Chapter 2 Solutions to Selected Exercises

Notes:

- The questions are in a separate PDF on LongFormMath.com.
- For most problems there are many correct solutions, so the below are not the only correct ways to solve the problems.
- If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1. Let m and n be two odd integers. By Definition 2.2, this means that $m=2 a+1$ and $n=2 b+1$ for some integers a and b. Then,

$$
m n=(2 a+1)(2 b+1)=4 a b+2 a+2 b+1=2(2 a b+a+b)+1 .
$$

And since, by Fact 2.1, $2 a b+a+b$ is an integer too, we have shown that $m n=2 k+1$, where $k=2 a b+a+b$ is an integer. Therefore, by the definition of oddness, this means that $m n$ is odd.

Solution to Question 2. Assume that n is an odd number. By Definition 2.2, this means that $n=2 a+1$ for some integer a. Then,

$$
\begin{aligned}
n^{2}+6 n+5 & =(2 a+1)^{2}+6(2 a+1)+5 \\
& =4 a^{2}+4 a+1+12 a+6+5 \\
& =4 a^{2}+16 a+12 \\
& =2\left(2 a^{2}+8 a+6\right) .
\end{aligned}
$$

And since, by Fact 2.1, $2 a^{2}+8 a+6$ is an integer too, we have shown that $n^{2}+6 n+5=2 k$, where $k=2 a^{2}+8 a+6$ is an integer. Therefore, by the definition of evenness, this means that $n^{2}+6 n+5$ is even.

Solution to Question 3. As an example, I chose $n=3$. Then,

$$
5 n^{2}+n+3=5 \cdot 9+3+3=51,
$$

which is odd. Now for the proof.
We will prove this by cases. Since n is an integer, by Fact $2.1 n$ is either even or odd.
Case 1: n is even. If n is even, then by the definition of an even integer, $n=2 a$ for some integer a. Then,

$$
5 n^{2}+n+3=5(2 a)^{2}+(2 a)+3=20 a^{2}+2 a+2+1=2\left(10 a^{2}+a+1\right)+1 .
$$

Since a is an integer, also $10 a^{2}+a+1$ is an integer, by Fact 2.1. Thus, we have shown that $5 n^{2}+n+3=2 k+1$ where $k=10 a^{2}+a+1$ is an integer. By the definition of oddness, this means that $5 n^{2}+n+3$ is odd.

Case 2: n is odd. If n is even, then by the definition of an even integer, $n=2 a+1$ for some integer a. Then, $5 n^{2}+n+3=5(2 a+1)^{2}+(2 a+1)+3=5\left(4 a^{2}+4 a+1\right)+2 a+4=20 a^{2}+22 a+8+1=2\left(10 a^{2}+11 a+4\right)+1$.

Since a is an integer, also $10 a^{2}+11 a+4$ is an integer, by Fact 2.1. Thus, we have shown that $5 n^{2}+n+3=2 k+1$ where $k=10 a^{2}+11 a+4$ is an integer. By the definition of oddness, this means that $5 n^{2}+n+3$ is odd.

These two cases combine show that for any integer n, the result holds.

Solution to Question 4.

Part (a). Assume that $m \mid n$. By the definition of divisibility, $n=m d$ for some integer d. Thus, by squaring both sides, $n^{2}=m^{2} d^{2}$. And since d is an integer, by Fact $2.1, d \cdot d=d^{2}$ is an integer too.

We have shown that $n^{2}=m^{2} k$ where $k=d^{2}$ is an integer. Thus, by the definition of divisibility, $m^{2} \mid n^{2}$, as desired.

Part (c). Assume that $m \mid n$ and $m \mid t$. By the definition of divisibility, $n=m d$ and $t=m \ell$ for some integers d and ℓ. Thus,

$$
n+t=m d+m \ell=m(d+\ell)
$$

And, since $d+\ell$ is also an integer by Fact 2.1, we have shown that $n+t=m k$ where $k=d+\ell$ is an integer. Therefore, by the definition of divisibility we have shown that $m \mid(n+t)$.

Solution to Question 5.

Part (a). Assume that n is an integer. By Fact 2.1, n is either even or odd.
Case 1: n is even. If n is even, then by the definition of an even integer, $n=2 a$ for some integer a. Then,

$$
1+(-1)^{n}(2 n-1)=1+(-1)^{2 a}(2(2 a)-1)=1+(4 a-1)=4 a
$$

We have shown that $1+(-1)^{n}(2 n-1)=4 a$ where a is an integer, which by the definition of divisibility means 4 divides $1+(-1)^{n}(2 n-1)$.

Case 2: n is odd. If n is odd, then by the definition of an odd integer, $n=2 a+1$ for some integer a. Then,

$$
1+(-1)^{n}(2 n-1)=1+(-1)^{2 a+1}(2(2 a+1)-1)=1-(4 a+1)=-4 a
$$

We have shown that $1+(-1)^{n}(2 n-1)=4(-a)$ where $-a$ is an integer, which by the definition of divisibility means 4 divides $1+(-1)^{n}(2 n-1)$.

These two cases combine to show that for any integer n, the result holds.
Part (b). Consider an arbitrary multiple of 4 , which we write as $4 k$ for an integer k.
$\overline{\text { Consider }}$ two cases. First, if $k>0$, then note that by letting $n=2 k$, we have

$$
1+(-1)^{n}(2 n-1)=1+(-1)^{2 k}(2(2 k)-1)=1+(4 k-1)=4 k
$$

That is, we have found a value of n for which $1+(-1)^{n}(2 n-1)=4 k$.
If, on the other hand, we are considering a $4 k$ for which $k \leq 0$, then note that by letting $n=-2 k+1$ (which is positive, since k is negative or zero) we have

$$
1+(-1)^{n}(2 n-1)=1+(-1)^{-2 k+1}(2(-2 k+1)-1)=1-(-4 k+1)=4 k
$$

That is, we have found a value of n for which $1+(-1)^{n}(2 n-1)=4 k$.
In either case we have found a positive value of n for which $1+(-1)^{n}(2 n-1)$ is equal to our arbitrary multiple of 4 . This concludes the proof.

Solution to Question 6.

(a) $q=3, r=2$.
(b) $q=0, r=5$
(c) $q=-4, r=2$

Solution to Question 7. First, recall that finding the remainder is the same thing as determining what 4^{301} is congruent to modulo 17 . Next, notice that $4^{2} \equiv 16 \equiv-1(\bmod 17)$. Next, by applying Proposition 2.15 part (iii) (150 times),

$$
\underbrace{4^{2} \cdot 4^{2} \cdot 4^{2} \cdot \ldots \cdot 4^{2}}_{150 \text { times }} \equiv \underbrace{(-1) \cdot(-1) \cdot(-1) \cdot \ldots \cdot(-1)}_{150 \text { times }}(\bmod 17)
$$

That is,

$$
\left(4^{2}\right)^{150} \equiv(-1)^{150}(\bmod 17)
$$

which means that

$$
4^{300} \equiv 1(\bmod 17)
$$

Next, notice that 4^{301} can be written like this:

$$
4^{301}=4^{300} \cdot 4^{1}
$$

Combining these and the arithmetic properties of modulo arithmetic, Proposition 2.15 part (iii),

$$
4^{301} \equiv 4^{300} \cdot 4^{1} \equiv 1 \cdot 4 \equiv 4(\bmod 17)
$$

And so, we have shown that $4^{301} \equiv 4(\bmod 17)$, which means that when 4^{301} is divided by 17 , the remainder is 4 .

Solution to Question 8. Part (a). Assume that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. By the definition of the modulus,

$$
m \mid(a-b) \quad \text { and } \quad m \mid(c-d)
$$

Then, by the definition of divisibility,

$$
a-b=m k \quad \text { and } \quad c-d=m \ell
$$

for some integers k and ℓ. Subtracting these two equations,

$$
(a-b)-(c-d)=m k-m \ell
$$

Regrouping,

$$
(a-c)-(b-d)=m(k-\ell)
$$

Since $k-\ell$ is an integer, by the definition of divisibility

$$
m \mid[(a-c)-(b-d)]
$$

which then by the definition of the modulus means that

$$
a-c \equiv b-d(\bmod m)
$$

completing the proof of part (b).
$\underline{\text { Part }(\mathrm{b}) .}$ Assume that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. By the definition of the modulus,

$$
m \mid(a-b) \quad \text { and } \quad m \mid(c-d)
$$

Then, by the definition of divisibility,

$$
a-b=m k \quad \text { and } \quad c-d=m \ell
$$

for some integers k and ℓ. That is,

$$
a=b+m k \quad \text { and } \quad c=d+m \ell
$$

Multiplying these two equations,

$$
\begin{aligned}
a c & =(b+m k)(d+m \ell) \\
a c & =b d+m k d+m \ell b+m^{2} k \ell \\
a c-b d & =m(k d+\ell b+m k \ell) .
\end{aligned}
$$

Since $k d+\ell b+m k \ell$ is an integer, by the definition of divisibility

$$
m \mid(a c-b d)
$$

which then by the definition of the modulus means that

$$
a c \equiv b d(\bmod m)
$$

completing the proof of part (b).

Solution to Question 9. Assume that a is an integer and p and q are distinct primes. We first note that this implies that $\operatorname{gcd}(p, q)=1$, which is the case by Lemma 2.17(a). Indeed, since q is a prime, 1 and q are the only positive numbers which divide it, and since p is neither of these, $p \nmid q$ and hence Lemma 2.17(a) tells use that $\operatorname{gcd}(p, q)=1$.

Next, since the problem assumes that $p \mid a$, by the definition of divisibility we have $a=p k$ for some integer k. Since $q \mid a$ and $a=p k$, this means that $q \mid p k$. And since we already showed that $\operatorname{gcd}(p, q)=1$, by Lemma 2.17(b) we deduce that $q \mid k$. By the definition of divisibility this means that $k=q t$ for some integer t.

Combining our work, we know that

$$
a=p k=p(q t)=(p q) t
$$

which by the definition of divisibility means that $p q \mid a$, as desired.
Solution to Question 10. Since n is an integer, by Fact $2.1 n$ is either even or odd. Consider these two cases.

Case 1: n is even. If n is even, then by the definition of an even integer, $n=2 a$ for some integer a. Then,

$$
n^{2}=(2 a)^{2}=4 a^{2}
$$

Since a is an integer, also a^{2} is an integer, by Fact 2.1. Thus, we have shown that $n^{2}=4 k$ where $k=a^{2}$ is an integer. By the definition of divisibility, this means $4 \mid n^{2}$. This is equivalent to $4 \mid\left(n^{2}-0\right)$, which by the definition of the modulus means that $n^{2} \equiv 0(\bmod 4)$. Thus, in this case, we have proven the result.

Case 2: n is odd. If n is odd, then by the definition of an odd integer, $n=2 a+1$ for some integer a. Then,

$$
n^{2}=(2 a+1)^{2}=4 a^{2}+4 a+1=4\left(a^{2}+a\right)+1
$$

Since a is an integer, also $a^{2}+a$ is an integer, by Fact 2.1. Thus, we have shown that $n^{2}-1=4 k$ where $k=a^{2}+a$ is an integer. By the definition of divisibility, this means $4 \mid\left(n^{2}-1\right)$. By the definition of the modulus, this means that $n^{2} \equiv 1(\bmod 4)$. Thus, in this case, we have proven the result.

These two cases combine to show that for any integer n, the result holds.

