Chapter 7 Solutions to Selected Exercises

Notes:

- The questions are in a separate PDF on LongFormMath.com.
- For most problems there are many correct solutions, so the below are not the only correct ways to solve the problems.
- If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1. Assume that $a, b \in \mathbb{R}$ and $a \in \mathbb{Q}$ and $a b \in \mathbb{R} \backslash \mathbb{Q}$. Assume for a contradiction that $b \in \mathbb{Q}$. Since $a, b \in \mathbb{Q}$, by Definition 3.3 there exist $m, n, s, t \in \mathbb{Z}$ for which $n, t \neq 0$ and

$$
a=\frac{m}{n} \quad \text { and } \quad b=\frac{s}{t} .
$$

Then,

$$
a b=\frac{m s}{n t},
$$

and since $m, n, s, t \in \mathbb{Z}$, so are $m s$ and $n t$; and since $n, t \neq 0$, also $n t \neq 0$. Thus, again by Definition 3.3, $a b \in \mathbb{Q}$. This gives the contradiction and completes the proof.

Solution to Question 2. By Theorem 7.6, $\sqrt{2}$ is irrational. We will now show that $-\sqrt{2}$ is irrational. Indeed, if it weren't, then $-\sqrt{2}=\frac{a}{b}$ for some $a, b \in \mathbb{Z}$ and $b \neq 0$. But then $\sqrt{2}=\frac{-a}{b}$ shows that $\sqrt{2}$ would then be rational, giving the contradiction.

Thus, both $-\sqrt{2}$ and $\sqrt{2}$ are irrational, and yet their sum is rational:

$$
-\sqrt{2}+\sqrt{2}=0 .
$$

Solution to Question 3. Assume for a contradiction that there do exist integers m and n for which $21 m+35 n=1$. Since $m, n \in \mathbb{Z}$, also $(3 m+5 n) \in \mathbb{Z}$. Dividing both sides by 7 gives

$$
3 m+5 n=\frac{1}{7} .
$$

This is a contradiction, since we had said that $3 m+7 n$ is an integer, and $\frac{1}{5}$ is not an integer.
Solution to Question 4. Assume for a contradiction that A and B are sets inside a universal set U, and $A^{c} \cap(B \cap A) \neq \emptyset$. To not be the empty set means that you contain an element, so there must be some $x \in A^{c} \cap(B \cap A)$. By the definition of the intersection, this means $x \in A^{c}$ and $x \in(B \cap A)$. Again by the definition of the intersection, $x \in B$ and $x \in A$.

We have shown that $x \in A^{c}$, which means that $x \notin A$; but this contradicts our deduction that $x \in A$, and gives the contradiction.

Solution to Question 5. Assume for a contradiction that $\sqrt{5}$ is rational. Then, there must be some nonzero integers p and q where

$$
\sqrt{5}=\frac{p}{q} .
$$

Moreover, we may assume that this fraction is written in lowest terms, meaning that p and q have no common divisors. Then,

$$
\sqrt{5} q=p
$$

And by squaring both sides,

$$
5 q^{2}=p^{2}
$$

Since $q^{2} \in \mathbb{Z}$, by the definition of divisibility this implies that $5 \mid p^{2}$, and hence $5 \mid p$ by Lemma 2.17 part (iii). By a second application of the definition of divisibility, this means that $p=5 k$ for some nonzero integer k. Plugging this in,

$$
\begin{aligned}
5 q^{2} & =p^{2} \\
5 q^{2} & =(5 k)^{2} \\
5 q^{2} & =25 k^{2} \\
q^{2} & =5 k^{2}
\end{aligned}
$$

Therefore, $5 \mid q^{2}$, and hence $5 \mid q$, again by Lemma 2.17 part (iii). But this is a contradiction: We had assumed that p and q had no common factors, and yet we proved that 5 divides each. Therefore $\sqrt{5}$ cannot be rational, meaning it is irrational.

Solution to Question 6. Assume for a contradiction that $\sqrt{10}$ is rational. Then, there must be some nonzero integers p and q where

$$
\sqrt{10}=\frac{p}{q}
$$

Moreover, we may assume that this fraction is written in lowest terms, meaning that p and q have no common divisors. Then,

$$
\sqrt{10} q=p
$$

And by squaring both sides,

$$
\begin{aligned}
10 q^{2} & =p^{2} \\
5\left(2 q^{2}\right) & =p^{2}
\end{aligned}
$$

Since $2 q^{2} \in \mathbb{Z}$, by the definition of divisibility this implies that $5 \mid p^{2}$, and hence $5 \mid p$ by Lemma 2.17 part (iii). By a second application of the definition of divisibility, this means that $p=5 k$ for some nonzero integer k. Plugging this in,

$$
\begin{aligned}
10 q^{2} & =p^{2} \\
10 q^{2} & =(5 k)^{2} \\
10 q^{2} & =25 k^{2} \\
2 q^{2} & =5 k^{2}
\end{aligned}
$$

Therefore, $5 \mid 2 q^{2}$, and hence, by Lemma 2.17 part (iii), $5 \mid 2$ or $5 \mid q^{2}$. Since $5 \nmid 2$, we have $5 \mid q^{2}$. And so, by one more application of Lemma 2.17 part (iii), $5 \mid q$. But this is a contradiction: We had assumed that p and q had no common factors, and yet we proved that 5 divides each. Therefore $\sqrt{10}$ cannot be rational, meaning it is irrational.

Solution to Question 7. Assume for a contradiction that there are only finitely many composite numbers. Then there must be a largest composite number, which we call M. Since every positive integer is either prime or composite, every integer larger than M must be prime. Now consider $2 M$. This is a composite number larger than M, and hence gives the contradiction.

Solution to Question 8. Suppose that $a, b, c \in \mathbb{Z}$ and $a^{2}+b^{2}=c^{2}$. Assume for a contradiction that a and b are both not even-meaning they are odd. By Definition 2.2, there exist integers x and y such that
$a=2 x+1$ and $b=2 y+1$. Thus,

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
& =(2 x+1)^{2}+(2 y+1)^{2} \\
& =4 x^{2}+4 x+1+4 y^{2}+4 y+1 \\
& =4\left(x^{2}+x+y^{2}+y\right)+2 .
\end{aligned}
$$

This shows that c^{2} is a sum of even numbers and hence is even. And since c^{2} is even, c must also be even. Thus there exists some $z \in \mathbb{Z}$ such that $c=2 z$. Observe

$$
\begin{aligned}
c^{2} & =4\left(x^{2}+x+y^{2}+y\right)+2 \\
(2 z)^{2} & =4\left(x^{2}+x+y^{2}+y\right)+2 \\
4 z^{2} & =4\left(x^{2}+x+y^{2}+y\right)+2 \\
z^{2} & =\left(x^{2}+x+y^{2}+y\right)+\frac{1}{2} \\
z^{2}-\left(x^{2}+x+y^{2}+y\right) & =\frac{1}{2} .
\end{aligned}
$$

This, however, means that the difference of two integers is equal to a non-integer, which is a contradiction.

Solution to Question 9. Direct Proof: Consider $(x-y)^{2}$. Note that since this is squared, it must be non-negative. Then,

$$
\begin{aligned}
0 & \leq(x-y)^{2} \\
0 & \leq x^{2}-2 x y+y^{2} \\
2 x y & \leq x^{2}+y^{2} \\
2 x y+2 x y & \leq x^{2}+2 x y+y^{2} \\
4 x y & \leq(x+y)^{2} .
\end{aligned}
$$

And since both sides are non-negative, we can take the square root of both sides to get

$$
\begin{aligned}
& \sqrt{4 x y} \leq x+y \\
& 2 \sqrt{x y} \leq x+y
\end{aligned}
$$

Proof by contradiction: Assume for a contradiction that $x+y<2 \sqrt{x y}$. Then by doing some arithmetic,

$$
x+y-2 \sqrt{x y}<0
$$

By factoring,

$$
(\sqrt{x}-\sqrt{y})^{2}<0
$$

This is a contradiction, though, since squaring a real number will not produce a negative result.

Solution to Question 10. Assume for a contradiction that there was a way to complete that square to form a magic square. Since one diagonal is already complete, we see that the magic number must be

$$
1+4+8+10=23
$$

With this information, we can slowly start deducing what some squares must be. First,

1	2	3	17
	4	5	6
7		8	
	9		10

Second,

1	2	3	17
	4	5	6
7		8	-10
	9		10

Third,

1	2	3	17
8	4	5	6
7		8	-10
	9		10

And with this, by looking at the columns, we can complete the square:

1	2	3	17
8	4	5	6
7	8	8	-10
7	9	7	10

This produces a contradiction, though. Since every one of our placements was forced, if this were to be a magic square, we have argued what the magic square must look like. However, note that the last two rows do not have the magic sum of 23 . Thus, no magic square is possible.

