Proofs: A Long-Form Mathematics Textbook Jay Cummings

Chapter 2 Solutions to Selected Exercises

Notes:
e The questions are in a separate PDF on LongFormMath.com.

e For most problems there are many correct solutions, so the below are not the only correct ways to
solve the problems.

e If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1. Let m and n be two odd integers. By Definition 2.2, this means that m = 2a+ 1
and n = 2b+ 1 for some integers a and b. Then,

mn=(2a+1)(2b+1) =4ab+2a+2b+1=2(2ab+a+b) + 1.

And since, by Fact 2.1, 2ab+ a + b is an integer too, we have shown that mn = 2k + 1, where k = 2ab+a+b
is an integer. Therefore, by the definition of oddness, this means that mn is odd. O

Solution to Question 2. Assume that n is an odd number. By Definition 2.2, this means that n = 2a + 1
for some integer a. Then,

n®+6n+5=2a+1)>+62a+1)+5
=4a* +4da+1+12a+6+5
= 4a® + 16a + 12
=2(2a® + 8a + 6).
And since, by Fact 2.1, 2a® + 8a + 6 is an integer too, we have shown that n? 4+ 6n + 5 = 2k, where

k = 2a® + 8a + 6 is an integer. Therefore, by the definition of evenness, this means that n? + 6n + 5 is
even. O

Solution to Question 3. As an example, I chose n = 3. Then,
5n2+n+3=5-943+3=51,

which is odd. Now for the proof.
We will prove this by cases. Since n is an integer, by Fact 2.1 n is either even or odd.

Case 1: n is even. If n is even, then by the definition of an even integer, n = 2a for some integer a. Then,

5n% +n+3 =5(2a)* + (2a) +3 = 200> + 22+ 2+ 1 =2(10a*> + a + 1) + 1.

Since a is an integer, also 10a%+a+1 is an integer, by Fact 2.1. Thus, we have shown that 5n2+n+3 = 2k+1
where k = 10a® 4+ a + 1 is an integer. By the definition of oddness, this means that 5n% + n + 3 is odd.

Case 2: n is odd. If n is even, then by the definition of an even integer, n = 2a + 1 for some integer a. Then,

5n?+n+3=>512a+1)24 (2a+1)+3 = 5(4a’ +4a+1)+2a+4 = 20a* +22a+8+1 = 2(10a® + 11a+4) + 1.

Since a is an integer, also 10a®411a+4 is an integer, by Fact 2.1. Thus, we have shown that 5n?+n+3 = 2k+1
where k = 10a? 4 11a + 4 is an integer. By the definition of oddness, this means that 5n% +n + 3 is odd.

These two cases combine show that for any integer n, the result holds. O
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Solution to Question 4.

Part (a). Assume that m | n. By the definition of divisibility, n = md for some integer d. Thus, by
squaring both sides, n? = m2d?. And since d is an integer, by Fact 2.1, d - d = d? is an integer too.

We have shown that n? = m?k where k = d? is an integer. Thus, by the definition of divisibility, m? | n?,
as desired. O

Part (c). Assume that m | n and m | t. By the definition of divisibility, n = md and t = m¢ for some
integers d and £. Thus,
n+t=md+ml=m(d+?).

And, since d+ / is also an integer by Fact 2.1, we have shown that n 4+t = mk where k = d + /¢ is an integer.
Therefore, by the definition of divisibility we have shown that m | (n + t). O

Solution to Question 5.
Part (a). Assume that n is an integer. By Fact 2.1, n is either even or odd.

Case 1: n is even. If n is even, then by the definition of an even integer, n = 2a for some integer a. Then,

1+ (=1)"2n—1) =1+ (=1)2*(2(2a) — 1) = 1 + (4a — 1) = 4a.

We have shown that 1 + (—1)"(2n — 1) = 4a where a is an integer, which by the definition of divisibility
means 4 divides 1 + (—=1)"(2n — 1).

Case 2: n is odd. If n is odd, then by the definition of an odd integer, n = 2a + 1 for some integer a.
Then,

L+ (=1)"2n—1) =1+ (-1)*"(2(2a+1) - 1) =1 — (da + 1) = —4a.

We have shown that 14 (—1)"(2n—1) = 4(—a) where —a is an integer, which by the definition of divisibility
means 4 divides 1+ (—1)"(2n — 1).

These two cases combine to show that for any integer n, the result holds. O

Part (b). Consider an arbitrary multiple of 4, which we write as 4k for an integer k.
Consider two cases. First, if & > 0, then note that by letting n = 2k, we have

L+ (=1)"@2n—1) =1+ (=1)?*(2(2k) — 1) = 1 + (4k — 1) = 4k.

That is, we have found a value of n for which 1+ (—1)"(2n — 1) = 4k.
If, on the other hand, we are considering a 4k for which k¥ < 0, then note that by letting n = —2k 4+ 1
(which is positive, since k is negative or zero) we have

I+ (=1)"2n—1) =14 (1) (2(—2k+1)—1) =1 — (—4k + 1) = 4k.

That is, we have found a value of n for which 1+ (—1)"(2n — 1) = 4k.
In either case we have found a positive value of n for which 1 + (—1)"(2n — 1) is equal to our arbitrary
multiple of 4. This concludes the proof. O

Solution to Question 6.
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Solution to Question 7. First, recall that finding the remainder is the same thing as determining what
4301 is congruent to modulo 17. Next, notice that 42 = 16 = —1 (mod 17). Next, by applying Proposition
2.15 part (iii) (150 times),

424242 42 =(=1) - (=1)-(=1)-...- (=1) (mod 17).

150 times

150 times

That is,
(4%)1° = (=1)1° (mod 17),
which means that
4390 =1 (mod 17).
Next, notice that 43°! can be written like this:
4301 _ 4300 41
Combining these and the arithmetic properties of modulo arithmetic, Proposition 2.15 part (iii),
4301 = 4300 4l = 1.4 =4 (mod 17).

And so, we have shown that 43°! = 4 (mod 17), which means that when 43°! is divided by 17, the remainder
is 4. O

Solution to Question 8. Part (a). Assume that a =b (mod m) and ¢ = d (mod m). By the definition of
the modulus,
m | (a—0) and m| (c—d).

Then, by the definition of divisibility,
a—b=mk and c—d=ml
for some integers k and ¢. Subtracting these two equations,
(a —b) — (¢ — d) = mk — mt.

Regrouping,
(a—c)—(b—d)=m(k—1).

Since k — ¢ is an integer, by the definition of divisibility

m| [(a=c) - b-d),
which then by the definition of the modulus means that

a—c=b-d (modm),
completing the proof of part (b). O
Part (b). Assume that a = b (mod m) and ¢ = d (mod m). By the definition of the modulus,

m| (a—0) and m| (c—d).

Then, by the definition of divisibility,

a—b=mk and c—d=ml
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for some integers k and ¢. That is,
a=b+mk and c=d+ml
Multiplying these two equations,

ac = (b+ mk)(d + mf)
ac = bd + mkd + meb + m?kl
ac —bd = m(kd + b+ mkf).

Since kd + £b + mk/ is an integer, by the definition of divisibility
m | (ac — bd),
which then by the definition of the modulus means that
ac = bd (mod m),

completing the proof of part (b). O

Solution to Question 9. Assume that a is an integer and p and ¢ are distinct primes. We first note that
this implies that ged(p, ¢) = 1, which is the case by Lemma 2.17(a). Indeed, since ¢ is a prime, 1 and ¢ are
the only positive numbers which divide it, and since p is neither of these, p 1 ¢ and hence Lemma 2.17(a)
tells use that ged(p, q) = 1.

Next, since the problem assumes that p | a, by the definition of divisibility we have a = pk for some
integer k. Since ¢ | a and a = pk, this means that ¢ | pk. And since we already showed that ged(p,q) = 1,
by Lemma 2.17(b) we deduce that ¢ | k. By the definition of divisibility this means that k = ¢t for some
integer .

Combining our work, we know that

a = pk = p(qt) = (pq)t,

which by the definition of divisibility means that pq | a, as desired. O]

Solution to Question 10. Since n is an integer, by Fact 2.1 n is either even or odd. Consider these two
cases.

Case 1: n is even. If n is even, then by the definition of an even integer, n = 2a for some integer a. Then,

n? = (2a)* = 4a.

Since a is an integer, also a? is an integer, by Fact 2.1. Thus, we have shown that n? = 4k where k = a? is
an integer. By the definition of divisibility, this means 4 | n?. This is equivalent to 4 | (n? — 0), which by
the definition of the modulus means that n? = 0 (mod 4). Thus, in this case, we have proven the result.

Case 2: n is odd. If n is odd, then by the definition of an odd integer, n = 2a + 1 for some integer a.
Then,

n?=(2a+1)?=4a* +4a+1=14(a®*+a)+ 1.

Since a is an integer, also a? 4 a is an integer, by Fact 2.1. Thus, we have shown that n? — 1 = 4k where
k = a® + a is an integer. By the definition of divisibility, this means 4 | (n? — 1). By the definition of the
modulus, this means that n? = 1 (mod 4). Thus, in this case, we have proven the result.

These two cases combine to show that for any integer n, the result holds. O



