Chapter 6 Solutions to Selected Exercises

Notes:

- The questions are in a separate PDF on LongFormMath.com.
- For most problems there are many correct solutions, so the below are not the only correct ways to solve the problems.
- If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1. Answers vary.
Solution to Question 2. Answers vary.
Solution to Question 3. Part (a). The contrapositive is: If n is not even, then $2 n^{2}-5 n+3$ is not odd. (Note: you can not change "not even" to "odd" for part (a), because it was not assumed that $n \in \mathbb{Z}$.)

Part (b). We will use the contrapositive. Suppose $n \in \mathbb{Z}$ and n is not even, implying that n is odd. By Definition 2.2, $n=2 k+1$ for some $k \in \mathbb{Z}$. Then,

$$
\begin{aligned}
2 n^{2}-5 n+3 & =2(2 k+1)^{2}-5(2 k+1)+3 \\
& =2\left(4 k^{2}+4 k+1\right)-10 k-5+3 \\
& =8 k^{2}-2 k \\
& =2\left(4 k^{2}-k\right)
\end{aligned}
$$

And since $k \in \mathbb{Z}$, also $\left(4 k^{2}-k\right) \in \mathbb{Z}$. Thus, by Definition $2.2,2 n^{2}-5 n+3$ is even, which also means that it is not odd.

We have shown that if n is not even, then $n^{2}-4 n+7$ is not odd. Therefore, by the contrapositive, if $2 n^{2}-5 n+3$ is odd, then n is even.

Solution to Question 4. We will use the contrapositive. Suppose $n \in \mathbb{Z}$ and n is not odd, implying that n is even. By Definition 2.2, $n=2 k$ for some $k \in \mathbb{Z}$. Then,

$$
\begin{aligned}
n^{2}+2 n+3 & =(2 k)^{2}+2(2 k)+3 \\
& =4 k^{2}+4 k+2+1 \\
& =2\left(2 k^{2}+2 k+1\right)+1
\end{aligned}
$$

And since $k \in \mathbb{Z}$, also $\left(2 k^{2}+2 k+1\right) \in \mathbb{Z}$. Thus, by Definition $2.2, n^{2}+2 n+3$ is odd, which also means that it is not even.

We have shown that if n is not odd, then $n^{2}+2 n+3$ is not even. Therefore, by the contrapositive, if $n^{2}+2 n+3$ is even, then n is odd.

Solution to Question 5. We will use the contrapositive. Suppose $n \in \mathbb{Z}$ and $3 \nmid n$. By the division algorithm (Theorem 2.11), either $n=3 q+1$ for some $q \in \mathbb{Z}$, or $n=3 q+2$ for some $q \in \mathbb{Z}$. We will analyze these two cases separately.

Case 1: If $n=3 q+1$ for some integer q, then

$$
n^{2}-1=(3 q+1)^{2}-1=9 q^{2}+6 q+1-1=3\left(3 q^{2}+2 q\right)
$$

Since $q \in \mathbb{Z}$, also $\left(3 q^{2}+2 q\right) \in \mathbb{Z}$. And so by Definition 2.8 , since $n^{2}-1=3 k$ where $k=3 q^{2}+2 q$ is an integer, we have $3 \mid\left(n^{2}-1\right)$.

Case 2: If $n=3 q+2$ for some integer q, then

$$
n^{2}-1=(3 q+2)^{2}-1=9 q^{2}+12 q+4-1=3\left(3 q^{2}+4 q+1\right)
$$

Since $q \in \mathbb{Z}$, also $\left(3 q^{2}+4 q+1\right) \in \mathbb{Z}$. And so by Definition 2.8 , since $n^{2}-1=3 k$ where $k=3 q^{2}+4 q+1$ is an integer, we have $3 \mid\left(n^{2}-1\right)$.

In either case, if $3 \nmid n$, then $3 \mid\left(n^{2}-1\right)$. Therefore, by the contrapositive, if $3 \nmid\left(n^{2}-1\right)$, then $3 \mid n$.

Solution to Question 6. We will use the contrapositive. Suppose that $x \in \mathbb{R}$ and $x \leq 0$. We aim to show that $x^{3}+x \leq 0$. To do so, note that since $x^{2}>0$, we can multiply both sides of $x \leq 0$ by x^{2} to get

$$
x^{3} \leq 0
$$

Then, since $x^{3} \leq 0$ and $x \leq 0$, their sum

$$
x^{3}+x \leq 0 .
$$

We have shown that if $x \leq 0$, then $x^{3}+x \leq 0$. Thus, by the contrapositive, if $x^{3}+x>0$, then $x>0$.

Solution to Question 7. We will use contrapositive. Suppose that it is not true that $n \notin\{1,2,6\}$. That is, $n \in\{1,2,6\}$. This produces three cases:

Case 1: if $n=1$ then $F_{1}=1$, which is perfect cube.
Case 2: if $n=2$ then $F_{2}=1$, which is perfect cube.
Case 3: if $n=6$ then $F_{6}=8$, which is perfect cube.
We proved that if $n \in 1,2,6$, then it is F_{n} is a perfect cube. Hence, by contrapositive, if F_{n} is not a perfect cube, then $n \notin\{1,2,6\}$.

Solution to Question 8. Suppose $n \in \mathbb{Z}$. First we will show that n being even implies $(n+1)^{2}-1$ is even by a direct proof. Since n is even, by Definition 2.2 we have $n=2 k$ for some $k \in \mathbb{Z}$. Thus,

$$
(n+1)^{2}-1=(2 k+1)^{2}-1=4 k^{2}+4 k+1-1=2\left(2 k^{2}+2 k\right)
$$

And since $k \in \mathbb{Z}$, also $\left(2 k^{2}+2 k\right) \in \mathbb{Z}$, implying that $(n+1)^{2}-1$ is even.
Next we show that $(n+1)^{2}-1$ being even implies that n is even by using the contrapositive. To that end, assume that n is not even; being an integer, this means that n is odd. Thus, by Definition 2.2 we have $n=2 k+1$ for some $k \in \mathbb{Z}$, and so

$$
(n+1)^{2}-1=(2 k+2)^{2}-1=4 k^{2}+8 k+4-1=4 k^{2}+8 k+2+1=2\left(2 k^{2}+2 k+1\right)+1
$$

And since $k \in \mathbb{Z}$, also $\left(2 k^{2}+2 k+1\right) \in \mathbb{Z}$, showing that $(n+1)^{2}-1$ is odd and hence is not even. We have shown that n being not even implies that $n^{2}+1$ is not even. Therefore, by the contrapositive, if $(n+1)^{2}-1$ is even, then n is even.

We have demonstrated that if n is even, then $(n+1)^{2}-1$ is even, and also that if $(n+1)^{2}-1$ is even, then n is even. Combined, this completes the proof.

Solution to Question 9. Claim: No math textbook has ever included a meme.
Counterexample: Proofs: A Long-Form Mathematics Textbook

Solution to Question 10.

(d) Let $x=0$ and $y=4$. Then $|x+y|=4=|x-y|$.
(i) Let $n=31$. Then

$$
2 n^{2}-4 n+31=2(31)^{2}-4(31)+31=31(62-4+1)=31 \cdot 59
$$

which is not prime.
(o) If $A=\{1,2,3\}, B=\{2\}$ and $C=\{3\}$, then

$$
A \backslash(B \cap C)=\{1,2,3\} \neq\{1\}=(A \backslash B) \cap(A \backslash C)
$$

