proof of its properties requires
only the standard tools of one-variable calculus: f(x) :=

∑∞
n=0 4

nfn(x), where

fn(x) := mink∈Z

∣∣x− k
8n

∣∣ is the distance from x ∈ R to the set 1
8nZ = { k

8n : k ∈ Z};
see Figure 14. It is continuous at each x ∈ R, since

|f(y)− f(x)| ≤
∣∣∣∣∣

n∑
i=0

4ifi(y)−
n∑

i=0

4ifi(x)

∣∣∣∣∣+ 1

2n

Figure 15. Bartel Leendert van der Waerden (1903–1996) and
Teiji Takagi (1875–1960)
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for every y ∈ R and n ∈ N. It is not differentiable at any x ∈ R, since for every
n ∈ N and k ∈ Z with x ∈

[
k
8n ,

k+1
8n

]
there exists a yn ∈

{
k
8n ,

k+1
8n

}
\ {x} such that∣∣∣∣f(x)− f(yn)

x− yn

∣∣∣∣ ≥
∣∣∣∣∣f(

k+1
8n )− f( k

8n )
k+1
8n − k

8n

∣∣∣∣∣
= 8n

∣∣∣∣∣
n∑

i=0

4ifi(
k + 1

8n
)−

n∑
i=0

4ifi(
k

8n
)

∣∣∣∣∣ ≥ 2

3
4n−1.

Remark 3.1. In fact, any typical continuous function10 is a Weierstrass monster;
see, e.g., [95]. Actually, a typical continuous function agrees with continuum many
constant functions on perfect sets. Also, in [16], Bruckner and Garg studied the
structure of the sets in which the graphs of a residual set of continuous functions
intersect with different straight lines. They showed that any typical continuous
function f has a certain structure with respect to intersections with straight lines.
In particular, all but at most two of the constant functions that agree anywhere with
f , agree on uncountable sets (and the same also holds with lines in all nonvertical
directions).

3.2. Lipschitz and differentiable restrictions. The goal of this section is to
prove the following 1984 theorem of Miklós Laczkovich (1948– ) from [83].

Theorem 3.2. For every continuous f : R → R, there is a perfect set Q ⊂ R such
that f � Q is differentiable.

In the statement of the theorem, the differentiability of h := f � Q is understood
as existence of its derivative: the function h′ : Q → R where

h′(p) := lim
x→p, x∈Q

h(x)− h(p)

x− p

for every p ∈ Q. The proof of this theorem presented below comes from [26].
Its advantage over the original proof is that none of its steps require the tools of
Lebesgue measure/integration theory.

Before we turn our attention to the proof, we would like to make two remarks,
which lay outside of the main narrative here (as they use Lebesgue measure tools),
but which give a better perspective on Theorem 3.2. The first one is a more general
version of the theorem, in the form presented in the original paper [83].

Remark 3.3. For every E ⊂ R of positive Lebesgue measure and every continuous
function f : E → R, there exists a perfect Q ⊂ E such that f � Q is differentiable.

It is worth noting that the proof we present below can be easily adapted to
deduce also the statement from Remark 3.3.

The next remark shows that, in general, we cannot expect that the set Q in
Theorem 3.2 can be either the positive Lebesgue measure or of the second category.

Remark 3.4. There exists a continuous function f : R → R such that f � Q can be
differentiable only when Q is both first category and of Lebesgue measure 0.

A function f : [0, 1] → R with such property can be chosen as one of the coordi-
nates of the classical Peano curve that maps continuously [0, 1] onto [0, 1]2. Indeed,

10The term “typical” is used the Baire category sense; that is, it holds for every map from a
comeager set G ⊂ C([a, b]) of functions.
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such coordinates are nowhere approximately and I-approximately differentiable,
as proved in 1989 by the first author, Lee Larson, and Krzysztof Ostaszewski in
[31]; see also [32, example 1.4.5]. Clearly, such f cannot have a differentiable re-
striction to a set Q of positive measure (second category) since then f would be
approximately (I-approximately) differentiable at any density (I-density) point of
Q.

The main tool in the presented proof of Theorem 3.2 is the following result,
which is of independent interest. Notice that Theorem 3.5 follows also easily from
the interpolation Theorem 3.10, whose original proof did not use Theorem 3.5.11

However, our proof of Theorem 3.10 uses Theorem 3.5.

Theorem 3.5. Assume that f : R → R is monotone and continuous on a nontrivial

interval [a, b]. For every L >
∣∣∣ f(b)−f(a)

b−a

∣∣∣ there exists a closed uncountable set P ⊂
[a, b] such that f � P is Lipschitz with constant L.

The difficulty in proving Theorem 3.5 without measure theoretical tools comes
from the fact that there exist functions like the Pompeiu map from Proposition 2.8:
these are strictly increasing continuous maps f : R → R which possess finite or
infinite derivatives at every point but are such that the derivative of f is infinite
on a dense Gδ-set. These examples show that a perfect set in Theorem 3.5 should
be nowhere dense. Thus, we will use a measure theoretical approach, in which the
measure theoretical tools will be present only implicitly or, as in case of Fact 3.7,
are given together with a simple proof.

The presented proof of Theorem 3.5 is extracted from a proof of a Lebesgue the-
orem that every monotone function f : R → R is differentiable almost everywhere.
It is based on the following 1932 result of Frigyes Riesz (1880–1956; see Figure 16)
from [103], known as the Rising Sun Lemma; see Figure 17 and also [111].

Figure 16. Frigyes Riesz (1880–1956)

11If g : R → R is a C1 function from Theorem 3.10, then, by the Mean Value Theorem,
its restriction g � [−M,M ] is Lipschitz for every M > 0. Thus, for some M > 0, the set
P := [f = g] ∩ [−M,M ] is perfect nonempty and f � P = g � P is Lipschitz.
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Figure 17. Illustration of the Rising Sun Lemma of Frigyes Riesz
(Lemma 3.6). The colorful name of this lemma comes from imag-
ining the graph of the function as a mountainous landscape, having
the sun shining horizontally from the right. The points in the set
U ∩ (a, b) are those lying in the shadow.

Lemma 3.6. If g is a continuous function from a nontrivial interval [a, b] into R,
then the set U := {x ∈ [a, b) : g(x) < g(y) for some y ∈ (x, b]} is open in [a, b) and
g(c) ≤ g(d) for every connected component (c, d) of U .

Proof. It is clear that U is open in [a, b). To see the other part, let (c, d) be
a component of U . By continuity of g, it is enough to prove that g(p) ≤ g(d)
for every p ∈ (c, d). Assume by way of contradiction that g(d) < g(p) for some
p ∈ (c, d), and let x ∈ [p, b] be a point at which g � [p, b] achieves the maximum.
Then g(d) < g(p) ≤ g(x), and so we must have x ∈ [p, d) ⊂ U , as otherwise d would
belong to U . But x ∈ U contradicts the fact that g(x) ≥ g(y) for every y ∈ (x, b].

For an interval I let 
(I) be its length. We need the following simple well-known
observations.

Fact 3.7. Let a < b and J be a family of open intervals with
⋃
J ⊂ (a, b).

(i) If [α, β] ⊂
⋃
J , then

∑
I∈J 
(I) > β − α.

(ii) If the intervals in J are pairwise disjoint, then
∑

I∈J 
(I) ≤ b− a.

Proof. (i): By compactness of [α, β] we can assume that J is finite, say of size n.
Then (i) follows by an easy induction on n: if (c, d) = J ∈ J contains β, then
either c ≤ α, in which case (i) is obvious, or α < c and, by induction,

∑
I∈J 
(I) =


(J) +
∑

I∈J\{J} 
(I) > 
([c, β]) + 
([α, c]) = β − α.

(ii): Once again, it is enough to show (ii) for finite J , say of size n, by induction.
Then, there is (c, d) = J ∈ J to the right of any I ∈ J \ {J}. So, by induction,∑

I∈J 
(I) = 
(J) +
∑

I∈J\{J} 
(I) ≤ (b− c) + (c− a) = b− a.

Proof of Theorem 3.5. If there exists a nontrivial interval [c, d] ⊂ [a, b] on which f
is constant, then clearly P := [c, d] is as needed. Thus, we can assume that f is
strictly monotone on [a, b]. Also, replacing f with −f , if necessary, we can also
assume that f is strictly increasing.

Fix L > |q(a, b)| = f(b)−f(a)
b−a , and define g : R → R as g(t) := f(t) − Lt. Then

g(a) = f(a)− La > f(b)− Lb = g(b).
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Let m := sup{g(x) : x ∈ [a, b]} and ā := sup{x ∈ [a, b] : g(x) = m}. Then
f(ā) − Lā = g(ā) ≥ g(a) > g(b) = f(b) − Lb, so a ≤ ā < b, and we still have

L > |q(ā, b)| = f(b)−f(ā)
b−ā . Moreover, ā does not belong to the set

U := {x ∈ [ā, b) : g(y) > g(x) for some y ∈ (x, b]}
from Lemma 3.6 applied to g on [ā, b]. In particular, U is open in R and the family
J of all connected components of U contains only open intervals (c, d) for which,
by Lemma 3.6, g(c) ≤ g(d).

The set P := [ā, b] \ U ⊂ [a, b] is closed, and for any x < y in P we have
f(y) − Ly = g(y) ≤ g(x) = f(x) − Lx; that is, |f(y) − f(x)| = f(y) − f(x) ≤
Ly−Lx = L|y−x|. In particular, f is Lipschitz on P with constant L. It is enough
to show that P is uncountable.

In order to see this, notice that for every J := (c, d) ∈ J we have f(d) − Ld =
g(d) ≥ g(c) = f(c)− Lc; that is, 
(f [J ]) = f(d) − f(c) ≥ L(d− c) = L
(J). Since
the intervals in the family J ∗ := {f [J ] : J ∈ J } are pairwise disjoint and contained
in the interval (f(ā), f(b)), by Fact 3.7(ii) we have

∑
J∗∈J ∗ 
(J∗) ≤ f(b) − f(ā).

Thus, ∑
J∈J


(J) ≤ 1

L

∑
J∈J


(f [J ]) =
1

L

∑
J∗∈J ∗


(J∗) ≤ f(b)− f(ā)

L
< b− ā.

Therefore, by Fact 3.7(i), P := [ā, b] \ U = [ā, b] \
⋃
J �= ∅. However, we need

more, that P cannot be contained in any countable set, say {xn : n ∈ N}. To see

this, fix δ > 0 such that f(b)−f(ā)
L + δ < b − ā, for every n ∈ N choose an interval

(cn, dn) 
 xn of length 2−nδ, and put Ĵ := J ∪ {(cn, dn) : n < ω}. Then∑
J∈Ĵ


(J) =
∑
J∈J


(J) +
∑
n∈N


((cn, dn)) ≤
f(b)− f(ā)

L
+ δ < β − α,

so, by Fact 3.7(i), U ∪
⋃

n∈N
(cn, dn) ⊃ U ∪ {xn : n ∈ N} does not contain [ā, b]. In

other words, P = [ā, b] \ U is uncountable, as needed.

The last step needed in the proof of Theorem 3.2 is the following proposition, in
which Δ := {〈x, x〉 : x ∈ R}.
Proposition 3.8. For every continuous f : R → R, there exists a perfect set Q ⊂ R

such that the quotient map q : R2\Δ → R, q(x, y) := f(x)−f(y)
x−y , restricted to Q2\Δ,

is bounded and uniformly continuous.

Proof. If f is monotone on some nontrivial interval [a, b], then, by Theorem 3.5,
there exists a perfect set P ⊂ R such that f � P is Lipschitz with some constant
L ∈ [0,∞). In particular, the values of q � P 2 \ Δ are in the bounded interval
[−L,L]. Therefore, by a theorem of Micha�l Morayne (1958– ) from [94] applied to
F := q � P 2 \Δ, there exists a perfect Q ⊂ P for which F � Q2 \Δ is uniformly
continuous. In such a case, q � Q2 \ Δ = F � Q2 \ Δ is clearly bounded and
uniformly continuous.

On the other hand, if f is monotone on no nontrivial interval, then, by a 1953
theorem of Komarath Padmavally [99] (compare also [58, 91, 93]), there exists a
perfect set Q ⊂ R on which f is constant. Of course, the quotient map on such Q
is as desired.

Note that the results from papers [99] and [94], which we used above, have simple
topological proofs that do not require any measure theoretical tools.
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Proof of Theorem 3.2. Let Q ⊂ R be as in Proposition 3.8. Then the uniformly
continuous q � Q2 \ Δ can be extended to the uniformly continuous q̄ on Q2.
Therefore, for every x ∈ Q, the limit

lim
y→x,y∈Q

f(y)− f(x)

y − x
= lim

y→x,y∈Q
q(y, x) = q̄(x, y)

is well defined and equal to the derivative of f � Q at x.

3.3. Differentiable extension: Jarńık and Whitney theorems. By Theo-
rem 3.2, any continuous functions f : R → R have a differentiable restriction to a
perfect set. In the next subsection we will prove an even stronger theorem, that
there always exists a C1 function g : R → R which agrees with f on an uncountable
set. The main tool proving this result is the Whitney C1 extension theorem, proved
in the 1934 paper [122] by Hassler Whitney (1907–1989; see Figure 18). We will use
this result in the form of Theorem 3.9 from a recent paper of Monika Ciesielska and
the first author [23] (check also [26]), since we can sketch here its elementary proof.
(See also [37] for another simple proof of the Whitney C1 extension theorem.) To
state it, we need the following notation. For a bounded open interval J , let IJ be
the closed middle third of J and, given a perfect set Q ⊂ R, we let

Q̂ := Q ∪
⋃

{IJ : J is a bounded connected component of R \Q} .

Theorem 3.9. Let f : Q → R, where Q is a perfect subset of R.

(a) If f is differentiable, then there exists a differentiable extension F : R → R

of f .

(b) If f̂ := f̄ � Q̂, where f̄ : R → R is a linear interpolation of f , then f̂ is

differentiable and f admits a C1 extension if, and only if, f̂ is continu-
ously differentiable.

Figure 18. Hassler Whitney (1907–1989)
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Figure 19. Vojtěch Jarńık (1897–1970)

Part (b) of Theorem 3.9 gives a criteria, in terms of f̂ , on admission of a C1

extension of f . In particular, it can be viewed as a version of (the C1 part of) the
Whitney extension theorem (for functions of one variable).

Part (a) of Theorem 3.9 has a long and interesting story. It first appeared
in print in a 1923 paper [65] of Vojtěch Jarńık (1897–1970; see Figure 19), for
the case when Q ⊂ R is compact. Unfortunately, [65] appeared in the not so
well known journal Bull. Internat. de l’Académie des Sciences de Bohême, was
written in French, and it only sketched the details of the construction. A more
complete version of the proof, that appeared in [66], was written in Czech and was
even less readily accessible. Therefore, this result of Jarńık was unnoticed by the
mathematical community until the mid-1980s. Theorem 3.9(a) was rediscovered
by György Petruska (1941– ) and Miklós Laczkovich, and it was published in their
1974 paper [101]. Its proof in [101] is quite intricate and embedded in deeper, more
general research. A simpler proof of the theorem appeared in a 1984 paper [87]
by Jan Mař́ık (1920–1994); however, it is considerably more complicated than the
one we present below and it employs Lebesgue integration tools. Apparently, the
authors of neither [101] nor [87] had been aware of Jarńık’s paper [65] at the time
of publication of their articles. However [65] is cited in the 1985 paper [4] that
discusses a multivariable version of Theorem 3.9(a). Two recent papers [77, 96]
that address generalizations of Theorem 3.9(a) also mention [65]; see also [75,76].

It is well known and easy to see that the function f from Jarńık’s theorem need
not admit a C1 extension, even when f ′ is constant; see, for example, a map from
Figure 20.

Notice also that Theorem 3.9(a) is actually true for Q being any arbitrary closed
subset of R. Such a version was proved in all cited papers on the subject that
appeared after the original works by Jarńık. We skip such generality in order to
avoid the problem of defining the notion of the derivative for the set with isolated
points as well as some additional technical issues. But the general theorem can be
easily deduced from the version from Theorem 3.9(a), since for any differentiable
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Figure 20. The graph of f : P → R shown with horizontal thick
segments, where f ′ = 0 on P . No differentiable extension F : R →
R of f has continuous derivatives, unless f(an)−f(bn+1)

an−bn+1

n→∞−→ 0.

function f on a closed subset P of R there exists a perfect set Q containing P such
that a linear interpolation of f restricted to Q is differentiable.

Sketch of proof of Theorem 3.9. Extending slightly f , if necessary, we can assume
that the perfect set Q is unbounded from both sides. Then a linear interpolation
f̄ : R → R of f is uniquely determined.

First notice that the unilateral (i.e., one-sided) derivatives D−f̄ and D+f̄ of f̄
exist at every point. Indeed, D+f̄(x) and D−f̄(x) clearly exist for every x ∈ R\Q.
They also exist for every x ∈ Q, since for every component I := (a, b) of R \Q with
x /∈ [a, b], we have that

(3)
|f̄(y)− f̄(x)|

y − x
lies between

|f(a)− f(x)|
a− x

and
|f(b)− f(x)|

b− x
∀y ∈ (a, b),

thus (see Figure 21)∣∣∣∣f ′(x)− |f̄(y)− f̄(x)|
y − x

∣∣∣∣ ≤ max

{∣∣∣∣f ′(x)− |f(a)− f(x)|
a− x

∣∣∣∣ ,
∣∣∣∣f ′(x)− |f(b)− f(x)|

b− x

∣∣∣∣
}
.

In particular, f̂ := f̄ � Q̂ is differentiable, f̄ is the linear interpolation of f̂ , and f̄
is differentiable at all points x ∈ R that do not belong to the set EQ of all endpoints

of connected components of R \ Q̂. The function F we are after is defined as f̄ + g

for some small adjustor map g : R → R such that g = 0 on Q̂.
Let κ ≤ ω be the cardinality of the family J of all connected components of

R\ Q̂, and let {(ai, bi) : 1 ≤ i ≤ κ} be an enumeration of J . Since we assumed that

g = 0 on Q̂, it is enough to define g on each interval in J .
Therefore, for every 1 ≤ i ≤ κ, define 
i := min{1, bi − ai} and let εi ∈ (0, 3−i
i)

be such that

(a)

∣∣∣∣f ′(ai)−
f(x)− f(ai)

x− ai

∣∣∣∣ < 3−i for every x ∈ P ∩ [ai − εi, ai),

(b)

∣∣∣∣f ′(bi)−
f(x)− f(bi)

x− bi

∣∣∣∣ < 3−i for every x ∈ P ∩ (bi, bi + εi].
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x a y b

f(x)

f(b)

f̄(y)

f(a)
f̄

Figure 21. Illustrating the situation presented in statement (3).

Now, define g on (ai, bi) as g(x) :=
∫ x

ai
hi(r) dr, where hi : [ai, bi] → R (depicted in

Figure 22), is such that hi := 0 on [ai + ε2i , bi − ε2i ],

• there exists si ∈ (ai, ai+ε2i ) such that hi is linear on [ai, si] with hi(si) := 0

and hi(ai) := f ′(ai)− f(bi)−f(ai)
bi−ai

, while
∫ si
ai

|hi(r)| dr = 1
2 |hi(ai)|(si− ai) <

ε2i ; on [si, ai + ε2i ] it is defined as hi(x) := Ai dist(x, {si, ai + ε2i }), where
the constant Ai is chosen so that

∫ ai+ε2i
ai

hi(r) dr = 0;

• there exists ti ∈ (bi − ε2i , bi) such that hi is linear on [ti, bi] with hi(ti) := 0

and hi(bi) := f ′(bi)− f(bi)−f(ai)
bi−ai

, while
∫ bi
ti

|hi(r)| dr = 1
2 |hi(bi)|(bi − ti) <

ε2i ; on [bi − ε2i , ti] it is defined as hi(x) := Bi dist(x, {bi − ε2i , ti}), where the

constant Bi is chosen so that
∫ bi
bi−ε2i

hi(r) dr = 0.

It is easy to see that such a definition ensures that g � [ai, bi] is C1,

• D+g(ai) = f ′(ai)− f(bi)−f(ai)
bi−ai

and D−g(bi) = f ′(bi)− f(bi)−f(ai)
bi−ai

,

• g = 0 on [ai + ε2i , bi − ε2i ] and |g(x)| ≤ ε2i for x ∈ [ai, bi],
• |g(x)| ≤ |g′(ai)(x− ai)| for x ∈ [ai, ai + ε2i ], and
• |g(x)| ≤ |g′(bi)(x− bi)| for x ∈ [bi − ε2i , bi].

Figure 22. A sketch of a map hi
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We claim that, if g satisfies all these requirements, then F := f̄ + g is differ-
entiable. To see this, it suffices to show that the unilateral derivatives D+F (x)
and D−F (x) exist for all x ∈ R. Indeed, if they exist, then they are equal: for

x ∈ R \ Q̂ this is obvious; whereas for x ∈ Q̂ \
⋃

1≤i≤κ{ai, bi}, this is ensured by the

fact that D+F (x) = D+f(x) = D−f(x) = D−F (x), while for x ∈
⋃

1≤i≤κ{ai, bi}
it is ensured by the first of four items above.

By symmetry, it suffices to show the existence of D+F (x). It clearly exists,

unless x ∈ Q̂ \ {ai : 1 ≤ i ≤ κ}. For such an x we have F (x) = f(x). Choose ε > 0.
It is enough to find δ > 0 such that

(4)

∣∣∣∣f ′(x)− F (y)− f(x)

y − x

∣∣∣∣ < 5ε whenever y ∈ (x, x+ δ).

For this, pick m ∈ N with 3−m < ε and choose δ > 0 such that (x, x+ δ) is disjoint

with
⋃

i<m[ai, bi] and
∣∣∣f ′(x)− f̄(y)−f̄(x)

y−x

∣∣∣ < ε when 0 < |y−x| < δ. An elementary,

although tedious, estimation (for details, see [23]) shows that such a choice of δ
ensures (4). Thus, indeed, F = f̄ + g is differentiable, finishing the proof of part
(a).

Now we turn our attention to the proof of part (b). First, assume that f admits a

C1 extension, say G : R → R. We need to show that f̂ is continuously differentiable.

Since, by the proof of part (a), f̂ := F � Q̂ is differentiable, it is enough to show

that f̂ ′ is continuous. Clearly, f̂ ′ is continuous on Q̂ \ Q, since f̂ is locally linear

on Q̂ \ Q :=
⋃

J∈J IJ . Thus, we need to show that f̂ ′ is continuous on Q. Notice
that G = f and G′ = f ′ on Q.

Fix an x ∈ Q and ε > 0. It is enough to find a δ > 0 such that

(5) |f̂ ′(x)− f̂ ′(y)| < ε whenever y ∈ Q̂ ∩ (x− δ, x+ δ).

Let δ0 ∈ (0, 1) be such that |G′(x) − G′(y)| < ε whenever |x − y| < δ0. Choose
δ ∈ (0, δ0), such that for every J := (a, b) ∈ J , if x ∈ [a, b], then δ < b−a

3 ; and if
x /∈ [a, b] and [a, b] �⊂ (x−δ0, x+δ0), then (x−δ, x+δ) is disjoint with [a, b]. To see

that such δ satisfies (5), pick y ∈ Q̂ ∩ (x− δ, x+ δ). If y ∈ Q, then (5) holds, since

then |f̂ ′(x)− f̂ ′(y)| = |G′(x)−G′(y)| < ε. Thus, assume that y /∈ Q. Then, there
exists a J = (a, b) ∈ J such that y ∈ IJ . Note that x /∈ [a, b], since in such case
δ < b−a

3 , preventing y ∈ IJ . Therefore, [a, b] ⊂ (x−δ0, x+δ0), as (x−δ, x+δ) is not
disjoint with [a, b], both containing y. By the mean value theorem, there exists a

ξ ∈ (a, b) ⊂ (x− δ0, x+ δ0) such that G′(ξ) = G(b)−G(a)
b−a . Thus, |G′(x)−G′(ξ)| < ε.

Also,

f̂ ′(y) = f̄ ′(y) =
f(b)− f(a)

b− a
=

G(b)−G(a)

b− a
= G′(ξ).

Therefore, |f̂ ′(x) − f̂ ′(y)| = |G′(x) − G′(ξ)| < ε, proving (5). So, indeed, f̂ ′ is
continuous.

To finish the proof, assume that the derivative of f̂ is continuous. We need to
show that, in such a case, there is a continuously differentiable extension F : R → R

of f̂ . This F is constructed by a small refinement of the construction of F extracted
from part (a). More specifically, for every 1 ≤ i ≤ κ, let αi and βi be the endpoints

of [ai, bi] such that f̂ ′(αi) ≤ f̂ ′(βi) and, when choosing maps hi, ensure that their
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range is contained in the interval[
f̂ ′(αi)−

f(bi)− f(ai)

bi − ai
− 3−i, f̂ ′(βi)−

f(bi)− f(ai)

bi − ai
+ 3−i

]
.

This can be achieved by choosing si and ti so close to ai and bi that the resulting
constants Ai and Bi, respectively, have magnitude ≤ 3−i. We claim, that such
constructed F has continuous derivative. To see this, choose an x ∈ R. We will
show only that F ′ is right-continuous at x, the argument for left-continuity being
similar.

Clearly, the definition of F ensures that F ′ is right-continuous at x if there exists
a y > x such that (x, y) ∩ Q̂ = ∅. So, assume that there is no such y. Choose an
ε > 0. It is enough to find a δ > 0 such that

(6) |F ′(x)− F ′(y)| < 2ε whenever y ∈ (x, x+ δ).

Let δ0 > 0 be such that |f̂ ′(x) − f̂ ′(y)| < ε whenever y ∈ (x, x + δ0) ∩ Q̂. Choose
n ∈ N such that 3−n < ε, and let δ ∈ (0, δ0) such that (0, δ) is disjoint with every
(ai, bi) for which i < n, and if (ai, bi) intersects (0, δ), then [ai, bi] ⊂ (0, δ0). To see

that such δ satisfies (6), pick y ∈ (x, x + δ). If y ∈ Q̂, then (6) holds, since then

|F ′(x) − F ′(y)| = |f̂ ′(x) − f̂ ′(y)| < ε. So, assume that y /∈ Q̂. Then, y ∈ (ai, bi)

for some i ≥ n. Since βi ∈ [ai, bi] ⊂ (0, δ0), we have |f̂ ′(x) − f̂ ′(βi)| < ε and

f̂ ′(βi) < f̂ ′(x) + ε. So, F ′(y) = f̄ ′(y) + g′(y) = f(bi)−f(ai)
bi−ai

+ hi(y) ≤ f̂ ′(βi) + 3−i <

f̂ ′(x) + ε+ 3−i ≤ F ′(x) + 2ε. Similarly, F ′(y) ≥ f̂ ′(αi)− 3−i > f̂ ′(x)− ε− 3−i ≥
F ′(x)− 2ε. So, (6) holds.

Finally, let us note that there is no straightforward generalization of part (a) of
Theorem 3.9, that is, of Jarńık’s theorem, to the differentiable functions f defined
on closed subsets P of Rn. This is the case, since the derivative of any extension
F : Rn → R is Baire class one, as it is a pointwise limit of continuous functions
Fn(x) := n

(
F
(
x+ 1

n

)
− F (x)

)
. Therefore the derivative f ′ of any differentiable

extendable map f ′ : P → R must be also Baire class one. However, there exists a
differentiable function f : P → R, with P ⊂ R2 being closed, for which f ′ is not
Baire class one, see [4, Thm. 5]. Clearly, this f admits no differentiable extension
to R2. However, in [4] Aversa, Laczkovich, and Preiss prove that this is the only
obstacle to generalize Jarńık’s theorem to multivariable functions. More specifically,
they prove that a differentiable function f : P → R, with P being a closed subset of
Rn, admits differentiable extension F : Rn → R if, and only if, f ′ : P → R is Baire
class one.

Also, a straightforward generalization of Jarńık’s theorem, Theorem 3.9(a), to
the higher-order smoothness is false, since, by Example 4.3 (which comes from [37]),
there are a perfect Q ⊂ R and a twice differentiable f : Q → R such that f admits
no extension F ∈ C2(R), despite it admitting a C1 extension F : R → R. Compare
also section 4.1 and Problem 6.4.

3.4. C1-interpolation theorem and Ulam–Zahorski problem. The main re-
sult we would like to discuss here is the following theorem from [1] by Steven J.
Agronsky, Andrew M. Bruckner, Miklós Laczkovich, and David Preiss from 1985.
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Figure 23. Stanis�law Ulam (1909–1984) and Zygmunt Zahorski
(1914–1998)

Theorem 3.10. For every continuous function f : R → R, there exists a contin-
uously differentiable function g : R → R with the property that the set [f = g] :=
{x ∈ R : f(x) = g(x)} is uncountable. In particular, [f = g] contains a perfect set
P , and the restriction f � P is continuously differentiable.

The story behind Theorem 3.10 spreads over a big part of the 20th century and
is described in detail in [97] and [9]. Briefly, around 1940 Stanis�law Ulam (1909–
1984; see Figure 23) asked, in the Scottish Book (Problem 17.1, see [114] or [88])
whether every continuous f : R → R agrees with some real analytic function on an
uncountable set. Zygmunt Zahorski (1914–1998; see Figure 23) showed, in his 1948
paper [125], that the answer is no: there exists a C∞ (i.e., infinitely many times
differentiable) function which can agree with every real analytic function on at most
countable set of points. In the same paper Zahorski stated a problem known later as
the Ulam–Zahorski problem: Does every C0 (i.e., continuous) function f : R → R

agree with some C∞ (or possibly Cn or Dn) function on an uncountable set?
Clearly, Theorem 3.10 shows that the Ulam–Zahorski problem has an affirmative
answer for the class of C1 functions. This is the best possible result in this direction,
since Alexander Olevskǐı (1939– ) constructed, in his 1994 paper [97], a continuous
function f : [0, 1] → R which can agree with every C2 function on at most countable
set of points.

The results related to the Ulam–Zahorski problem for the higher-order differen-
tiable functions are discussed in section 4.2.

Proof of Theorem 3.10. If the perfect set Q ⊂ R is the one from Proposition 3.8,
then the quotient map q0 := q � Q2 \Δ can be extended to a uniformly continuous
map q̄ on Q2 and f : Q → R is continuously differentiable with (f � Q)′(x) =

q̄(x, x) for every x ∈ Q. By part (b) of Theorem 3.9, the extension f̂ of f � Q is
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differentiable. In particular, f̂ ′(x) = (f � Q)′(x) for every x ∈ Q and f̂ ′(x) = q̄(c, d)
whenever x ∈ IJ , where J := (c, d) is a bounded connected component of R \Q.

By Theorem 3.9(b), we need to show that f̂ ′ is continuous. Clearly, f̂ ′ is contin-

uous on Q̂ \Q, since it is locally constant on this set. So, let x ∈ Q, and fix ε > 0.

We need to find an open U containing x such that |f̂ ′(x) − f̂ ′(y)| < ε whenever

y ∈ Q̂∩U . Since q̄ is continuous, there exists an open V ∈ R2 containing 〈x, x〉 such
that |f̂ ′(x)− q̄(y, z)| = |q̄(x, x)− q̄(y, z)| < ε whenever 〈y, z〉 ∈ Q2∩V . Let U0 be an
open interval containing x such that U2

0 ⊂ V , and let U ⊂ U0 be an open set con-
taining x such that if U ∩IJ �= ∅ for some bounded connected component J = (c, d)

of R \ Q, then c, d ∈ U0. We claim that U is as needed. Indeed, let y ∈ Q̂ ∩ U .

If y ∈ Q, then 〈y, y〉 ∈ U2 ⊂ V and |f̂ ′(x) − f̂ ′(y)| = |q̄(x, x) − q̄(y, y)| < ε.
Also, if y ∈ IJ for some bounded connected component J = (c, d) of R \ Q, then

〈c, d〉 ∈ U2
0 ⊂ V and, once again, |f̂ ′(x)− f̂ ′(y)| = |q̄(x, x)− q̄(c, d)| < ε.

3.5. Differentiable maps on a perfect set P ⊂ R: Another monster. Ac-
cording to Theorem 3.2, every continuous f : R → R has a differentiable restriction
to a perfect subset of R. Thus, a natural question is the following:

What can be said about differentiable functions f : P → R, where
P is a perfect subset of R?

If P has a nonzero Lebesgue measure, then quite a bit can be said about f . (For
example, its derivative will have a continuous, even Lipschitz, restriction to a subset
of P of positive measure; see Remark 3.3.) However, little seems to be known, in
the general case, when the perfect sets P could have Lebesgue measure 0.

In the “positive” direction, we have the following generalization of Theorem 2.2.
We would like to point out that the technique employed in our proof of Proposi-
tion 3.11 is of a much simpler nature than that from the work of Miklós Laczkovich
on C1 interpolation.

Proposition 3.11. If P ⊂ R is perfect and F : P → R is differentiable, then F ′ is
Baire class one. In particular, F ′ is continuous on a dense Gδ subset of P .

Proof. Let F̄ : R → R be a differentiable extension of F , which exists by Theo-
rem 3.9(a). Then, by Theorem 2.2, F̄ ′ is Baire class one, and so is F ′ = F̄ ′ � P .

There is little else we can say about the derivatives of differentiable functions
F : P → R. The next example, first constructed in 2016 by the first author and
Jakub Jasinski in [29], shows how counterintuitively such maps can behave. We use

the symbol C to denote the Cantor ternary set, that is, C :=
{∑∞

n=0
2s(n)
3n+1 : s ∈ 2ω

}
,

where 2ω is the set of all functions from ω := {0, 1, 2, . . .} into 2 := {0, 1}.

Example 3.12. There exists a perfect set X ⊂ C and a differentiable bijection
f : X → X such that f ′(x) = 0 for every x ∈ X; see Figure 24. Moreover, f does not
have any periodic points.

Of course, by Theorem 3.9(a), function f can be extended to a differentiable
map F : R → R. However, no function f as in the example admits continuously
differentiable extension F : R → R, as proved in [28, lemma 3.3].

There is something counterintuitive about such a function. Having derivative 0
at every point, it is pointwise contractive with every constant λ ∈ (0, 1): for every
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Figure 24. Illustration for Example 3.12. Result of the action of
f2 = 〈f, f〉 on X2 = X× X.

x ∈ X there is an open subset U of X containing x such that |f(x)− f(y)| ≤ λ|x− y|
for all y ∈ U . Thus, f is pointwise contractive but globally stable (in the sense
that f[X] = X). The functions that have such a property globally cannot map any
compact perfect set onto itself: if f is shrinking (i.e., such that |f(x)− f(y)| < |x−y|
for all distinct x, y ∈ X), then diam(f[X]) < diam(X). The map f also cannot be
locally shrinking, in the sense that for every x ∈ X there exists an open U 
 x in X

such that f � U is shrinking. Indeed, by a theorem of Michael Edelstein (1917–2003;
see Figure 25) from his 1962 paper [46], every locally shrinking self-map of a compact
space must have a periodic point. Of course, X must have Lebesgue measure zero,
since f ′ ≡ 0 implies that f[X] must have measure zero; see for example [52, p. 355].

The construction of f we present below comes from [25] and is based on its
variants from [29] and [8].

Construction of f from Example 3.12. Let σ : 2ω → 2ω be the add-one-and-carry
adding machine, that is, it is defined, for every s := 〈s0, s1, s2, . . .〉 ∈ 2ω, as

σ(s) :=

{
〈0, 0, 0, . . .〉 if si = 1 for all i < ω,

〈0, 0, . . . , 0, 1, sk+1, sk+2, . . .〉 if sk = 0 and si = 1 for all i < k.

For more on adding machines, see the survey [45].
The map f is defined as f := h ◦ σ ◦ h−1 : h[2ω] → h[2ω], where h : 2ω → R is an

appropriate embedding that ensures that f ′ ≡ 0. Thus, X := h[2ω].
We define embedding h via the formula

h(s) :=

∞∑
n=0

2sn3
−(n+1)N(s�n),
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Figure 25. Michael Edelstein (1917–2003) (Image courtesy of
Leah Edelstein)

where N(s � n) is the natural number for which the following 0-1 sequence12

ν(s, n) := 〈1, 1 − sn−1, sn−2, . . . , s0〉 is its binary representation, that is, we have
N(s � n) :=

∑
i<n−1 si2

i + (1− sn−1)2
n−1 + 2n.

Clearly, 2n ≤ N(s � n) ≤
∑

i≤n 2
i < 2n+1 for every s ∈ 2ω and n < ω. Hence,

the sequence 〈N(s � n) : n < ω〉 is strictly increasing and h is an embedding into C.
So, X = h[2ω] ⊂ C.

The proof that f ′ ≡ 0 follows from two observations:

(a) for every s ∈ 2ω, there is a k < ω such that N(σ(s) � n) = N(s � n) + 1 for
every n > k;

(b) if n := min{i < ω : si �= ti} for some distinct s := 〈si〉 and t := 〈ti〉 from
2ω, then 3−(n+1)N(s�n) ≤ |h(s)− h(t)| ≤ 3 · 3−(n+1)N(s�n).

Indeed, to see that f ′(h(s)) = 0 for an s ∈ 2ω, choose a k < ω satisfying (a),
and let δ > 0 be such that the inequality 0 < |h(s) − h(t)| < δ implies that
n = min{i < ω : si �= ti} is greater than k. Then, for any t ∈ 2ω for which
0 < |h(s)− h(t)| < δ, we have

n = min{i < ω : si �= ti} = min{i < ω : σ(s)i �= σ(t)i}
and, using (a) and (b) for the pairs 〈s, t〉 and 〈σ(s), σ(t)〉, we obtain

|f(h(s))− f(h(t))|
|h(s)− h(t)| =

|h(σ(s))− h(σ(t))|
|h(s)− h(t)| ≤ 3 · 3−(n+1)N(σ(s)�n)

3−(n+1)N(s�n) = 3 · 3−(n+1).

Thus, indeed f ′(h(s)) = 0, as 3 · 3−(n+1) is arbitrarily small for δ small enough.
To see (a), let s = 〈si〉i and notice that, for every 0 < n < ω,

(7) N(σ(s) � n) = N(s � n) + 1, unless s0 = · · · = sn−2 = 1 and sn−1 = 0.

Indeed, if si = 0 for some i < n − 1, then
∑

i<n−1 σ(s)i2
i = 1 +

∑
i<n−1 si2

i

and σ(s)n−1 = sn−1, giving (7). Otherwise, s0 = · · · = sn−2 = 1 and, by our

12ν(s, n) is obtained from s � n = 〈s0, . . . , sn−1〉 by: “flipping” its last digit sn−1 to 1− sn−1,
appending 1 at the end, and reversing the order. The “appending 1” step is to ensure that
2n ≤ N(s � n). The “flipping” step is the key new trick, which comes from [8].
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assumption, also sn−1 = 1. This implies that σ(s)0 = · · · = σ(s)n−1 = 0. Thus
N(σ(s) � n) =

∑
i<n−1 2

i + 2n = 2n−1 − 1 + 2n and N(s � n) = 2n−1 + 2n, again
giving (7).

Since for every s = 〈si〉i ∈ 2ω there is at most one 0 < n < ω for which
s0 = · · · = sn−2 = 1 and sn−1 = 0, any k greater than this number satisfies (a).

To see property (b), first notice that for every s := 〈si〉i ∈ 2ω and n < ω, if
H(s � n) :=

∑
k<n 2sk3

−(k+1)N(s�k) is the initial partial sum of h(s), then

(8) H(s � n) + 2sn3
−(n+1)N(s�n) ≤ h(s) ≤ H(s � n) + (2sn + 1)3−(n+1)N(s�n).

Indeed, h(s) = H(s � n) + 2sn3
−(n+1)N(s�n) + 2

∑
k>n 3

−(k+1)N(s�k) while also

0 ≤ 2
∑

k>n 3
−(k+1)N(s�k) ≤ 2

∑∞
i=1 3

−[(n+1)N(s�n)+i] = 3−(n+1)N(s�n), where the
second inequality holds, since the sequence 〈(k+ 1)N(s � k)〉k is strictly increasing
(as 2k ≤ N(s � k) < 2k+1). This clearly implies (8).

To prove the inequalities in (b), we can assume that sn = 0 and tn = 1.
Then, by (8) used for s and t, we have h(s) ≤ H(s � n) + 3−(n+1)N(s�n) and
H(t � n) + 2 · 3−(n+1)N(t�n) ≤ h(t). Using these inequalities and our assumption
that t � n = s � n, we obtain h(t) − h(s) ≥ 3−(n+1)N(s�n) > 0. In particular, we
get the lower bound |h(s) − h(t)| = h(t) − h(s) ≥ 3−(n+1)N(s�n). Next, using the
just-proved fact that h(s) < h(t) and property (8) holds for s and t, we obtain

H(t � n) = H(s � n) ≤ h(s) < h(t) ≤ H(t � n) + 3 · 3−(n+1)N(t�n).

In particular,

|h(s)− h(t)| = h(t)− h(s) ≤ 3 · 3−(n+1)N(t�n) = 3 · 3−(n+1)N(s�n),

the desired upper bound.

We would like to stress, once more, that the compactness of X in Example 3.12
is what makes it so paradoxical. It is relatively easy to believe in the existence
of the perfect unbounded subsets of R that admit similar mappings. Actually, it
has been proved by the first author and Jakub Jasinski in [28] that there exists
a C∞ function g = 〈g1, g2〉 : R → R2 and a perfect unbounded P ⊂ R such that
g′1 � P = g′2 � P ≡ 0, and g � P is Peano-like in the sense that g[P ] = P 2. On the
other hand, it is unknown (see Problem 6.3 and [28, problem 1]), whether there
exists a D1 function h (i.e., with D1 coordinates) from a compact perfect P ⊂ R

onto P 2. Of course, by Theorem 3.9(a), such a map could be extended to a D1

map from R to R2. (However, there is no such an h that could be extended to a
C1 map from R to R2, since it has been proved in [28, Thm. 3.1] that P 2 �⊂ f [P ]
for every C1 function f : R → R2 and compact perfect P ⊂ R.)

It has been recently proved, by the first author and his student Cheng-Han
Pan [38], that the function f : X → X from Example 3.12 can be also extended
to functions F1, F2 : R → R such that F1 is a Weierstrass monster, while F2 is
a differentiable monster. This squeezes three paradoxical examples to just two
functions. The existence of a differentiable monster F2 : R → R extending f follows
immediately from the following “twisted” version of Jarńık’s differentiable extension
theorem, our Theorem 3.9(a), which comes from [38].

Theorem 3.13. For every perfect P ⊆ R and differentiable f : P → R, there exists

a differentiable extension f̂ : R → R of f such that f̂ is nowhere monotone on R\P .

In particular, if P is nowhere dense in R, then f̂ is monotone on no interval.
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The function f̂ in Theorem 3.13 is constructed by using Theorem 3.9(a) to
find an arbitrary differentiable extension F : R → R of f , choosing differentiable
g : R → [0,∞) with g−1(0) = P , and using the existence of a differentiable monster

to find an extension f̂ : R → R of f which differentiable nowhere monotone on [a, b]

for every (a, b) ⊂ R \ P and such that
∣∣∣f̂(x)− F (x)

∣∣∣ ≤ g(x) for every x ∈ R. Such

f̂ is also differentiable on P , which is verified by a simple application the squeeze
theorem; see [38, lemma 4].

3.6. A few words on monotone restrictions. Of course, the concept of mono-
tonicity is closely related to both continuity and differentiability. Therefore, we
would like to finish this section with some facts concerning monotone restrictions
of continuous functions.

We start with the following 1966 theorem of Franciszek Miros�law Filipczak [51].

Theorem 3.14. For every continuous function f : R → R and every perfect P ⊂ R,
there exists a perfect set Q ⊂ P such that f � Q is monotone.

Proof. For P = R, the set Q we constructed in our proof of Theorem 3.2 is as
needed. More specifically, if f is monotone on some nontrivial interval [a, b], then
Q = [a, b] is as needed. Otherwise, by a theorem of Komarath Padmavally [99],
there is perfect set Q ⊂ R on which f is constant, so monotone. However, even
for a general perfect set P ⊂ R, one can prove the theorem by the following simple
argument.

If there is a nonempty open subset U of P on which f is monotone, then Q =
clP (U) is as needed. Otherwise, construct (by induction on n < ω) the closed
nonempty intervals {Is : s ∈ 2n & n < ω}, such that for every s ∈ 2n:

• Is is of length ≤ 2−n and Is ∩ P is perfect;
• Is0 and Is1 are disjoint subsets of Is such that f(x) < f(y) for every x ∈
Is0 ∩ P and y ∈ Is1 ∩ P .

Then Q =
⋂

n<ω

⋃
s∈2n Is is as needed.

Notice that, in Theorem 3.2 the perfect set Q (with differentiable f � Q) cannot
be chosen inside a given perfect set P , unless P is of positive Lebesgue measure
(compare with Remark 3.3.) This holds true when f has infinite derivative on some
perfect set P . For example, such an f can be chosen as a Pompeiu function g from
Proposition 2.8 with P being a subset of the dense Gδ set {x ∈ R : g′(x) = ∞}.

The above discussion shows that finding a monotone restriction f � Q, of con-
tinuous f , is a harder problem than that of finding a differentiable restriction. In
fact, by Theorem 3.14, any differentiable restriction f � Q can be further refined, so
that f � Q is also monotone (which, clearly, cannot be done in the reverse order).
Thus, one may wonder, if for P = R the set Q in Theorem 3.14 can be always
chosen having positive Lebesgue measure. A relatively easy counterexample for
this assertion is a continuous f which is nowhere approximately differentiable, e.g.,
a function f from Remark 3.4. Indeed, for such an f and any perfect Q of positive
Lebesgue measure, the restriction f � Q cannot be monotone. (Otherwise, a mono-
tone extension f̄ : R → R of f � Q, say its linear interpolation, is, by a theorem
of Lebesgue, differentiable almost everywhere. Hence, f � Q has many points of
differentiability, at which f is approximately differentiable, a contradiction.)

A considerably stronger counterexample was given in a 2009 paper [69] of Jean-
Pierre Kahane (1926–2017) and Yitzhak Katznelson by constructing a continuous
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function f : R → R such that f � E is not monotone unless E has Hausdorff
dimension 0. More on monotone restrictions can be found in a 2011 paper [72]
of Alexander B. Kharazishvili (1949– ) and a 2017 article [17] of Zoltán Buczolich
(1961– ).

4. Higher-order differentiation

In this section we will discuss, in more detail, the higher-order versions of the
Ulam–Zahorski interpolation problem and of the differentiable extension theorems
of Whitney and Jarńık.

4.1. Extension theorems. The original 1934 Whitney extension theorem [122]
provides the necessary and sufficient conditions for a function f from a closed
subset P of Rk (k ∈ N) into R to have a Cn (n ∈ N) extension f̄ : Rk → R. This
theorem has been studied extensively; see, e.g., [7, 49, 50]. Here, we discuss it only
for k = 1 and with P ⊂ R being perfect. These assumptions ensure that the notion
of the derivative of f is well defined at each a ∈ P , what allows a simpler statement
of the theorem13 and a relatively simple proof of it, both coming from [37].

For an n < ω, a perfect set P ⊂ R, a Dn function f : P → R, and an a ∈ P , let
Tn
a f(x) denote the nth degree Taylor polynomial of f at a,

Tn
a f(x) :=

n∑
i=0

f (i)(a)

i!
(x− a)i.

Also, define the map qnf : P
2 → R as

qnf (a, b) :=

⎧⎨
⎩

Tn
b f(b)− Tn

a f(b)

(b− a)n
if a �= b,

0 if a = b.

Theorem 4.1 (Whitney extension theorem). Let P ⊂ R be perfect, and let n ∈ N

and f : P → R. There exists a Cn extension f̄ : R → R of f if, and only if,

(Wn) f is Cn and the map qn−i
f(i) : P

2 → R is continuous for every i ≤ n.

Theorem 4.1 easily follows from the general version of the Whitney extension
theorem, whose (quite intricate) proof can be found in [49], [7], or [122]. A consid-
erably shorter detailed proof of the specific form of Theorem 4.1 can be found in
[37].

It should be noticed that the necessity part of Theorem 4.1 is easy to see. Specif-
ically, (Wn) must be satisfied by f , since it must be satisfied by any Cn function
f̄ : R → R—this can be deduced from the well-known behavior of the remainder of
the Taylor polynomials; see [37, Prop. 3.2]. Thus, the true value of the theorem
lies in the sufficiency of the condition, that is, the construction of a Cn extension
f̄ : R → R of f and the proof that, under the assumptions, it is indeed Cn.

This extension is defined as a weighted average of the maps Tn
a f , where the

weights are given by an appropriate partition of unity of the complement of P .
Finding such a partition is the main difficulty for the functions of more than one
variable. However, this difficulty almost completely vanishes for the functions of
one variable, as we see below.

13In terms of Taylor polynomials, rather than some implicitly given polynomials.
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The construction of f̄ from Theorem 4.1. Let f : P → R be as in the assumptions,
and let H be the convex hull of P . We will construct a Cn extension f̄ : H → R

of f . This will finish the proof since, in the event when the interval H is not the
entire R, a further Cn extension of f̄ defined on R can easily be found.

Let {(aj , bj) : j ∈ J} be the family of all connected components of H \P . Choose
a nondecreasing C∞ map ψ : R → R such that ψ = 1 on [2/3,∞) and ψ = 0 on
(−∞, 1/3]. For every j ∈ J define the following functions from R to R:

• the linear map Lj(x) :=
x− aj
bj − aj

(so, Lj(aj) = 0 and Lj(bj) = 1);

• βj := ψ ◦ Lj and αj := 1− βj ;
• f̄j := αjT

n
aj
f + βjT

n
bj
f .

Then, the extension f̄ : H → R of f is defined by declaring simply that

f̄ � (aj , bj) := f̄j � (aj , bj) for every j ∈ J.

The detailed two-page long proof showing that such a function f̄ : H → R is,
indeed, Cn can be found in [37].

Interestingly, it is relatively easy to deduce from Theorem 4.1 its C∞ version by
using the fact that the extension f̄ is always C∞ on the complement of P . For the
proof, see [90, theorem 3].14

Remark 4.2. If P ⊂ R is perfect, then f : P → R admits a C∞ extension f̄ : R → R

if, and only if, (Wn) holds for every n ∈ N.

One must be very careful when considering variations of Theorem 4.1. For exam-
ple, for n ∈ N consider the following statement on the existence of Cn extensions:

(Ln) Let f : R → R be Cn−1, and let P ⊂ R be a perfect set for which the

map F : P 2 \Δ → R defined by F (x, y) := f(n−1)(x)−f(n−1)(y)
x−y is uniformly

continuous and bounded. Then f � P can be extended to a Cn function
f̄ : R → R.

The property (L1) is well known and follows immediately from Theorem 4.1 used
with n = 1, since the continuity of q1−1

f(1) (a, b) = f ′(b)− f ′(a) is just the continuity

of f ′, which follows from the assumptions on the function F from (L1), while the

continuity of q1−0
f(0) (a, b) =

f(b)−f(a)
b−a − f ′(a) is equivalent of the continuity of F .

In the book [35] of the first author and Janusz Pawlikowski, it is claimed (as
Lemma 4.4.1) that (Ln) is also true for n > 1.15 The next example shows that such
a claim is false.

Example 4.3. Let C be the Cantor ternary set. There exists a C1 function f : R →
R such that f ′ � C ≡ 0 and for no perfect set P ⊂ C is there a C2 extension f̄ : R → R

of f � P . In particular, f � C contradicts (L2).

14This result can be also deduced from Whitney’s papers [123] and [122, §12]. See also the
1998 paper [100], where it is shown that the analogous result for functions on Rk, k ≥ 2, does not
hold.

15The same claim is also present in [36]. The error was caused by an incorrect interpretation
of [49, Thm. 3.1.15]. Luckily, the results deduced in [35] and [36] from the incorrect claim remain
true, as recently proved in [37].
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Construction. For n ∈ N, let Jn be the family of all connected components of R\C
of length 3−n. Define f0 : R → R as

f0(x) :=

{
2−n

3−n dist(x,C) if x ∈ J , where J ∈ Jn for some n ∈ N, and

0 otherwise.

It is easy to see that f0 is continuous, since f0[J ] ⊂ [0, 2−n] for every J ∈ Jn. Define
f : R → R via formula f(x) :=

∫ x

0
f0(t) dt. Clearly, f is C1 and f ′ � C = f0 � C ≡ 0.

We just need to verify the statement about the extension.
To see this, notice that for every n ∈ N and distinct a, b ∈ C,

(9) if |b− a| < 3−n, then
|f(b)− f(a)|

(b− a)2
>

1

36

(
3

2

)n

.

Indeed, if m ∈ N is the smallest such that there is J = (p, q) ∈ Jm between a and
b, then m > n, |b − a| ≤ 3 · 3−m, and |f(b) − f(a)| ≥

∫ q

p
f0(t) dt = 1

23
−m 1

22
−m.

So, |f(b)−f(a)|
(b−a)2 ≥

1
43

−m2−m

(3·3−m)2 = 1
36

(
3
2

)m
> 1

36

(
3
2

)n
. But this means that for every

perfect P ⊂ C, the map f � P does not satisfy condition (W2) from Theorem 4.1,
our version of the Whitney extension theorem, which is necessary for admitting a
C2 extension f̄ : R → R of f � P . More specifically, either (f � P )′′(a) does not
exist or else

∣∣q2f�P (a, b)
∣∣ =

∣∣f(b)− f(a)− 1
2 (f � P )′′(a)(b− a)2

∣∣
(b− a)2

≥ |f(b)− f(a)|
(b− a)2

− 1

2
(f � P )′′(a),

that is, q2f�P is not continuous at 〈a, a〉, as, by (9), lim
b→a,b∈P

|f(b)− f(a)|
(b− a)2

= ∞.

Is there higher order Jarńık’s extension theorem? Theorem 4.1 gives a full char-
acterization of functions f from perfect P ⊂ R into R that admit Cn extensions
f̄ : R → R. In this context, it is natural also to consider the following question:

Q: Is there an analogous characterization of functions f : P → R, where P ⊂ R

is perfect, that admit Dn extensions f̄ : R → R?

Of course, any f admitting Dn extension f̄ : R → R must satisfy the property

(Vn): f is Dn and (Wn−1) from Theorem 4.1,

as f̄ is Cn−1. Also, Theorem 3.9(a) of Jarńık immediately implies the following.

Corollary 4.4. Let P ⊂ R be perfect. A function f : P → R admits a D1 extension
f̄ : R → R if, and only if, f is D1.

In particular, since (V1) holds if, and only if, f is D1, the property (Vn) consists
of a characterization for Q in case of n = 1. This suggests that the property (Vn)
is also the desired characterization for an arbitrary n ∈ N. However, this is not the
case already for n = 2, as exemplified by the function f � P from Example 4.3. In
particular, the question Q remains an open problem for n ≥ 2; see Problem 6.4.
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4.2. Generalized Ulam–Zahorski interpolation problem. One can formulate
the Ulam–Zahorski interpolation problem for any two arbitrary classes F and G of
functions from R to R (or, more generally, from a space X into Y ) as the following
statement:

UZ(G,F): For every g ∈ G there is an f ∈ F with uncountable [f = g].

Of course, if G′ ⊆ G and F ⊆ F ′, then UZ(G,F) implies UZ(G′,F ′).
In this notation Zahorski’s negative solution of Ulam’s problem can be ex-

pressed simply as ¬UZ(C∞,A), where A denotes the class of all real analytic
functions. Also, Zahorski’s question can be understood as an inquiry on the valid-
ity of UZ(G,F) for all pairs 〈G,F〉 of families from

D = {C∞} ∪ {Cn : n < ω} ∪ {Dn : n ∈ N}.

With the exception of the unknown validity of UZ(D1, D2) (see Problem 6.5), all
these interpolation statements are well understood, as summarized in the following
theorem. Recall that D is ordered by inclusion as follows:

C∞ � · · · � Cn+1 � Dn+1 � Cn � Dn � · · · � C1 � D1 � C0.

Theorem 4.5. For every n ∈ N with n ≥ 2:

(a) C1 is the smallest F ∈ D for which UZ(C0,F) holds.
(b) If F ∈ D is the smallest for which UZ(D1,F) holds, then F ∈ {C1, C2}.
(c) C2 is the smallest F ∈ D for which UZ(C1,F) holds.
(d) Cn is the smallest F ∈ D for which UZ(Dn,F) holds.
(e) Cn is the smallest F ∈ D for which UZ(Cn,F) holds.

Proof. (a) The interpolation UZ(C0, C1) holds by Theorem 3.10. To see the nega-
tion of UZ(C0, D2), recall that Olevskǐı constructed, in [97], a continuous function
ϕ0 : [0, 1] → R which can agree with every C2 function on at most countable set.
In particular, if ψ is a C∞ map from R onto (0, 1), then f0 = ϕ0 ◦ ψ justifies
¬UZ(C0, C2). The same function f0 also justifies ¬UZ(C0, D2).16 Indeed, other-
wise, there exists a D2 function f : R → R such that [f0 = f ] contains a perfect set
P . Then, by Theorem 4.6, there exists also a C2 function g : R → R for which the
set Q := [f = g]∩P is uncountable. Then Q ⊂ [f = g]∩ [f0 = f ] ⊂ [f0 = g], which
is impossible, since f0 justifies ¬UZ(C0, C2).

(b) The interpolation UZ(D1, C1) holds either by Theorem 3.10 or Theorem 4.6.
If UZ(D1, D2) does not hold (see Problem 6.5), then clearly D = C1. If UZ(D1, D2)
holds, then by Theorem 4.6, UZ(D1, C2) holds as well. Clearly, UZ(D1, D3) does
not hold, since this would imply UZ(C1, D3), contradicting (c).

(c) The interpolation UZ(C1, C2) is proved by Olevskǐı in [97]. (See also [10,
Thm. 6].) The negation of UZ(C1, C3) is clearly justified by a function f1 : R → R

given as f1(x) :=
∫ x

0
f0(t) dt, where f0 is as in part (a). It also justifies UZ(C1, D3),

which can be deduced from Theorem 4.6 similarly as above.
(d) UZ(Dn, Cn) holds by Theorem 4.6. The negation of UZ(Dn, Dn+1) is justi-

fied by a Cn function fn from part (e).

16The fact that Olevskǐı’s function ϕ0 also cannot agree with any D2 function on an uncount-
able set was remarked upon, without a proof, by Jack B. Brown in [9]. Our argument proves that,
in fact, every function justifying ¬UZ(C0, C2) also justifies ¬UZ(C0,D2).
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(e) Olevskǐı constructed, in [97, Thm. 4], a C2 function ϕ2 : [0, 1] → R which
can agree with every C3 function on at most a countable set.17 Similarly as above,
f2 = ϕ2 ◦ ψ justifies ¬UZ(C2, C3) and, using Theorem 4.6, also ¬UZ(C2, D3).
For n > 2 a function fn justifying ¬UZ(Cn, Dn+1) is obtained as an (n − 2)th

antiderivative of f2 (i.e., f
(n−2)
n = f2).

We will finish section 4.2 with the following theorem, which was used heavily in
the above proof. The theorem can be deduced from [124, Thm. 4] and from the
proof of [49, Thm. 3.1.15]. However, our argument below is considerably different
from the proofs presented there.

Theorem 4.6. For every n ∈ N, perfect P ⊂ R, and Dn function f : R → R there
exists a Cn function g : R → R for which the set [f = g] ∩ P is uncountable.

For n = 1, this can be deduced from the proof of Theorem 3.10 presented
above.18 Also for n ≥ 2, the theorem can be deduced from the (complicated)
lemma; see [37, lem. 3.7]. Instead, we will provide below a short argument based
on Theorem 4.1 and the following lemma, which is of independent interest.

Lemma 4.7. Let ψ : P 2 \ Δ → R be continuous, where P ⊂ R is perfect. If
δ1, δ2 : P

2 ∩Δ → R are continuous, ψ1 = ψ ∪ δ1 is continuous with respect to the
first variable, and ψ2 = ψ ∪ δ2 is continuous with respect to the second variable,
then δ1 = δ2.

Proof. By way of contradiction, assume that δ1 �= δ2. Then, there exists an ε > 0
and open nonempty set U ⊂ P such that19

(10) |δ1(p, p)− δ2(q, q)| > ε for every p, q ∈ U .

Since ψ1 is continuous with respect to the first variable, for every q ∈ U there exists
an nq ∈ N such that |ψ1(q, q)−ψ1(p, q)| < ε/2 for every p ∈ P with |p− q| < 1/nq.
Since U is of the second category, there exists an n ∈ N such that Z = {q ∈ U : nq =
n} is dense in some nonempty subset V of U . Choose p ∈ V . Since ψ2 is continuous
with respect to the second variable, there exists an open subset W of V containing
p and such that |ψ2(p, p)−ψ2(p, q)| < ε/2 for every q ∈ W . Choose q ∈ W ∩Z such
that 0 < |p − q| < 1/n. Then |ψ1(q, q)− ψ1(p, q)| < ε/2, as |p − q| < 1/n = 1/nq.
In particular,

|δ1(p, p)− δ2(q, q)| ≤ |ψ1(p, p)− ψ1(p, q)|+ |ψ2(p, q)− ψ2(q, q)| < ε,

contradicting (10).

Proof of Theorem 4.6. Let h = f � P , and define the function Ψ: P 2 \Δ → R via
formula

Ψ(a, b) :=
n∑

k=0

|qn−k
h(k) (a, b)|,

17In fact it is proved in [97] that [ϕ2 = f ] is at most countable for every α ∈ (0, 1) and a C2+α

map f : [0, 1] → R (i.e., such that f is C2 and f ′′ is of Hölder class α). Similarly, he proves that
his map ϕ1 cannot be interpolated by any C1+α map.

18Since f is differentiable, we can find a perfect subset P0 of P such that f � P0 is Lipschitz.
Then, as in Proposition 3.8, we can find perfect subset Q of P0 such that the conclusion of the
proposition holds. This is the only fact used in the proof of Theorem 3.10.

19Indeed, if r ∈ P is such that δ1(r, r) �= δ2(r, r) and ε = |δ1(r, r) − δ2(r, r)|/3, then the set
U = {p ∈ P : |δ1(p, p)− δ1(r, r)| < ε and |δ2(p, p)− δ2(r, r)| < ε} is as needed.
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where functions qn−k
h(k) are as in Theorem 4.1. Also, let F : P 2 \Δ → R be given as

F (a, b) := Ψ(a, b)+Ψ(b, a). By a theorem of Morayne from [94] applied to F , there
exists a perfect Q ⊂ P for which F � Q2 \Δ is uniformly continuous. Decreasing Q,
if necessary, we can also assume that h(n) (and so, also q0

h(n)) is continuous. Clearly,

F � Q2 \Δ has a uniformly continuous extension F̄ : Q2 → R. We claim that

(11) F̄ � Δ ≡ 0.

To see this, we will use Lemma 4.7 to the maps ψ := Ψ � Q2\Δ and δ1, δ2 : P
2∩Δ →

R, where δ2 ≡ 0 and δ1 = F̄ � P 2 ∩ Δ. The map ψ2 = ψ ∪ δ2 is continuous with
respect to the second variable, since each qn−i

h(i) is continuous with respect to the

second variable as long as h(i) has a Dn−i extension onto R. (For an easy argument
in the case when n − i > 0, see, e.g., [37, Prop. 3.2(i)].) The map ψ1 = ψ ∪ δ1 is
continuous with respect to the first variable, since F̄−ψ2 is continuous with respect
to the second variable and ψ1(a, b) = (F̄ − ψ2)(b, a) for every 〈a, b〉 ∈ Q2. Hence,
by Lemma 4.7, δ1 = δ2. Thus, for every a ∈ Q, we have

F̄ (a, a) = lim
b→a, b∈Q

(ψ(a, b) + ψ(b, a)) = δ1(a, a) + δ2(a, a) = 0,

proving (11).
Finally, by (11),

n∑
k=0

|qn−k
h(k) (a, b)|+

n∑
k=0

|qn−k
h(k) (a, b)| = F̄ (a, b)

on Q2, so it is continuous. It is easy to see (compare [37, Lem. 3.5]) that this
implies that qn−i

h(i) is continuous on Q2 for every i ≤ n. In particular, f � Q = h � Q
satisfies the assumptions of Theorem 4.1, and so it admits a Cn extension g : R → R.
Therefore, [f = g] ∩ P contains an uncountable Q, as needed.

Figure 26. Henri León Lebesgue (1875–1941)
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Figure 27. Nikolai Luzin (1883–1950)

4.3. Smooth functions on R and joint continuity for maps on R2. Let
H be a class of maps h ∈ RR, where each h is identified with its graph h =
{〈x, h(x)〉 : x ∈ R} ⊂ R2. We say that a function f : R2 → R is H-continuous
provided f � h is continuous for every h ∈ H. Also, h is said to be H∗-continuous
whenever, for every h ∈ H, the restrictions f � h and f � h−1 are continuous, where
h−1 = {〈h(x), x〉 : x ∈ R}. Thus, in H∗-continuity, we examine the restrictions of f
to the functions h ∈ H treated as functions “from x to y” and as functions “from
y to x.” Consider the following general question:

(H) For which classes H ⊂ RR does the H∗-continuity of f : R2 → R imply its
joint continuity?

For the class A of real analytic functions, the question (H) has a negative answer,
as noted in 1890 by Ludwig Scheeffer (1859–1885) (see [106] or [104]) and in 1905
by Henri Lebesgue in [84, pp. 199–200] (1875–1941; see Figure 26). On the other
hand, in his 1948 text [86, pp. 173–176] Nikolai Luzin (1883–1950; see Figure 27)
proves that (C0)∗-continuity implies joint continuity.

The final answer to the question (H) for H in the collection {Cn(R) : n < ω}
was given by Arthur Rosenthal (1887–1959; see Figure 28) in his 1955 paper [104]:

Theorem 4.8. If f : R2 → R is (C1)∗-continuous, then it is also continuous.
However, there exist discontinuous (C2)∗-continuous functions g : R2 → R.

More on this subject can be found in a survey [33] of the first author and David
Miller.
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Figure 28. Arthur Rosenthal (1887–1959) (Image by Robert
Herbst (Heidelberg, date unknown) is reprinted courtesy of Uni-
versity Archives Heidelberg (UAH Pos 1 02600).)

5. Some related results independent of ZFC

It is common mathematical knowledge that the smoother a function is, the more
regular is its behavior. Thus, one could expect that there will not be many state-
ments about the smooth functions (from R to R) that cannot be decided within
the standard axioms of ZFC set theory. Nevertheless, there are quite a few results,
loosely related to the preceding material, that fall under such a category. The goal
of this section is to describe them.

5.1. Set-theoretical background. It is assumed that the reader of this section
is familiar with the standard notation and commonly known results of modern set
theory, as presented either in [24] or [82]. Just to give a brief basic overview, recall
that, given a set X, its cardinality is denoted by |X|. The symbol ω stands for the
cardinality of N, and c := 2ω is the cardinality of R. A function shall be identified
with its graph. The famous Continuum Hypothesis (CH) states that there is no set

Figure 29. Ernst Friedrich Ferdinand Zermelo (1871–1953) and
Abraham Halevi “Adolf” Fraenkel (1891–1965)
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Figure 30. Georg Cantor (1845–1918)

whose cardinality is strictly between that of the integers, ω, and that of the real
numbers, c. CH was advanced by Georg Cantor (1845–1918; see Figure 30) in 1878
in his paper [19], and a problem of its truth or falsehood was the first of Hilbert’s
23 problems presented in 1900 at the International Congress of Mathematicians;
see [62, 63]. It turns out that CH is independent of ZFC—the standard system of
axioms of set theory, including the axiom of choice, introduced by Ernst Friedrich
Ferdinand Zermelo (1871–1953) and Abraham Halevi “Adolf” Fraenkel (1891–1965;
see Figure 29).

The (relative) consistency of CH with ZFC was proved in the 1940 paper [60]
by Kurt Friedrich Gödel (1906–1978; see Figure 31); the independence of CH from
ZFC (i.e., the consistency of ¬CH with ZFC) was proved in 1963 by Paul Cohen
(1934–2007; see Figure 31); see [39, 40].

Martin’s Axiom (MA), introduced by Donald A. Martin (1940– ) and Robert
M. Solovay (1938– ) in their 1970 paper [85], is a statement that is independent of
ZFC. It is implied by CH, but it is independent of ZFC+¬CH. Roughly, MA says
that all cardinal numbers less than c behave like ω. MA has quite the number of
interesting combinatorial, analytic, and topological consequences; see, e.g., [54].

Figure 31. Kurt Gödel (1906–1978), and Paul Cohen (1934–
2007) (Fields Medal portrait of Cohen courtesy of Charles Cohen.)
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5.2. Consistency results related to the interpolation problems. By Theo-
rem 4.6 for every n ∈ N and f ∈ Dn there exists a g ∈ Cn such that the set [f = g]
contains a perfect set. A further natural question in this context, examined by the
first author and Janusz Pawlikowski in [35, 36], is about the smallest cardinality κ
such that each f ∈ Dn is covered by at most κ-many Cn functions. More precisely,
we would like to know the value of cov(Dn, Cn), where, for F ,G ∈ D,

cov(F ,G) := min
{
κ : (∀f ∈ F)(∃G0 ⊂ G) |G0| ≤ κ and f ⊂

⋃
G0

}
.

An easy ZFC result in this direction is as follows.

Proposition 5.1. ω < cov(Dn, Cn) ≤ c and cov(Cn−1, Dn) = c for every n ∈ N.

Proof. The inequalities cov(Dn, Cn) ≤ c and cov(Cn−1, Dn) ≤ c are obvious, since
any function f : R → R can be covered by c-many Cn maps (e.g., constants), one
for each point 〈x, f(x)〉 ∈ f .

The inequality cov(C0, D1) ≥ c is ensured by any function g0 ∈ C0 which has
an infinite derivative on an uncountable set Z ⊂ R, as then for any f ∈ D1 the set
[f ∩ g0] ∩ Z is at most countable. We can take as g0 the Pompeiu function g from
Proposition 2.8. For general n ∈ N , define functions gn−1 inductively by starting
with g0 as above and putting gn(x) =

∫ x

0
gn−1(t) dt. Then, gn ∈ Cn and [f ∩gn]∩Z

is at most countable for every f ∈ Dn, ensuring that cov(Cn−1, Dn) ≥ c.
To see that cov(Dn, Cn) > ω, we need to find an hn ∈ Dn which cannot be

covered by countably many Cn maps. For n = 1, this is witnessed by the inverse
of the Pompeiu function from Proposition 2.8. Indeed, if h1 is this map, then
for any C1 function g the set [f = g] must be nowhere dense and so, by the
Baire Category Theorem, countably many such sets cannot cover R. For general
n ∈ N , define functions hn inductively by starting with the above h1 and putting
hn+1(x) =

∫ x

0
hn(t) dt. Then the Baire Category Theorem once again ensures that

hn cannot be covered by countably many maps from Cn.

By Proposition 5.1, CH implies that cov(Dn, Cn) = c = ω1. Also, even under
¬CH, Martin’s Axiom implies that cov(Dn, Cn) = c. This follows from the argu-
ment we used to show that cov(Dn, Cn) > ω, since, under MA, the union of less
than c-many nowhere dense sets does not cover R.

Nevertheless, the next theorem shows that it is consistent with ZFC that

cov(Dn, Cn) = ω1 < c.

This result can be found in [35,36]. However, the proofs given in both these sources
are incorrect for n ≥ 2, as shown by the authors in their paper [37], which also
contains a corrected argument for the theorem.

Recall that the CPA (Covering Property Axiom) is consistent with ZFC. It holds
in the iterated perfect set model.

Theorem 5.2. CPA implies that cov(Dn, Cn) = ω1 < c for every n ∈ N.

Actually, [37] contains a stronger result: under CPA, for every n ∈ N there exists
an Fn ⊂ Cn of cardinality ω1 < c that almost covers every f ∈ Dn, in a sense that
f \

⋃
Fn has cardinality ≤ ω1. For n = 0, this was proved earlier in [27].

Interestingly, Theorem 5.2 implies (consistently) the interpolation theorems
UZ(Dn, Cn), that we discussed earlier. Indeed, if f ∈ Dn is covered by the graphs
of < c-many functions g ∈ Cn, then for one of these functions g the set [f = g]
must be uncountable.
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Figure 32. Wac�law Sierpiński (1882–1969)

5.3. Covering R2 by the graphs of few C1 maps. In this subsection, for a
function f : R → R the symbol f−1 will stand for the inverse relation; that is,
f−1 = {〈f(x), x〉 : x ∈ R}.

Wac�law Sierpiński (1882–1969; see Figure 32) showed in [107, Property P1] (see,
also, [78]) that CH is equivalent to the fact that there exists a family F of countably
many functions from R to R (they cannot be nice) such that R2 =

⋃
f∈F (f ∪ f−1).

The sets A =
⋃
F (with each vertical section countable) and B = R2 \A (with each

horizontal section countable) form what is known as Sierpiński’s decomposition.
To see this result, notice that if CH holds, then R can be enumerated, with no
repetitions, as {rα : α < ω1}. Also, for every α < ω1, the set {ξ : ξ ≤ α} can be
enumerated, with possible repetitions, as {ξ(α, n) : n < ω}. Then F can be defined
as the family of all functions fn : R → R, n < ω, defined as fn(rα) = rξ(α,n).
Conversely, assume that c ≥ ω2 and, by way of contradiction, that there exists a
Sierpiński’s decomposition {A,B} of R2 as above. Pick X ⊂ R of cardinality ω1

and y ∈ R \
⋃

x∈X Ax, where Ax = {y : 〈x, y〉 ∈ A}. Such a choice is possible, since⋃
x∈X Ax has cardinality ≤ ω1 (as each Ax is countable), while |R| = c > ω1. Also,

we can choose x ∈ U \By, where By = {x : 〈x, y〉 ∈ B}, since |B| = ω1 > |By|. But
then, 〈x, y〉 ∈ R2 \ (A ∪B), a contradiction.

It is an easy generalization of Sierpiński’s argument (see, e.g., [78]) that there
exists a family F of cardinality κ of functions from R to R with R2 =

⋃
f∈F (f∪f−1)

if, and only if, c ≤ κ+.
None of these results uses continuous functions. In fact, for a countable family

F of continuous functions, the set
⋃

f∈F (f ∪ f−1) is of first category, so it cannot

be equal to R2. Nevertheless, it is consistent with ZFC that R2 =
⋃

f∈F (f ∪ f−1)
for a family F of less than c-many continuous functions. In fact, these functions
can be even C1! This follows from the following theorem of the first author and
Janusz Pawlikowski proved in [36]; compare also [35]. Note, that an earlier, weaker
version of the theorem was proved by Juris Steprāns in [108].

Theorem 5.3. CPA implies that there exists a family F of size ω1 < c of C1

functions such that R2 =
⋃

f∈F (f ∪ f−1).

Notice that C1 is the best possible smoothness for such a result, since there is
no family F ⊂ D2 of size < c with R2 =

⋃
f∈F (f ∪ f−1). This is the case, since
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there exists a continuous injection h from a compact perfect set P into R such that
both h and its inverse have infinite second derivative at every point of the domain;
see [36] or [35, example 4.5.1]. This implies that h∩ (f ∪ f−1) is at most countable
for every f ∈ D2. That is, h �⊂

⋃
f∈F (f ∪ f−1) for every F ⊂ D2 of size < c; see

also Problem 6.6.

5.4. Big continuous and smooth images of sets of cardinality c. In sec-
tion 5.3 we took a property that a small family of F of arbitrary functions from
R to R can cover R2 and investigated to what extent the functions in F can be,
consistently, continuous or smooth. In his 1983 paper [92], Arnold W. Miller con-
sidered a similar regularization of the family F in the following statement which,
of course, holds for F = RR.

Im∗(F):] For every S ∈ [R]c, there is an f ∈ F such that f [S] = [0, 1].

In particular, he proved

Theorem 5.4. It is consistent with ZFC, holds in the iterated perfect set model,
that Im∗(C0) holds.

This proved that the statement Im∗(C0) is independent of ZFC axioms, since
Im∗(C0) is false under CH and, more generally, MA; see, e.g., [35, 92].20 A con-
siderably simpler proof of Theorem 5.4 was given by the first author and Janusz
Pawlikowski in [35, 36], showing that Im∗(C0) follows from the CPA; in fact, its
simplest version CPAcube.

The next natural question is whether Im∗(F) can also be consistent for a family
F ∈ D strictly smaller than C0. Formally, the answer is negative (see, e.g., [34])
since Im∗(D1) is false for any S ∈ [R]c of Lebesgue measure zero and f ∈ D1, as
every f ∈ D1 satisfies Luzin’s condition (N); that is, it maps Lebesgue measure
zero sets onto sets of measure zero. Nevertheless, it is easy to see that for F = C0

the statement Im∗(F) is equivalent to

Im(F):] For every S ∈ [R]c there is f ∈ F such that f [S] contains a perfect set.

At the same time, Im(C0) is equivalent to Im(C∞), as indicated in the following
theorem of the first author and Togo Nishiura; see [34].

Theorem 5.5. The properties Im∗(C0), Im(C0), and Im(C∞) are equivalent (in
ZFC ). In particular, each of these properties is independent of ZFC.

Finally, let us notice that Im(A) is false, where A denotes the class of all real
analytic functions. A counterexample for Im(A) is provided in [34].

We finish this article by including a section on open problems and potential
directions of research.

6. Final remarks and open problems

We would like to begin this section by emphasizing the fact that there is no
simpler characterization of being a derivative than the trivial one:

f is a derivative if, and only if, there exists a function F for which
f = F ′.

Thus, it would certainly be of interest to solve the following problems.

20A (generalized) Luzin’s set cannot be mapped continuously onto [0, 1].
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Problem 6.1. Find a nontrivial characterization of the derivatives, that is, the
functions h ∈ RR such that h = f ′ for some f ∈ RR.

For more of this problem, see the 1947 paper [125] of Zahorski or the monograph
[11] of Bruckner. Notice, that in [53] Chris Freiling gives that such a simpler
characterization does not exist.

The next problem, related to our discussion in section 2.1, can be found in [109]
and [14].

Problem 6.2. If f is a composition of finite numbers of derivatives from [0, 1] into
itself, must the graph of f be connected in R2?

The following problem, related to the discussion in section 3.5, comes from [28,
problem 1]. Notice that there is no function h as in the problem which could be
extended to a C1 map from R to R2; see [28, Thm. 3.1].

Problem 6.3. Does there exist a compact perfect P ⊂ R and a map h from P
onto P 2 such that h is D1 (i.e., h has D1 coordinates)?

The next problem, on a Dn analogue of Whitney’s Cn extension theorem 4.1,
comes from section 4.1.

Problem 6.4. Find, for every n ≥ 2, a characterization of all Dn functions f from
perfect P ⊂ R into R that admit Dn extensions f̄ : R → R.21

Since every Dn map f̄ is also Cn−1, any Dn-extendable function f must satisfy
property (Wn−1) from Theorem 4.1. By Theorem 3.9(a), for n = 1 this is also a
sufficient condition. However, Example 4.3 shows that this is not a strong enough
condition for n ≥ 2.

The following problem comes from our discussion of the Ulam–Zahorski problem
presented in section 4.2.

Problem 6.5. Is the following interpolation true?

UZ(D1, D2): For every g ∈ D1 there is an f ∈ D2 with uncountable [f = g].

We know, by Theorem 5.2, that it is consistent with ZFC (following from CPA)
that R2 can be covered by less than c-many graphs of C1 maps. Also, it is consistent
with ZFC (following from CH) that R2 cannot be covered by less than c-many graphs
of C0 maps. The next problem asks how the existence of such coverings by C0 and
C1 maps are related.

Problem 6.6. Can it be proved, in ZFC, that if R2 =
⋃

f∈F (f ∪ f−1) for a family

F ⊂ C0 of size < c, then the same is true for some F ⊂ C1 of size < c? How about
the family D1 in the same setting?
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derivabilita funkce [On the extension of the domain of a function preserving differentiability
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strass’ Monsters and lineability, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 4,
577–586. MR3129060

[69] J.-P. Kahane and Y. Katznelson, Restrictions of continuous functions, Israel J. Math. 174
(2009), 269–284, DOI 10.1007/s11856-009-0114-x.

[70] Y. Katznelson and K. Stromberg, Everywhere differentiable, nowhere monotone, functions,
Amer. Math. Monthly 81 (1974), 349–354, DOI 10.2307/2318996. MR0335701

[71] A. B. Kharazishvili, Strange functions in real analysis, 2nd ed., Pure and Applied Mathe-
matics (Boca Raton), vol. 272, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR2193523

[72] A. Kharazishvili, Some remarks concerning monotone and continuous restrictions of real-
valued functions (English, with English and Georgian summaries), Proc. A. Razmadze Math.
Inst. 157 (2011), 11–21. MR3024869

[73] A. Kharazishvili, Strange functions in real analysis, 3rd ed., CRC Press, Boca Raton, FL,
2018. MR3645463

[74] V. L. Klee and W. R. Utz, Some remarks on continuous transformations, Proc. Amer. Math.
Soc. 5 (1954), 182–184, DOI 10.2307/2032219. MR0060814
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