Chapter 9 Solutions to Selected Exercises

Notes:

- The questions are in a separate PDF on LongFormMath.com.
- For most problems there are many correct solutions, so the below are not the only correct ways to solve the problems.
- If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1.

 ${\rm Part} \ ({\rm a}): \ 1\sim 1 \ , \ 2\sim 2 \ , \ 3\sim 3 \ , \ 4\sim 4 \ , \ 1\sim 2 \ , \ 1\sim 3 \ , \ 1\sim 4 \ , \ 2\sim 3 \ , \ 2\sim 4 \ , \ 3\sim 4 \ , \ \$

Part (b): $1\sim 1$, $2\sim 2$, $3\sim 3$, $1\sim 3$, $3\sim 1$, $2\sim 4$, $4\sim 2$

Solution to Question 2.

Part (a): There are two partitions: $\{\{1,2\}\}\$ and $\{\{1\},\{2\}\}$.

Part(b): There are five partitions: $\{\{a, b, c\}\}, \{\{a, b\}, \{c\}\}, \{\{a, c\}, \{b\}\}, \{\{b, c\}, \{a\}\} \text{ and } \{\{a\}, \{b\}, \{c\}\}\}.$

Solution to Question 3. First, \sim is not guaranteed to be reflexive, because each person likely did not shake hands with themselves. Second, \sim is symmetric, because if person *a* shakes hands with person *b*, then person *b* shakes hands with person *a*. Third, \sim is not necessarily transitive, because if person *a* shakes hands with person *b* and if person *b* shakes hands with person *c*, then there is no guarantee that person *a* shakes hands with person *c*.

Solution to Question 4. The relation \sim is reflexive, symmetric and transitive. It is therefore an equivalence relation with equivalence classes

$$\{w\}, \{x,y\}, \{z\}.$$

Solution to Question 5. Note that \sim is reflexive because for any set a, we have $a \subseteq a$ (if $x \in a$, then $x \in a$). And \sim transitive because for any sets a, b and c, if $a \subseteq b$ and $b \subseteq c$, then $a \subseteq c$ (if $x \in a$ and $a \subseteq b$, then $x \in b$; and if $x \in b$ and $b \subseteq c$, then $x \in c$; so, $x \in a$ implies $x \in c$).

But ~ is not symmetric. For example, $\{1\} \subseteq \{1,2\}$ but $\{1,2\} \not\subseteq \{1\}$. Therefore ~ is not an equivalence relation.

Solution to Question 6.

<u>Reflexive</u>: To see that $a \sim a$ for all $a \in \mathbb{Z}$, simply note that $2a + a \equiv 3a \equiv 0 \pmod{3}$. Therefore, $a \sim a$. This proves that \sim is reflexive.

<u>Symmetric</u>: Assume that $a \sim b$ for some $a, b \in \mathbb{Z}$. This means that

$$2a + b \equiv 0 \pmod{3}.$$

Next, since $3a \equiv 0 \pmod{3}$ and $3b \equiv 0 \pmod{3}$, note that

$$3a + 3b \equiv 0 \pmod{3}.$$

Therefore,

$$(3a+3b) - (2a+b) \equiv 0 - 0 \pmod{3}$$

Simplifying,

$$2b + a \equiv 0 \pmod{3}.$$

This shows that $b \sim a$ and proves that \sim is symmetric.

<u>Transitive</u>: Assume that $a \sim b$ for some $a, b \in \mathbb{Z}$. This means that

$$2a + b \equiv 0 \pmod{3}$$
 and $2b + c \equiv 0 \pmod{3}$.

Therefore

$$(2a+b) + (2b+c) \equiv 0 + 0 \pmod{3}$$

I.e.,

$$2a + 3b + c \equiv 0 \pmod{3}$$

And because $3b \equiv 0 \pmod{3}$, this means that

 $2a + 0 + c \equiv 0 \pmod{3}.$

I.e.,

$$2a + c \equiv 0 \pmod{3}.$$

This shows that $a \sim c$ and proves that \sim is transitive and completes the proof that \sim is an equivalence relation.

The equivalence classes of \sim are

$$\{\ldots, -6, -3, 0, 3, 6, \ldots\}$$
, $\{\ldots, -5, -2, 1, 4, 7, \ldots\}$, $\{\ldots, -4, -1, 2, 5, 8, \ldots\}$

Solution to Question 7. ~ is not reflexive, since $a \neq a$ is clearly false for any $a \in \mathbb{Z}$.

~ is symmetric, since if $a \neq b$, then clearly also $b \neq a$.

~ is not transitive, since, for example, $1 \sim 2$ and $2 \sim 1$, but $1 \sim 1$.

Solution to Question 8.

<u>Reflexive</u>: To see that \sim is reflexive, simply note that

ab = ba

implies that $(a, b) \sim (a, b)$ for any $a, b \in \mathbb{Z}$ (with $b \neq 0$). <u>Symmetric:</u> Assume that $(a, b) \sim (c, d)$ for some $a, b, c, d \in \mathbb{Z}$ with $b, d \neq 0$. This means that

ad = bc,

and hence

$$cb = da$$
,

which means that $(c, d) \sim (a, b)$. This shows that \sim is symmetric.

<u>Transitive</u>: Assume that $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$ for some $a, b, c, d, e, f \in \mathbb{Z}$ with $b, d, f \neq 0$. This means that

ad = bc and cf = de.

Starting with the first equality and multiplying both sides by f, we get

$$adf = bcf.$$

Next, applying the equality cf = de to the right hand side above,

$$adf = bde.$$

Since $d \neq 0$ we can cancel the d from both sides to get

af = be.

This shows that $(a, b) \sim (e, f)$ and proves that \sim is transitive. And since \sim is reflexive, symmetric and transitive, it is an equivalence relation.

Solution to Question 9. One answer: This is the relation \sim on the set \mathbb{Z} where $a \sim b$ if $a \equiv b \pmod{3}$.

Solution to Question 10. Part (c): This is the relation \sim on \mathbb{R} where $a \sim b$ if $a \neq -b$.

Part (d): This is the relation \sim on \mathbb{Z} where $a \sim b$ if a > b.