Chapter 9 Solutions to Selected Exercises

Notes:

- The questions are in a separate PDF on LongFormMath.com.
- For most problems there are many correct solutions, so the below are not the only correct ways to solve the problems.
- If you spot an error, please email it to me at LongFormMath@gmail.com. Thanks!

Solution to Question 1.

Part (a): $1 \sim 1,2 \sim 2,3 \sim 3,4 \sim 4,1 \sim 2,1 \sim 3,1 \sim 4,2 \sim 3,2 \sim 4,3 \sim 4$
Part (b): $1 \sim 1,2 \sim 2,3 \sim 3,1 \sim 3,3 \sim 1,2 \sim 4,4 \sim 2$

Solution to Question 2.

Part (a): There are two partitions: $\{\{1,2\}\}$ and $\{\{1\},\{2\}\}$.
Part(b): There are five partitions: $\{\{a, b, c\}\},\{\{a, b\},\{c\}\},\{\{a, c\},\{b\}\},\{\{b, c\},\{a\}\}$ and $\{\{a\},\{b\},\{c\}\}$.
Solution to Question 3. First, ~ is not guaranteed to be reflexive, because each person likely did not shake hands with themselves. Second, \sim is symmetric, because if person a shakes hands with person b, then person b shakes hands with person a. Third, \sim is not necessarily transitive, because if person a shakes hands with person b and if person b shakes hands with person c, then there is no guarantee that person a shakes hands with person c.

Solution to Question 4. The relation \sim is reflexive, symmetric and transitive. It is therefore an equivalence relation with equivalence classes

$$
\{w\},\{x, y\},\{z\}
$$

Solution to Question 5. Note that \sim is reflexive because for any set a, we have $a \subseteq a$ (if $x \in a$, then $x \in a$). And \sim transitive because for any sets a, b and c, if $a \subseteq b$ and $b \subseteq c$, then $a \subseteq c$ (if $x \in a$ and $a \subseteq b$, then $x \in b$; and if $x \in b$ and $b \subseteq c$, then $x \in c$; so, $x \in a$ implies $x \in c$).

But \sim is not symmetric. For example, $\{1\} \subseteq\{1,2\}$ but $\{1,2\} \nsubseteq\{1\}$. Therefore \sim is not an equivalence relation.

Solution to Question 6.

Reflexive: To see that $a \sim a$ for all $a \in \mathbb{Z}$, simply note that $2 a+a=3 a \equiv 0(\bmod 3)$. Therefore, $a \sim a$. This proves that \sim is reflexive.

Symmetric: Assume that $a \sim b$ for some $a, b \in \mathbb{Z}$. This means that

$$
2 a+b \equiv 0(\bmod 3)
$$

Next, since $3 a \equiv 0(\bmod 3)$ and $3 b \equiv 0(\bmod 3)$, note that

$$
3 a+3 b \equiv 0(\bmod 3)
$$

Therefore,

$$
(3 a+3 b)-(2 a+b) \equiv 0-0(\bmod 3)
$$

Simplifying,

$$
2 b+a \equiv 0(\bmod 3)
$$

This shows that $b \sim a$ and proves that \sim is symmetric.

Transitive: Assume that $a \sim b$ for some $a, b \in \mathbb{Z}$. This means that

$$
2 a+b \equiv 0(\bmod 3) \quad \text { and } \quad 2 b+c \equiv 0(\bmod 3)
$$

Therefore

$$
(2 a+b)+(2 b+c) \equiv 0+0(\bmod 3)
$$

I.e.,

$$
2 a+3 b+c \equiv 0(\bmod 3)
$$

And because $3 b \equiv 0(\bmod 3)$, this means that

$$
2 a+0+c \equiv 0(\bmod 3)
$$

I.e.,

$$
2 a+c \equiv 0(\bmod 3) .
$$

This shows that $a \sim c$ and proves that \sim is transitive and completes the proof that \sim is an equivalence relation.

The equivalence classes of \sim are

$$
\{\ldots,-6,-3,0,3,6, \ldots\},\{\ldots,-5,-2,1,4,7, \ldots\},\{\ldots,-4,-1,2,5,8, \ldots\}
$$

Solution to Question 7. ~ is not reflexive, since $a \neq a$ is clearly false for any $a \in \mathbb{Z}$.
\sim is symmetric, since if $a \neq b$, then clearly also $b \neq a$.
\sim is not transitive, since, for example, $1 \sim 2$ and $2 \sim 1$, but $1 \sim 1$.

Solution to Question 8.

Reflexive: To see that \sim is reflexive, simply note that

$$
a b=b a
$$

implies that $(a, b) \sim(a, b)$ for any $a, b \in \mathbb{Z}$ (with $b \neq 0)$.
Symmetric: Assume that $(a, b) \sim(c, d)$ for some $a, b, c, d \in \mathbb{Z}$ with $b, d \neq 0$. This means that

$$
a d=b c
$$

and hence

$$
c b=d a
$$

which means that $(c, d) \sim(a, b)$. This shows that \sim is symmetric.
Transitive: Assume that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$ for some $a, b, c, d, e, f \in \mathbb{Z}$ with $b, d, f \neq 0$. This means that

$$
a d=b c \quad \text { and } \quad c f=d e
$$

Starting with the first equality and multiplying both sides by f, we get

$$
a d f=b c f
$$

Next, applying the equality $c f=d e$ to the right hand side above,

$$
a d f=b d e
$$

Since $d \neq 0$ we can cancel the d from both sides to get

$$
a f=b e .
$$

This shows that $(a, b) \sim(e, f)$ and proves that \sim is transitive. And since \sim is reflexive, symmetric and transitive, it is an equivalence relation.

Solution to Question 9. One answer: This is the relation \sim on the set \mathbb{Z} where $a \sim b$ if $a \equiv b(\bmod 3)$.
Solution to Question 10. Part (c): This is the relation \sim on \mathbb{R} where $a \sim b$ if $a \neq-b$.
Part (d): This is the relation \sim on \mathbb{Z} where $a \sim b$ if $a>b$.

