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In a textbook published in 1748, without the barest mention of the derivative, Euler
derived the fundamental equations of a subject that was later to become known as
higher trigonometry: he explained the series for the exponential and logarithmic func-
tions,
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computed the series for the sine and cosine,
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proved the factorization formula for the sine,

' %2 2 2
s1nx=x<1—m> <I—W) (1_W)...,

and deduced his celebrated formula,
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among many other facts. The textbook is Euler’s Introductio in Analysin Infinitorum
(Introduction to the Analysis of Infinities). “All this follows from ordinary algebra,”
he claimed, and all this in a textbook for beginners!

Often I have considered the fact that most of the difficulties which block the
progress of students trying to learn analysis stem from this: that although they
understand little of ordinary algebra, still they attempt this more subtle art. From
this it follows not only that they remain on the fringes, but in addition they en-
tertain strange ideas about the concept of the infinite, which they must try to
use. Although analysis does not require an exhaustive knowledge of algebra,
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even of all the algebraic techniques so far discovered, still there are topics whose
consideration prepares a student for a deeper understanding. However, in the
ordinary treatise on the elements of algebra, these topics are either completely
omitted or are treated carelessly. For this reason, I am certain that the material
I have gathered in this book is quite sufficient to remedy that defect.... There
are many questions which are answered in this work by means of ordinary alge-
bra, although they are usually discussed with the aid of analysis. In this way the
interrelationship between the two methods becomes clear. [12, p. v]

What is this “ordinary algebra” that Euler spoke of, and how did it allow him to deduce
results that we now classify as requiring differential calculus? The answer lies here:
although Euler did not use the notion of the derivative to deduce these results (and
certainly not theorems like Taylor’s Theorem, which depend on the derivative) his
notion of ordinary algebra went beyond what most of our contemporaries would in-
clude. In particular, Euler explicitly included the arithmetic of infinite and infinitesimal
quantities, and implicitly used a general principle for simplifying calculations involv-
ing infinitely many infinitesimals. Because of this, Euler is often portrayed in popular
accounts and classroom lectures as a reckless symbol-manipulator, who worked in a
number system fraught with nonsense and contradiction, but who through sheer intu-
itive brilliance somehow came to correct conclusions. The following passages, taken
from popular books on the history of mathematics, are typical.

It is perhaps only fair to point out that some of Euler’s works represent out-
standing examples of eighteenth-century formalism, or the manipulation, with-
out proper attention to matters of convergence and mathematical existence, of
formulas involving infinite processes. He was incautious in his use of infinite
series, often applying to them laws valid only for finite sums. Regarding power
series as polynomials of infinite degree, he heedlessly extended to them well-
known properties of finite polynomials. Frequently, by such careless approaches,
he luckily obtained truly profound results ... . [13, p. 435]

Today, we recognize that Euler was not so precise in his use of the infinite as
he should have been. His belief that finitely generated patterns and formulas
automatically extend to the infinite case was more a matter of faith than science,
and subsequent mathematicians would provide scores of examples showing the
folly of such hasty generalizations. [7, p. 222]

In contrast we take Euler’s calculations involving infinite and infinitesimal numbers
seriously, and find that Euler’s Introductio is written with grace, wit, and care. There is
the occasional misstep, but on the whole, Euler’s use of the infinite and infinitesimal is
consistent and clear. Furthermore, there is a modern context, replete with infinite and
infinitesimal numbers, in which Euler’s methods can be made intelligible, rigorous,
and useful to modern readers.

What follows is our own version of Euler’s mathematical tale, sensitively rehabili-
tated to contemporary tastes for rigor.

Exponentials and logarithms in Euler’s Introductio

Euler began his introductory chapter on exponentials and logarithms [12, Chap. VI]
by saying,
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Although the concept of a transcendental function depends on integral calcu-
lus, there are certain kinds of functions which are more obvious, which can be
conveniently developed, and which open the door to further investigations.

He went on to explain the usual laws of exponents and logarithms, and illustrated the
usefulness of tables of logarithms, much as one would in a precalculus course today,
with examples from business and the life sciences.

A certain man borrowed 400,000 florins at the usurious rate of five percent annual
interest. Suppose that each year he repays 25,000 florins. The question is, how
long will it be before the debt is repaid completely?. ..

Since after the flood all men descended from a population of six, if we suppose
that the population after two hundred years was 1,000,000, we would like to find
the annual rate of growth.

To demonstrate the usefulness of tables of logarithms, Euler asked,

If the progression 2, 4, 16, 256, . .. is formed by letting each term be the square
of the preceding term, find the value of the twenty-fifth term.

In the succeeding chapter, Euler developed the series for the exponential and loga-
rithmic functions, and showed how to use series to compile tables of logarithms. What
interests us here is the means by which Euler obtained those series. Euler began his
discussion of the series for the exponential function as follows [12, Chap. VII]:

Since a® = 1, when the exponent on a increases, the power itself increases, pro-
vided that a is greater than 1. It follows that if the exponent is infinitely small
and positive, then the power also exceeds 1 by an infinitely small amount. Let €
be an infinitely small number, or, a fraction so small that, although not equal to 0,
still a® = 1 4 v, where ¥ is also an infinitely small number. From the preceding
chapter we know that unless i were infinitely small, then neither would ¢ be
infinitely small. It follows that ¥ = € or ¢ > € or ¥ < €. Which of these is true
depends on the value of a, which is not now known, so we let ¢ = Ae. Then we
havea® =14 Ae .... [12, §114]

(We have changed Euler’s w to € and his j, in what follows, to K.) Euler then reasoned
that if x is any finite, positive, noninfinitesimal number, and K is x /¢, then by a simple
calculation using the Binomial Theorem (discussed in §71 of the Introductio), a series
for a* is given by
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Euler then reasoned that since x is noninfinitesimal and ¢ is infinitesimal, K will nec-
essarily be infinite, and hence one may substitute 1 for the fractions KT_I, %, KT_3,
and so on, to obtain

x 1o,, 1.5,
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Finally, Euler examined the case in which the base a is taken to correspond to A being
equal to unity—the natural exponential function—and showed that in general A is the
natural logarithm of a.

This argument, also discussed by Edwards [9, pp. 272-274] and Dunham [8],
among others, is a gem of eighteenth-century mathematical reasoning, but there are
several issues that must be dealt with before something like it could honestly be given
in a modern context.

* Euler freely uses the arithmetic of infinite and infinitesimal numbers. If such num-
bers are to be used in a modern context, the rules for dealing with them must be
presented as clearly, concisely, and consistently as the rules for ordinary numbers.

* Even granted a sound treatment of infinite and infinitesimal numbers, the reasoning
by which one is allowed to make infinitely many substitutions—the numbers %,
KT_z, KT_3, and so on, each being replaced by 1—must be explained. In each substi-
tution instance, an error is incurred; for example, the difference between 1 and %
is % Individually these differences are infinitesimal, but (as Euler was well aware) it
is possible for infinitely many infinitesimals to add up to a noninfinitesimal amount.

* The argument as given employs the Binomial Theorem for nonintegral exponents,
a theorem that Euler chose not to prove in the Introductio, and something that we

would hesitate to assume in a modern precalculus course.

In our rehabilitation of Euler’s methods for modern use, we deal with these issues as
follows.

* We work in a consistent axiomatic system that clearly specifies the properties of
infinite and infinitesimal numbers.

* We provide a criterion, based on the intuitive notion of determinacy, for deciding
whether neglecting infinitely many infinitesimals leads to a negligible difference in
an infinite sum.

* In our construction of the series for the exponential function, we find that the Bi-
nomial Theorem for natural exponents, a theorem that is verified by mathematical
induction in traditional precalculus courses, suffices. (Later, in connection with the
series for the logarithm, we give an elementary proof of the Binomial Theorem for
fractional exponents.)

Once these issues are dealt with, we will return to Euler’s argument and show how it
can be rigorously rehabilitated in this context. We will then go on to obtain the series
for the sine, cosine, and logarithm.

The arithmetic of the infinite and infinitesimal

The first requirement of our rehabilitation of Euler’s arguments is that his methods be
formulated within a mathematical system in which the properties of infinite and in-
finitesimal numbers are explained at least as clearly as the properties of the real num-
bers. For this we turn to the system of hyperreal numbers, as described axiomatically
in Keisler’s textbook, Calculus: An Infinitesimal Approach [23].

In elementary courses, the real numbers are not defined explicitly; instead they are
defined implicitly by their arithmetic properties, an approach that is essentially ax-
iomatic. In more advanced courses one builds a model for the real numbers, typically
using equivalence classes of Cauchy sequences of rational numbers. Similarly, the hy-
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perreal numbers can either be introduced axiomatically or by building a model using
equivalence classes of sequences of real numbers.

Keisler’s textbook is intended for use in an introductory calculus course. He in-
troduces the properties of the hyperreal numbers gradually, with appropriate examples
and exercises, over the first forty pages of the book. The real numbers are described in-
formally in the main body of the textbook, but presented more precisely in an appendix
by citing the field axioms, the order axioms, the definition of the natural numbers, the
root axiom (that principal n" roots exist for positive numbers), and the completeness
axiom. Further axioms describe the hyperreal numbers as a field containing infinite and
infinitesimal numbers in addition to all the real numbers. (He discusses a set-theoretic
construction of the hyperreals in his guide for teachers [22].) Keisler sets the stage for
extending the real numbers by reminding students that successive extensions of the
notion of number have been the milestones of their mathematical educations.

In grade school and high school mathematics, the real number system is con-
structed gradually in several stages. Beginning with the positive integers, the
systems of integers, rational numbers, and finally real numbers are built up. ...

What is needed [for an understanding of the calculus] is a sharp distinction be-
tween numbers which are small enough to be neglected and numbers which
aren’t. Actually, no real number except zero is small enough to be neglected.
To get around this difficulty, we take the bold step of introducing a new kind of
number, which is infinitely small and yet not equal to zero.. ..

The real line is a subset of the hyperreal line; that is, each real number belongs
to the set of hyperreal numbers. Surrounding each real number r, we introduce
a collection of hyperreal numbers infinitely close to r. The hyperreal numbers
infinitely close to zero are called infinitesimals. The reciprocals of nonzero in-
finitesimals are infinite hyperreal numbers. The collection of all hyperreal num-
bers satisfies the same algebraic laws as the real numbers. . ..

We have no way of knowing what a line in physical space is really like. It might
be like the hyperreal line, the real line, or neither. However, in applications of
the calculus it is helpful to imagine a line in physical space as a hyperreal line.
The hyperreal line is, like the real line, a useful mathematical model for a line in
physical space. [23, pp. 1, 24, 25, 27]

In the picture of the hyperreal line (FIGURE 1), observe that —e, 0, and 1/2H are
infinitesimal; r + € is a finite, noninfinitesimal number that is infinitely close to 7; H
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Figure 1 The hyperreal line
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is infinite, but infinitely close to H + ¢; H is a finite, noninfinitesimal distance from
H + 1, and infinitely far from 2H.

Key computational properties of the hyperreal numbers are given in the following
table.

RULES FOR INFINITE, FINITE, AND INFINITESIMAL NUMBERS. Assume
that €, § are infinitesimals; b, c are hyperreal numbers that are finite but not
infinitesimal;, H, K are infinite hyperreal numbers; and n is a finite natural
number.

* Real numbers. The only infinitesimal real number is Q. Every real number
is finite.
* Negatives. —e is infinitesimal; —b is finite but not infinitesimal; —H is
infinite.
* Reciprocals. If € # 0, then 1/¢ is infinite; 1/b is finite but not infinitesi-
mal; 1/ H is infinitesimal. Note that 1/0 remains undefined.
* Sums. € + § is infinitesimal; b + € is finite but not infinitesimal; b + c is
finite (possibly infinitesimal); H + € and H + b are infinite.
* Products. 8 - € and b - € are infinitesimal; b - c is finite but not infinitesi-
mal; H - b and H - K are infinite.
* Quotients. €/b, €/H, and b/ H are infinitesimal; b/c is finite but not in-
finitesimal; b/e, H /€, and H /b are infinite, provided that € # 0.
* Powers. €” is infinitesimal; b" is finite but not infinitesimal; H" is infinite.
* Roots. If€ > 0 then /€ is infinitesimal; if b > 0 then /b is finite but not
infinitesimal; if H > 0 then /H is infinite.
Notice that there are no general rules for deciding whether the combinations
€/8, H/K, He, and H + K, are infinitesimal, finite, or infinite.

DEFINITION. We write x ~ y to mean that x — y is infinitesimal. If x >~ y, we say
that x is infinitely close to y.

Keisler’s entire course is based on three fundamental principles relating the real and
hyperreal numbers: the Extension Principle, the Transfer Principle, and the Standard
Part Principle. The Extension Principle posits the existence of nonzero infinitesimals
in the hyperreal field, and for each real function f, a function * f extending f to the
hyperreal numbers. The function * f is called the hyperreal extension of f. (A function
is a set of ordered pairs such that no two pairs have the same first element and different
second elements. If f and g are functions, then by “g extends f or “g is an extension
of f” we mean that f is a subset of g. A real function of one variable is a function in
which the domain and range are sets of real numbers. A real function of n variables is
a function in which the domain is a set of n-tuples of real numbers and the range is a
set of real numbers.) The Transfer Principle says that every real statement that holds
for a particular real function holds for its hyperreal extension as well. Equations and
inequalities are examples of real statements.

Here are seven examples that illustrate what we mean by a real statement. ...
(1) Closure law for addition: for any x and y, the sum x + y is defined. (2) Com-
mutative law for addition: x +y = y + x. (3) A rule for order: If 0 <x < y
then 0 < 1/y < 1/x. (4) Division by zero is never allowed: x /0 is undefined.
(5) An algebraic identity: (x — y)? = x> — 2xy + y2. (6) A trigonometric iden-
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tity: sin®x 4+ cos?x = 1. (7) A rule for logarithms: If x > 0 and y > 0 then
log,o(xy) =log,qx + log,, y. [23, pp. 28-29]

(Keisler later gives a precise characterization of the real statements [23, p. 907].) A
consequence of the Transfer Principle is that one does not ordinarily need to distin-
guish between * f and f, since any real statement true of one of these functions will
be true of the other: for simplicity we use the same function symbol f for both * f
and f. Finally, the Standard Part Principle says that every finite hyperreal number is
infinitely close to exactly one real number; this principle is useful for translating results
about finite hyperreal quantities into equivalent statements about real quantities.

In our development, which emphasizes discrete mathematics, the natural numbers
play a larger role than they do in most presentations of the calculus. Key properties of
the natural numbers are that they contain 0 and 1, are closed under + and -, and that
they satisfy the Natural Induction Principle (also known as the Principle of Mathemat-
ical Induction). For example, the binomial formula,

-1
(a +b)n — an + na”_lb + n(n2 )an—2b2 + o+ b”,
for all real a, b and all natural n, and the geometric sum formula,
1— an+1
——=l+4a+a’+ - +d,
l—a

for all a except 1 and all natural », are often proved by induction. We will only require
the Natural Induction Principle for equations and inequalities. In the following, a real
sequence is a real function in which the domain is the set of natural numbers.

NATURAL INDUCTION PRINCIPLE. Let ¢(n) be an equation or inequality of real
sequences; that is, let ¢ (n) be of the form a, = b, a, # b,, a, < b,, or a, < b,
where a and b are real sequences. If ¢ (0) holds and if for all natural m, we have that
¢ (m + 1) holds whenever ¢ (m) holds, then ¢ (n) holds for all natural n.

Another important tool is the Principle of Definition by Recursion, which says that
one may define a real sequence by specifying its value at 0, and specifying for each
natural # its value at n + 1 as determined by its value at n. (See [2] for an elementary
discussion of recursion schemes and their solutions.) For example, the factorial-power
function,

X=xx-Dx—-2)---(x—n+1),

n factors
is defined for all natural n by the equations,
=1, x™l=x2. (x —n).

A real series is a real sequence of partial sums ag, ag + ai, ap + a; + ay, . .., where
a is a real sequence; we use the notation ay + a; + a, + - - - to denote this series. Real
series are defined more formally by recursion. For example, the sum of the first n
square numbers is defined for all natural n by the equations

5o =0, Spt1 = Sp + (n+ 1)2

The integers are defined to be the natural numbers together with their negatives. An
important function from the real numbers to the integers is the greatest-integer func-
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tion, where [x] is the greatest integer less than or equal to x. Following Keisler’s pre-
sentation, we define the hyperintegers to be the range of *| |. The hypernatural num-
bers are defined to be the nonnegative hyperintegers. They extend the natural numbers
to include infinite elements that satisfy the same real statements (such as the recursive
definitions of addition and multiplication) as the ordinary, finite natural numbers.

There are several ways of defining hypersequences having hypernatural indices and
hyperreal values. The simplest way is to start with any real sequence s and take its
hyperreal extension, *s. By the Transfer Principle, *s,, = s, for all finite n, but *sy has
new, hyperreal values for infinite N.

Example: 0,1,4,9,16, ..., N2, ...(N hypernatural). If ¢ is the sequence 0, 1, 4, 9,
16, ...,n%, ... (n natural), then *¢ is 0, 1,4,9, 16, ..., N2,... (N hypernatural). In
terms of sets, ¢ is {(n, n?) : n natural} and *¢ is {(N, N?) : N hypernatural}.

Example: 0,1,5,14,30,...,(0* + 12 +22+3%2+ ...+ N?),... (N hypernatu-
ral). If s is the real series (sequence of partial sums) defined on the natural numbers
by so = 0, 5,41 = s, + (n + 1)?, then by the Extension Principle *s is defined on the
hypernatural numbers, and by the Transfer Principle *s satisfies the same real state-
ments as s—in particular, the same recursion equations. Thus sy, also written 271:;0 n?
or even 0% + 12 4 22 + 3%. .. + N?, makes sense for infinite as well as finite N.

More generally, one may start with a real function of one or more variables, take its
hyperreal extension, and then substitute hyperreal values for some of its arguments.

Example:

K—-1 2 K-1 K-2 23
K 1-27 K K 1.2.3" 777

1, A,

These are the coefficients of the binomial expansion of (1 + (Ax/K))X, which Euler
used in his construction of the series for a*. These terms are given by
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T Kvn!’

where A and K are fixed hyperreal numbers and n ranges over the hypernatural num-

bers. The hyperreal function § arises from the three-argument real function b defined
by

B

nn

k
b(k,l,l’l) = k_";l—'

by fixing K and X and setting 8, = *b(K, A, n) for all hypernatural n.

DEFINITION. A hypersequence is any function defined on the hypernatural num-
bers by composing the hyperreal extensions of real functions of one or more variables
and allowing hyperreal arguments. A hyperseries is the hypersequence of partial sums
of a hypersequence. We often use the term series to refer to either a real series or a
hyperseries.

By the Transfer Principle one can extend the binomial formula and the geometric sum
formula to hyperreal terms and hypernatural exponents.

BINOMIAL THEOREM. For all hyperreal a, b, and all hypernatural n,

n k 1 2 3

no__ t n—kpk __ 1 E n—1p1 z__ n—2y2 il:

(a+b) —E k!a b*=a —l—l!a b—|—2!a b+3!
k=0

an—3b3 RS b".
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GEOMETRIC SUM THEOREM. For all hyperreal a except unity and all hypernatu-
ral n,

1— an+1 n

=Zak=1+a—|—a2—|—~--—|—a”.
1—a =

Hypersequences are examples of the infernal sequences of Robinson’s theory; see [21,
pp. 941ff ]. Because of the special role of hypersequences in our exposition, we will find
it convenient to assume one further principle.

HYPERNATURAL INDUCTION PRINCIPLE. Let ¢p(n) be an equation or inequal-
ity of hypersequences; that is, let ¢ (n) be of the form a, = b,, a, % b,, a, < b,, or
a, < b, where a and b are hypersequences. If ¢ (0) holds and if for all hypernatu-
ral m, we have that ¢ (m + 1) holds whenever ¢ (m) holds, then ¢ (n) holds for all
hypernatural n.

In more advanced treatments, the Hypernatural Induction Principle can be seen to
follow from the Natural Induction Principle and a version of the Transfer Principle
that takes into account statements involving quantifiers, in addition to the (quantifier-
free) real statements. '

Sullivan, in her article in the American Mathematical Monthly [44], provides ev-
idence that elementary calculus can be effectively taught to high school and college
students using Keisler’s system of hyperreal numbers. A recent reform-calculus book
that uses infinitesimal methods is Stroyan’s Calculus using Mathematica [42]. Inter-
ested readers might also consult Luxemburg’s article in the Monthly [32], Lightstone’s
articles in the Monthly [30] and this MAGAZINE [31], Davis and Hersh’s “Nonstandard
analysis” in Scientific American [6], Simpson’s article from the Mathematical Intelli-
gencer [41], and Henle and Kleinberg’s slender volume, Infinitesimal Calculus [18].
For more advanced treatments, see [40], [43], or [21]. Keisler’s article [24] contains a
brief history of infinitesimals. For a nonstandard connection between Euler’s mathe-
matics and modern functional analysis, see [45].

Determinate series
Much of the Introductio concerns the expansion of well-known functions into series:

Since both rational functions and irrational functions of x are not of the form of
polynomials A + Bx + Cx? + Dx> + - - -, where the number of terms is finite,
we are accustomed to seek expressions of this type with an infinite number of
terms which give the value of the rational or irrational function. Even the nature
of a transcendental function seems to be better understood when it is expressed in
this form, even though it is an infinite expression. Since the nature of polynomial
functions is very well understood, if other functions can be expressed by different
powers of x in such a way that they are put in the form A + Bx + Cx? + Dx> +
-+ -, then they seem to be in the best form for the mind to grasp their nature, even
though the number of terms is infinite. [12, §59]

Implicit in this statement is the assumption that “infinite polynomials” share well-
known properties of finite polynomials. In our rehabilitation of Euler’s methods, the
polynomials with an infinite number of terms become polynomials of infinite hyper-
natural degree: ay + a\x + a,x* + - -- + ayx”™, where N is an infinite hypernatural
number. By the Transfer Principle, such hyperreal polynomials satisfy the same real
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statements as real polynomials of finite degree, and in particular can be algebraically
manipulated according to the usual rules. Hyperreal polynomials cannot provide ex-
act expressions for nonpolynomial real functions, but the extension to the hyperreals
does present the opportunity for approximating a real function to within infinitesimal
error—and for most practical purposes this is close enough. In our rehabilitation of
Euler’s methods, the goal of expressing a real function as a polynomial with an infinite
number of terms becomes: for a real function f, to find a hypersequence a and an
infinite hypernatural N such that for all real x (or for all real x in some range),

fx) = ag +611x—|-a2x2—|-..._|_aNxN.

It would be computationally inconvenient if the value of ag + a;x + a;x* + -+ +
ayx" were to depend perceptibly on the particular infinite value of N. Therefore we
give special consideration to series that are determinate in the sense that once one has
taken the summation to an infinite number of terms, the contribution made by adding
still more terms is infinitesimal.

Euler did not discuss the notion of determinacy in the Introductio or anywhere
else—with one exception. In a paper on harmonic series presented in 1734, Euler stated
a principle which may be read as follows: “A series that has a finite sum when contin-
ued infinitely will receive insignificant growth even if it is continued further; in fact,
that which is added after infinitely many terms will be infinitely small.” (Series, quae
infinitum continuata summum habet finitam, etiamsi ea duplo longius continuetur, nul-
lum accipiet augmentum, sed id, quod post infinitum adiicitur cogitatione, re vera erit
infinite parvum. [11, §2]) He used this principle to show that a harmonic series

c c c c

ctastarmtara T

does not have a finite sum, but that series such as

c+ c + c + c +
a a+b a+4b a+9b

and in general series whose n™ term is ¢/(a + n®b), a > 1, do have finite sums. (In
all of these cases, the assumption that a, b, and ¢ are positive is implicit.) Because of
its essential use of infinite and infinitesimal numbers, we find it worthwhile to recount
Euler’s argument that the harmonic series is not determinate [11, §3]:

Let the series c/a, c¢/(a + b), c/(a + 2b), etc., be continued infinitely to the
infinitesimal term ¢/(a 4+ (i — 1)b), where i denotes an infinite number, the in-
dex of this term. Now if this series is continued from the next term c¢/(a + ib)
through the ni™ term ¢/(a + (ni — 1)b), the number of these added terms is
(n — 1)i. The sum of these terms is less than

(n — Dic

a+ib

and greater than

(n — Dic

a+ i —1)b’

Since i is infinitely large, a is negligible in each denominator; thus the sum is
greater than

(n—1)c

nb '
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and less than

(n—1)c
—

Note the salient features of this argument. The number i is explicitly taken to be infi-
nite, and a sum of i terms is taken, terminating with c/(a + (i — 1)b). After summing
these infinitely many terms there is a next term, c¢/(a + ib). A tail sum is taken of the
next (n — 1)i terms, and a lower bound is obtained for this tail sum using ordinary
algebra, which can then be simplified because a/i is infinitesimal:

(n — Dic . (n—1)c _(m=1c
a+mi—Db al/i+m—1/i)b~  nb

For example, if we take n = 2 (continuing the sum twice as far), we have a tail sum
that is greater than or infinitely close to ¢/2b, and hence not infinitesimal. Therefore
the series is not determinate.

What does the notion of determinacy have to do with the Introductio? Euler’s tech-
niques for expanding functions into series depend at various points on the negligibility
of infinitely many infinitesimals in an infinite sum. There are easy examples to the
contrary (arising, for example, in the computation of areas as infinite sums of infinites-
imal rectangles) so to be rigorous, one must have a criterion for deciding when one
can neglect infinitesimals in an infinite sum. The notion of determinacy provides such
a criterion.

DEFINITION OF DETERMINACY. A hypersequence s, S1, Sz, . . . is said to be deter-
minate iff sy =~ sy for all infinite M and N. If ay, ay, aa, . .. is a hypersequence, then
a series ap + ay + a, + - - - is said to be determinate iff the hypersequence of partial
sums defined by s, = ap + ay +a, + - - - + a, is determinate.

The following theorem says that one can neglect infinitely many infinitesimals in an
infinite sum provided the relevant series are both determinate.

SUMMATION COMPARISON THEOREM. [f the series ay +a; +a, + - - - and by +
by + by + - - - are determinate, and if for each natural n, a,, >~ b,, then for all hyper-
naturaln, ag+a;+---+a, ~by+b; + -+ b,.

We will postpone the proof of this theorem to a later section. As an example of a
determinate series we verify that a geometric series 1 + x + x* + - - - is determinate
for certain values of x. Let x be a hyperreal number such that [x| < 1 and [x| 2 1,
and let J and K be infinite hypernatural numbers with K > J. Then by the Geometric
Sum Theorem, x/ + --- + xX = (x/ — xX*1)/(1 — x). This is infinitesimal because
both x’ and xX*! are infinitesimal and 1/(1 — x) is finite.

The following theorem contains two general tests for determinacy. The proof is left
to the reader.

COMPARISON TEST FOR DETERMINACY. (i) Let ay, a1, as, ... and by, by, by, . ..
be sequences of positive terms. If by + by + by + - - - is determinate and if there is a
finite k such that a, < b, for n > k, then ay + a; + a, + - - - is determinate as well.
@) If |col + |c1| + |ca| + - - - is determinate, then cy + ¢1 + c3 + - - - is determinate as
well.

The requirement that once one has added an infinite number of terms, the contribu-
tion made by adding still more terms must be infinitesimal bears a striking resemblance
to the Cauchy condition for convergence of real series, which says that once one has
added a sufficiently large finite number of terms, the contribution made by adding still
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more terms must always be less than some previously specified amount. This resem-
blance has been discussed by Enestrom [10] and Pringsheim [39], and more recently
by Laugwitz [29, 205-208]. Our presentation was inspired by Laugwitz’s discussion.
Did Euler anticipate the “Cauchy” criterion for convergence? The answer is far from
being free of controversy (see McKinzie [35]) and moreover, even if he did, the dis-
covery seems to have made no difference to the historical development of the calculus.
Enestrom, compiler of the definitive catalog of Euler’s published works, lamented:

I have looked in vain for a reference to the Eulerian convergence condition in
the accessible mathematical writings of the 18" century. The discovery appears
therefore to remain completely unheeded, and the mathematicians who attack the
convergence question at the start of the 19" century were surely not influenced
by Euler. [10]

That much said, we still have no qualms about using our own definition of determi-
nacy, simply and clearly stated in Eulerian language, in our rehabilitation of Euler’s
methods: as we shall see it is precisely what we need to make Euler’s arguments rig-
orous.

The exponential series

Having outlined an axiomatic system that specifies the properties of infinite and in-
finitesimal numbers, and having provided a criterion for the negligibility of infinites-
imals in an infinite sum, we are now ready to present our rehabilitation of Euler’s
derivation of the series for the exponential function.

Exponentiation is defined for 0 and other natural n by

a® =1

a"=a---a,
——

n factors

or more formally using recursion, then extended to positive rational exponents > using
the root axiom:

av = (Ya)"  (a>0);
then extended to negative rational numbers by taking reciprocals,
a~" =1/a" (a>0).

From these definitions and the basic field and order axioms for the real numbers, one
can show that for all positive a greater than 1 and all rational p and ¢, the following fa-
miliar rules hold for rational exponentiation: a”?a¥ = a?*4, (a?)? = a??, and a? < a?
if and only if p < ¢q.

Extending the definition of @* further, from rational to real x, and verifying that the
rules just given also hold for the extension, is more involved. Instead, we assume that
a® is a real function (defined for all real x) and, using the properties mentioned in the
previous paragraph as motivation, assume the following axioms for the exponential
function.

AXIOMS. For all positive real a greater than 1 and all real x and y, the following
rules hold: a® = 1; a™ = 1/a*; a*a® = a*; (a*)’ = a*; and a* < a’ iff x <y.
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By the Transfer Principle, the axioms stated above hold for hyperreal numbers as well.
In addition to these rules, we also require the following proposition.

PROPOSITION. Assuming that a is finite and greater than 1, we have the following
results. If e > 0 and € >~ 0 then a® > 1 and a® ~ 1. If x and y are finite, then a* ~ a”
iff x > y.

Proof. We prove this in three steps. (i) Let N be an infinite hypernatural number.
We want to conclude that a'/V exceeds 1 by an infinitesimal amount. By the axioms for
exponentiation, a'/¥ > a°® = 1, so we may write a'/V = 1 + u, where u is positive. By
the Binomial Theorem, a = (V)" = (1 + u)¥ =1 4+ Nu + (positive terms), from
which we conclude that 0 < u < (@ — 1)/N ~ 0, and hence a"/V > 1 and a'/V ~ 1.
(ii) Now let € be positive, and take N = [1/€], the greatest hypernatural number less
than or equal to 1/¢, so that 1/(N + 1) < € < 1/N. Then by the axioms for expo-
nentiation, a/V*D < 4¢ < a/V_ from which it follows that € ~ 0 iff N is infinite
iff a© ~ 1. Furthermore, a~¢, which is 1/a¢, is infinitely close if 1 iff a® is as well.
(iii) Assuming that both x and y are finite, we conclude that

ax
a* ~a” iff ;21 iff a7 >~1 iff x—y~0 iff xx~y.
It is important in the first step that ¢* and a” are neither infinite nor infinitesimal. M

Our goal for this section is to show that there is a finite A such that for all finite x
and infinite N,

X ~~ 1 2 1 3 1 N
a _a+()»x)+§()»x) —I—a()»x) +-'-+1—V—!(Xx) .

Let x be finite, and for the moment, positive. We choose an infinite hypernatural
number K, which we hold fixed for the rest of this section, and choose a fraction
J/K that is infinitely close to x. This can be done by taking J = |Kx], so that
0<x—J/K <1/K, and hence that x >~ J/K.

By the proposition, we know that a* ~ a’/X, so let us now work with a’/%X. We
write a’/¥ as (a'/X)’, and consider a'/X. By the proposition, a'/X exceeds 1 by an
infinitesimal amount. We do not know whether that amount is greater or less than
1/K, so (following Euler) we introduce a positive scaling factor, A, depending on K :

1
UK = 1 4 a
a + I
It is easy to see that A must be finite: by the Binomial Theorem, a = (a'/¥)X =
(14+A/K)X =1+ 1+ (positive terms), so that 0 < A < a.
We may now expand a’/X, written as (1 4+ A+)”, as follows:
1
¥ K — (g KY — (14—
a a (a’™) < + K)
1 J21N JL /o1y’
—1+J (= )+ (r=) + -+ = (2= 1
+(K>+2!(K>+ +J!(K> M

=1+ AJ +1J; AJ 2+ +1Ji AJJ
o K 2072 \"K J'JIT\K

~ 14 (x)+ %(Ax)2+~'+ %(Xx)’ 2)
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~ 1+ (Ox)+ %(M)Z +-- %(M)N 3)

Line (1) follows from the Binomial Theorem, and lines (2) and (3) will be justified by
the Summation Comparison Theorem once we have shown that the series in question
are determinate and that their respective terms are infinitely close.

LEMMA. The series 1 +y + 5y* + 33" + - - - is determinate for all finite y.

Proof. Fix y > O and letnyg = |y|. Then for n > ng,

n ng n—ng no n—ng
y_ = y__ Y < X__ Y — bcn—n(),
n! no! (no+ Do +2)---n~ ng! \ng+1

where b = y" /ng! and ¢ = y/(ng + 1), so that [c| < 1, ¢ % 1, and b is finite. As we
saw earlier, the series 1 + ¢ + ¢2 + ¢ + - - - is determinate for 0 < ¢ < 1, so the result
follows from the Comparison Test for Determinacy. |

Setting y to Ax in the lemma shows that the series in (2) is determinate, and since

for positive x,
LJE /TN 1,
a (7)< ot

the Comparison Test for Determinacy implies that the series in (3) is determinate. We
next note that since J is infinite, we have J%/J* ~ 1 and (J/K)* ~ x* for all finite k,

and hence
k o~
JELIN A M
JE\K /) k' k!

for all finite k£ as well. Using the Summation Comparison Theorem, and similar rea-
soning for negative exponents, we obtain the desired theorem.

THEOREM. [fa is finite and greater than 1, then there is a finite ). such that
T 1+ (A Lo + =y’ L ooy
a* ~ +(x)+5(x) +§(x)+--'+m(x)

for all finite x and infinite N.

The natural exponential series

Suppose one wanted to compute 10° using the previous theorem. What value of A
would one use? From our original equation, a'/¥ =1 + A%, one can deduce that A =
K (a'/% — 1), but this formula is difficult to evaluate, in that it requires the extraction of
a large-order root of a. Later in this article, we will use a series to compute A, but in the
mean time one can ask, why not take A to be some value convenient for computation,
and use the value of a corresponding to that value of A? Euler noted that “[s]ince we
are free to choose the base a ..., we now choose a in such a way that A = 1. [12,
§8122-123] That is, we choose a = (1 + 1/K)X, so that the corresponding series for
a* is
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1, 1,
1+x+2—!x NETR R

But does this help? Now we need to know this special value of a. Noting this difficulty,
Euler wrote,

[If] we now choose a such that A = 1 ... then the series

TR U S -
1"1.271.2.3 1.2.3.4

is equal to a. If the terms are represented as decimal fractions and summed,
we obtain the value for a = 2.71828182845904523536028 . . .. For the sake of
brevity, for this number . .. we will use the symbol e . . .. [12, §122]

The function e* is called the natural exponential function. According to Cajori [3,
§400], Euler first used the letter e to represent the natural exponential base in a
manuscript of 1727 or 1728, published posthumously in 1862. The notation first found
its way into print in Euler’s Mechanica sive motus scientia analytice exposita of 1736.
Its use in such influential works as the Mechanica and the Introductio established the
notation as standard. See also Coolidge [4] and Maor [34].

Let us verify that (1 + 1/K)¥ is determinate in the sense that for different infinite
values of K the corresponding values are all infinitely close.

PROPOSITION. For all infinite M, N, and P,

1+1M~1+1+1+ +1~1+1N
M) ~ T2 P!~ N) -

Proof. Expanding the binomial power and repeatedly applying the Summation
Comparison Theorem, we find that for all infinite M and P,

4] M_1+M Ly, M (1 2+ LMt M
M) M) 20 \M M \ M
1

z MY 1
SR V2L TR VI
1 1
~1+F+5+ +MN1+F+5+ +E.
Since this computation holds for infinite N as well as M, the result follows. ]

At this stage one might be tempted to define e¢ to be any one of the values
(14 1/K)X, for K infinite, and, by now-familiar computations obtain the relation,

X~ 1, 15, (Y
e_1+x+2—!x +§x —|—~-+Z—V—!x “4)
for all finite x and infinite N. But this does not seem to adequately pin down the
value of e; one would prefer to have e stand for some specific real number rather than
having it be an arbitrary choice from an anonymous class of hyperreal numbers, albeit
all infinitely close. Our remedy is to use the Standard Part Principle, which says that
every finite hyperreal number has exactly one real number that is infinitely close to it:
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DEFINITION. e is the unique real number that is infinitely close to (1 + 1/K)¥,
where K is infinite.

Finally, we must verify that this value of e, which actually differs (infinitesimally)
from (1 + 1/K)¥ for each K, still satisfies (4). This is a consequence of the following
proposition, about different exponential functions whose bases are infinitely close.

PROPOSITION. If a and b are finite and greater than 1, and a >~ b, then a* >~ b*
for all finite x.

Proof. If a ~ b and a,b > 1, then we may write b = a(l + €) where ¢ ~ 0.
Then b* = (a(l + €))* = a*(1 + €)*. We need only verify that (1 + €)* ~ 1.
Let n = |x]. Then n < x < n+ 1, and by the order axiom for exponentiation,
(I+e)" <1 +e)* < (1+e)*. Since € ~ 0 and n is finite, by the Binomial Theo-
rem we have 1 < (1 +¢€)" = 1+ € - (a sum of # finite terms) >~ 1, and (1 4 €)"*! =
(1+€)*(1+¢€)=~1,and hence (1 + €)* ~ 1, and finally b* ~ a*. |
Since e =~ (1 + 1/K)X, by the previous proposition we conclude that

THEOREM. For all finite x and infinite N,
1
3!

By the way, this theorem helps explain the relationship between A and a. For if A
happens to satisfy the equation e* = a, then

X o 1, 3 [
e_1+x+ax+ x+---+mx. (5)

1 1 1
X __ (oM LA~ 2 3 N
at=()" =" =14 0x)+ 200"+ H0x) + -+ ()7,

for all finite x and infinite N. This shows that the A we chose earlier can be taken to be
the exponent to which e must be raised in order to yield a: in other words, the natural
logarithm of a. We will return to the natural logarithm later in this article.

The Euler identities and the series for sine and cosine

Although series for the exponential function, logarithm, and trigonometric functions
were known to Newton and others prior to 1670 (see [25, p. 436ff ]), Euler’s Introductio
in Analysin Infinitorum of 1748 provided a systematic account of these formulas as
deduced from basic principles. According to Boyer,

[The Introductio] contains the earliest algorithmic treatment of logarithms as ex-
ponents and of the trigonometric functions as numerical ratios. It was the first
textbook to list systematically the multiple-angle formulas, calling attention to
the periodicities of the functions; and it included the first general analytic treat-
ment of these as infinite products, as well as their expansion into infinite series.
The well-known “Euler identities,” relating the trigonometric functions to imag-
inary exponentials, are also found here. [1, pp. 224-225]

In this section, we will use the multiple-angle formulas to deduce a form of the Euler
identities, and use these identities to derive the series for sine and cosine.
The Euler identities are well known to us in the form

COS X = %[ei" + e, sinx = %[e"x — e,
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or equivalently, e’* = cosx + i sinx, but to appreciate these formulas one must un-
derstand what is meant by ¢’*. This is difficult because the axioms for exponentiation
discussed so far are silent on the subject of imaginary exponents. It is tempting to take
our relation ¢* ~ (1 4+ x/N)" for finite x and infinite N, postulate that it holds for

imaginary exponents as well,
; ix\"
et ~ <1 + —) , 6)

N

and then perform algebraic operations on the right-hand side. We will give a definition
of ¢/* very close to this one toward the end of the article, but in the mean time we
avoid the difficulty of having to pin down the meaning of e’* by providing a form of
the Euler identities that does not require the relation in (6), nor even mention of e'*,
but instead uses algebraic terms of the form (1 + ix/N)". We show that for all finite

x and infinite N,
o8 1 - ix\" +(1 ix\" (7)
CoSXx =~ — —_ - — ,
2 N N

nx~ L <1+i—x)N—(1—i—x)N ®)
S =5 N N |

and then use these relations directly.

This maneuver frees us from having to define ¢'*, but what about (1 + ix/N)N?
We still have to explain how complex numbers fit into the hyperreal framework. In
elementary courses, the complex numbers are defined by starting with the real num-
bers and adjoining a new number i, together with the axiom i> = —1 and a “transfer
principle” that says that the usual rules of algebra apply to the extended system of
complex numbers. This method suits our purposes exactly, except that now we adjoin
i to the hyperreals rather than the reals, and call the resulting numbers the Aypercom-
plex numbers. Every hypercomplex number can be written as a + bi where a and b
are hyperreal. For two hypercomplex numbers ¢ and d, we write ¢ 2~ d to mean that
the modulus of their difference is infinitesimal (or equivalently, that their respective
real and imaginary parts are infinitely close). We say that a hypercomplex number c¢ is
infinitesimal if its modulus is infinitesimal, and finite if its modulus is finite. We note
that the Binomial Theorem holds for hypercomplex binomials by the Transfer Prin-
ciple, and that the Summation Comparison Theorem holds for series of hypercomplex
terms by the same argument (given in a later section) as for series of hyperreal terms.

We begin by proving two standard formulas.

PROPOSITION. For all real x and natural n,

1 X .. xX\" X .. X\
cosx:—[(oos—+zsm—) —|—<cos——zs1n—) ], 9)
2 n n n n
1 n n
sinx = — [(cos al + i sin i) - (cos i sin i) ] . (10)
2i n n n n

Proof. Using the familiar formulas for the sine and cosine of a sum of angles, one
can show by induction that for all n and 8, cosné = %[(cos 6 +isinf)" 4+ (cosf —
i sinf)"] and sinnf = ,}i[(cose + i sin#)" — (cos 6 — i sin@)"]. Substituting x /n for
0 yields the result. ]

We will obtain (7) and (8) from this proposition using small-angle approximations
for the sine and cosine. If € is an infinitesimal angle (that is, an angle subtending an
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1 tan 6
sing| ¢

0 1

Figure2 0 <sinf <60 < tan@ in the first quadrant

infinitesimal arc) then it is obvious from the inequality in FIGURE 2 that sinf =~ 6
and hence that cos§ = (1 — sin®6)'/2 ~ 1. But the presence of the exponents in (9)
and (10) prevents us from using these results to take » infinite and substitute 1 for
cos(x/n) and x/n for sin(x/n) to get (7) and (8). For these substitutions to be valid
we need a sharper result that involves the notion of relative infinitesimal. For € # 0,
we will say that a is infinitesimal with respect to €, and write a >~ 0 (mod €), to mean
that a/e >~ 0. Similarly, a ~ b (mod €) means thata — b >~ 0 (mod €).

PROPOSITION. If 0 < 6 < 7/2, then

1 1
0—593<sin9<9 and 1—592<0039<1.

If 0 is a nonzero infinitesimal, then
sin@ ~0 (mod ) and cosf =1 (mod 6).

Proof. Assume that 0 < 6 < m/2; the case of negative 6 will be an easy conse-
quence. From geometry (see FIGURE 2) we have sinf < 6 < tan§. From 6§ < tan6
we deduce 8cosf < sinf. By the double-angle formula, cosf = 1 — 2sin2(%),
we get (1 — 2sin*(%)) < sin6. Since sin(£) < £ in this range, we conclude (re-
markably) that 6 — 6% = 6(1 — 2($)?) < 6(1 — 2sin*(%)) < sin6 < 6, which im-
plies —%92 < (sinf — 6)/6 < 0. Then 8 ~ 0 implies (sin& — #)/6 ~ 0, and hence
sin@ =~ 6 (mod 0). For the cosine approximation, the formula cosf =1 — 23in2(§)
implies that 1 — 16% < 1 — 2sin®(4) = cos® < 1, and thus for § ~ 0, we have
cosf ~ 1 (mod 6). |
With this proposition we can now prove the theorem.

THEOREM. For all finite x and infinite N,

cos 1 1+ix N+ i N

X~ = — - — ,

2 N N

) 1 ix\" ix\"

sinx ~>—|[{14+—) —{1—— .
2i N N

Proof. Let x be finite and N infinite. By the Transfer Principle applied to (9)
and (10) we get

1 N N
cosx=3[(os T rism) 4 (s - )] an
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sin ! (cos al + i sin al )N (cos a [ sin al )N (12)
X = — — 4isin—) — — —isin— ,

2i N N N N
where x/N = 0. Since cos 3; > 1 (mod %) and sin % > £ (mod &), we may write

cos 3y = 1+ feandsin; = & + 56, where € and § are infinitesimals depending on
x and N (take € = (cos 5, — 1)/% and § = (sin §; — )/ %; these are infinitesimal by
the previous proposition). Then

X .. X ix+(e+id)x

— =+ =1+ —F— . 13

cos 5 i sin N N (13)

By the Binomial Theorem and the Summation Comparison Theorem, one can eas-
ily show that (1 £ ¢/N)N ~ (1 & d/N)" whenever ¢ and d are finite, hypercomplex
numbers that are infinitely close. Thus (13) implies that

N . 3 N . N
(cosizl:isin1> = liw ~ 1:|:z ,
N N N N

which by (11) and (12) yields the result. |

The familiar series for sine and cosine can now be obtained by applying the Bino-
mial Theorem to “multiply out” the N® powers in (7) and (8), and then applying the
Summation Comparison Theorem. This proves the following theorem.

THEOREM. For all finite x and infinite H,

x2 x4 x2H
~1]—-— - — .. _—
cosx=1myty CH)!
x3 x5 x2H+1
smx’\’x—§+——‘~:l:m.

The binomial series

Many times already we have used the formula,

m2 m3

(1—|—x)’"—1+mx+5'—x + A —x3 4. +—x natural m,
a result that was known centuries prior to Euler (though not in this notation), and
which can be verified using induction. In 1665 Newton discovered a generalization of
the coefficients of the binomial expansion using a complicated interpolation between
the rows and columns of a tabular form of Pascal’s triangle, and conjectured that these
generalized coefficients could be used to obtain a binomial series for negative and frac-
tional exponents. Newton tested the conjecture on many examples, including squaring
the series for (1 4+ x2)!/2,

(1 +x2)l/2(1 +x2)1/2

_ 1, %(%_1)4 1, %(%_1)4
_<1+§x +Tx + - 1+§x +—Tx +-

T+ x24+0x* +0x® +0x®+0x0+-- -,

to obtain
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but he never published a deductive proof of the general formula. (Edwards [9, pp. 178—
187] gives a detailed account of the discovery of the Binomial Theorem; see also [25,
p- 438].) Euler states Newton’s “universal theorem” [12, §71],

m=n n m(m n m n
(P—l—Q)n—Pu—l— P Q+% 2

m(m — n)(m - 271) Pm713n

0

0+

n-2n-3n

but omits the proof “since it can be done so much more easily with the aid of some
principles of differential calculus” [12, §76]. Surprisingly, we will show that the proof
of the Binomial Theorem for fractional exponents—which we write as

2 3

m m mN\2x m\3x mN\HxH
R (— all (— all )—,
(1+x) +nx+ n) 2!+ n) 3'+ +(n H!

where H is infinite, |x| < 1, and x % 1—is well within the scope of this article, and
forms a natural part of our rehabilitation of Euler’s methods. The proof uses the Bino-
mial Theorem for Factorial Powers, which can be verified by induction. (See [16] for
other uses of factorial powers.)

BINOMIAL THEOREM FOR FACTORIAL POWERS. For all real a, b and all natu-
ral n,

k

n n_
(a + b)* = Z Faﬂb&.
k=0

BINOMIAL THEOREM (FRACTIONAL EXPONENTS). If |x| < 1, and m and n are
finite and positive, and H is infinite, then

m m\2x? Hx
1 m/n ~ 1 - (_) ( ) )
(I +x) toxt () gt t ) m

Proof. Fix an infinite hypernatural H and a hyperreal x such that (x| < 1 and x #
1. We introduce the notation (1 + x) for the sum,

H

uXx
1+x )El—l+ax+a—§+ -+a o

(The dependence on H is not explicit in our notation.) Generalizing Newton’s calcu-
lation for (1 + x2)!/2, we will show that

((1 —I—x)) ~(14+x)"

and hence that
(1 +x) ~ (14 x)™/", (14)

which is the statement of our theorem in our new notation.
The key formula in the proof of (14) is that for finite positive a and b,

(1 +x) ~ (1 +x) a +x). (15)
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This is easy to see for integral m, n:

(40 = (14 0™ = (0" (420" = (140 (14 0,

For the general case we make use of the Binomial Theorem for Factorial Powers, after
first multiplying out, gathering like terms, and neglecting the tail. Using the lemma
(following this theorem), we write

(1 +x)@(1 +x)EI
i 2 ax
(1+ax+a—§+ +a—ﬁ>(l+bx+b E—I— -+ b= H')
2H
bJ
= chxk, where ¢; = a' -
k=0 iv=k VI

Observe that for all finite k,

atbl ¢ ekl bl L kL

1
R k_z ALbl = i+ b

T
ik b =0 J

For the first step in this chain of equalities it is essential that k£ be finite; the last step
follows from the Binomial Theorem for Factorial Powers. In the lemma (following)
we will verify that both Y37 cex* and Y°[L (a + b)“ x*/k! are determinate; if for
the moment we assume this as fact, then by the Summation Comparison Theorem, we
may conclude that

2H H k
(1 +x)|Z| (1 —|—x)E| = chxk ~ Z (@ —];b) = +x),
k=0 :

k=0

which shows (15). If m and n are finite, then by applying (15) a total of # times, we
get

%+...+%
N —— — n
(]. —l—x)m = (1 +x) = (1 +x) n terms ~ ((1 +x)) ,

and hence that (1 4+ x)™/" ~ (1 + x), as required. |

The Binomial Theorem can be extended to negative rational exponents by a similar
argument, and, by the Sequential Theorem (see the next section) to the case where m
and » are infinite, so long as m/n is finite. From there it is but a very small step to the
theorem for real exponents. This is left as an exercise for the reader.

The previous theorem requires the following lemma.

LEMMA. (i) The series 1+ |a| + |a®x?/2!| + |a3x3/3!| + - - - is determinate for
finite positive a, |x| < 1, x % 1. (@) If ao, a,, az, ... and by, by, bs, ... are hyperse-
quences then for all hypernatural H,

i+j=k
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Moreover, if |ag| + |lai| + |as| + - - - and |bo| + |b1| + |b2]| + - - - are determinate and
have finite partial sums, then |co| + [c1| + |ca| + - - - is determinate and has finite par-
tial sums.

Proof. (i) We ask the reader to verify that for integral k > a > 0, we have |a¥| < k!,
and hence that |a®x*/k!| < |x*|. This shows that for k > a > 0 the absolute values of
the terms in (1 + x) are bounded by a determinate geometric series. (ii) Note that

the product (lei 0 a,)(ZjiO b;) when multiplied out, is the sum of all terms g;b; for i
and j between 0 and H. These terms can be arranged in a table.

0 1 2 e H
0 aobo aobl aobz v aobH
1 a1b0 a1b1 alb2 s ale
2 | azbg ab, ab, cee arby ¢y = abg + a1by + aph;
H aHbo aHb1 aHb2 cee CleH

Foreachk,cy = 3, ;_; a;b; is the sum of all terms on the northeasterly diagonal at £,

making ZiZO ¢x the sum of all of the diagonals, and hence the sum of all terms in the
table. To see that |co| + |c1| + |c2| + - - - is determinate, observe that for N infinite,

N+M N+M H H
Do lel =D 30 laibil < 30D laib |+ZZ|a,b|
k=N k=N i+j=k i=N j=0 ]—" i=0

=7

;Mm

H H
> bl |+ (Z 1al~|>
j=0 i=0

The second inequality is obtained by noting that if i + j > N, then either i > N/2
or j > N/2. The final step (=~ 0) follows because the series are determinate and have
finite partial sums. |

YN
s

=7 =7

Proof of the Summation Comparison Theorem

In contrast with the other theorems in this article, which concern concrete functions
and equations, the Summation Comparison Theorem is a result about all functions
and equations of a general class. It should not be surprising then that the proof is
more abstract and relies on more basic definitions and principles than the proofs of
the other theorems. We will show how the Summation Comparison Theorem follows
from the Least Counterexample Principle, an equivalent of the Hypernatural Induction
Principle, by way of the Sequential Theorem. The Sequential Theorem is an important
result due to Robinson [40, Theorem 3.3.20]. In a course of study, the proof could be
delayed.

LEAST COUNTEREXAMPLE PRINCIPLE. Let ¢(n) be an equation or inequality of
hypersequences; that is, let ¢ (n) be of the form a,, = b,, a,, # b,, a, < b,, or a, < b,
where a and b are hypersequences. Then either ¢ (n) holds for all hypernatural n, or
else there is an m such that ¢ (m) fails but such that ¢ (n) holds for all hypernatural n
less than m.



VOL. 74, NO. 5, DECEMBER 2001 361

For example, consider the inequality ¢ (n) given by (1 —n/H) > 0, for a fixed hy-
pernatural H. This inequality is false for n equal to H, but it is true for all n less
than H. Thus n = H is a least counterexample for ¢ (n). On the other hand, the equa-
tion a, = 0, where a, is defined to be O for # finite and 1 for » infinite, does not have
a least counterexample, even though there are counterexamples. It does not however
disobey the Least Counterexample Principle, because the function a, so defined, is not
a hypersequence (that is, a cannot be obtained by composition of natural extensions of
real functions with hyperreal parameters).

SEQUENTIAL THEOREM. Let ay, a;, az, ... and by, by, by, . .. be hypersequences.
If a, >~ b, for all natural n, then there is an infinite N such that a,, > b, for all hyper-
natural n smaller than N.

Proof. Since the relation a, =~ b, is not an equation or inequality, one cannot apply
the Least Counterexample Principle directly. Instead, we note that if a, ~ b, for all
finite n, then it is also true that —% <a,—b,anda, — b, < % for all finite n > 1. By
applying the Least Counterexample Principle to these inequalities, we conclude that
there is an infinite N such that —> < @, — b, and a, — b, < + for all n between 1 and
N. By the original assumption that a,, >~ b, for all finite n, and using the fact that 1/n
is infinitesimal for infinite values of n, we conclude that a, >~ b, foralln < N. [ |

SUMMATION COMPARISON THEOREM. If the series ap + a; + ar + - - - and by +
by + by + - - - are determinate, and if for each natural n, a, >~ b,, then for all hyper-
naturaln, ag+a, +---+a, >~by+by+---+b,.

Proof. If a, >~ b, for all finite n then ag + - - - + a, =~ by + - - - + b, for all finite n
as well. By the Sequential Theorem, there is an infinite J such that for all » less than J,
ap+---+a, ~by+---+b,. Let N be greater than J. If the sums are determinate,
then by definition, a; + - -- +ay and by + - - - + by are both infinitesimal, and hence
foralln,ag+---+a, ~bg+---+b,. n

The logarithm and beyond

Immediately after defining the exponential function a* and discussing the basic rules
for exponentiation, Euler defined the logarithm for bases a greater than 1.

Just as, given a number a, for any value of x, we can find a value of y [= a*], so,
in turn, given a positive value for y, we would like to give a value for x, such that
a* = y. This value of x, insofar as it is viewed as a function of y, is called the
logarithm of y. .. .1t is customary to designate the logarithm of y by the symbol,
logy. [12, §102]

We usually write log, y, making the dependence on the base a explicit in the notation.
From the definition that for y > 0, log, y is the x such that a* = y, and from the rules
for exponentials given earlier, the following rules for logarithms (fora > 1 and x, y >
0) follow immediately: log, 1 = 0, log, x~! = —log, x, log,(xy) = log, x + log, y,
log, x? =y log, x, and log, x < log, y iff x < y.

Early in the Introductio, Euler explained how these properties of the logarithm,
insofar as they reduce exponentiation to multiplication and multiplication to addition,
make compiled tables of logarithms extremely useful for performing computations.
One of his examples, employing a table of logarithms to the base 10, is as follows.

If the population in a certain region increases annually by one-thirtieth and at
one time there were 100,000 inhabitants, we would like to know the population
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after 100 years. For the sake of brevity, we let the initial population be 7, so that
n = 100,000. After one year the new population will be (1 + %)n = %n. Af-
ter two years it will equal (g—é)zn. After three years it will equal (%)3n. Finally
after one-hundred years the population will be (25)!%n = (2§)!°°100,000. The
logarithm of this population is 1001og 3} + log 100,000. But log 3} = log 31 —
log 30 = 0.014240439, so that 1001og g—é = 1.4240439, which, when increased
by log 100,000 = 5, gives 6.424039, the logarithm of the desired population.
The corresponding population is 2,654,874. So after one-hundred years the pop-
ulation will be more than twenty-six-and-a-half times as large. [12, §110]

The question remains: how might one compile such tables of logarithms? Euler gave
an example to show how Briggs computed logarithms for his famous Arithmetica Log-
arithmica of 1624 using a calculation-intensive algorithm that required the manual
extraction of many successive square roots, but noted that, “In the mean time, much
shorter methods have been found by means of which logarithms can be computed
more quickly.” [12, §106] In the succeeding chapter, Euler explained how to calculate
logarithms using series.

Let us find a series for the logarithm with base e. This logarithm can be written log,
but is more often written In. To get started, we relax the requirement that for a given y
we must find the x such that e* is exactly equal to y, and instead try to find, for a given
finite y > 0,

an x such that ¢* ~ y. (16)

Earlier we found that for finite x and infinite N, ¢* >~ (1 + x/N)", so let us solve
the equation y = (1 4+ x/N)" and see whether that solution is of any use. A solution
(taking the principal N™ root of y) is given by

x=NOoYN —1).
Observe that this does satisfy (16),
NN —1\"
o = NOVN-D o (1 + (y < )) = (LY DV = VNN =y,

so that indeed, ¢* ~ y. In our discussion of the logarithm, we also need to know that
NOYY —1) ~1ny.

THEOREM. Ify is finite and positive, then Iny >~ N(y'/N — 1) for all infinite N.

Proof Let y be finite and positive. By the preceding computation, eV 0" =1 ~ y =
e, Then N (y'/N — 1) =~ Iny follows from the proposition saying that x =~ y if and
only if e* ~~ e” for finite x and y. ]

In [12, §119], Euler used the formulalny = N(y"/¥ — 1), for N infinite, to derive
the series for the natural logarithm. He expanded the function log(1 + y) using the
Binomial Theorem for fractional exponents to get

log(1 + y)
=N[(1+ /" —1]

1 1/1 1 1 /1 1 1

Nl sy (1) 22 (1) (—2) =3 =1

N[[+Ny+N<N )2!y+N<N )(N )3!y+ ] ]y
1 1 1 1 1

— o) ey (1) (2 —2) =y

y+<N )2!y+<N )(N )31y+
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Then, using the fact that N is infinite, Euler substituted O everywhere for 1/N, and
obtained the equation,

1 1
log(1 - = -
gll+y) =y 2y +3 7’
Such substitutions are somewhat more difficult to justify for this series than for our
earlier examples, but it is nonetheless within reach of the methods we have discussed
thus far.

THEOREM. For all y with |y| < 1 but |y| % —1, and all infinite H,
log(1 4 ) = y = 537 + 237 — -+ (— ) _y¥
2 3 H

Proof. Assume that |y| < 1, |y| 2 —1, and let H be infinite. By the Binomial The-
orem for fractional exponents, we conclude that for all finite n,

Un 1 121 11
A+ =1+-y+ 2,y+ b H,y (17

For n infinite, both sides are infinitely close to 1, so (17) is actually true for all hy-
pernatural n, infinite as well as finite. Thus it is tempting to follow Euler’s lead and
substitute an infinite N for n in (17), subtract 1 from both sides, then multiply by N.
We cannot quite do this, because (17) has “~” rather than “=", and because for N in-
finite it does not follow from a =~ b that Na >~ Nb (for a counterexample take a = 0,
b = 1/N). Instead we can do this: (17) implies that for all finite n,

n [(1 + yin — 1]

1 1 ly2 1 §y3 1 _Iin
~nll1+= V(=) L+ (=) ) -1
nl:<+ny+<n> 2!+<n) T +<n) H!

e D B Gt B
— . e e —_— H_l n . n .« e n " —
+=D 1 2 H-1 H’

where the alternation in signs follows from the fact that for £ > 0 and n > 1 we have
(1/n)k = (=<1 %(1 — %)(2 — ,—ll) e (k—=1) = %). Hence by the Sequential The-
orem we conclude—not for all—but that for all sufficiently small infinite N,

N[(1+ " —1]

L, I=5) (1——)( ) Y
L T R
o H_l(l—%)‘(Z—%)m(H— -) M
+ =0 1 2 H-1 H'
When this last sum is compared with the sum
1
y—1y2+—y3—~~+(—1)H+1lyH,

2 3 H
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it is clear that term by term the sums are infinitely close, so we need only verify that
both sums are determinate. For |y| < 1, |y| 22 —1, determinacy follows from the Com-
parison Test for Determinacy by comparison with a determinate geometric sum. By the
Summation Comparison Theorem we finally conclude that

1 1 1
HIa VH _ Ty — 2y 293 o (m)HH L yH
[(1+y) ]~y 5V 3y + (D" oy

for all infinite H. The result now follows from the previous theorem. ]

Finally, Euler observed that though the series for the logarithm just given does not
converge rapidly, and hence is not itself so effective for computing logarithms, it leads
to other series that are quite effective. For example,

I+x 2.4 2
log 1% =log(1+x)—log(1—x)=2x+§x +§x + -

Euler remarked,

This last series is strongly convergent if we substitute an extremely small frac-
tion for x. For instance, if x = %, then log$ =log} = & + 7% + 55 +
%+~-.Ifx=%,thenlog%:l%+#+#+%+ andifx_g,
then log 2 = & + 5% + 55 + 557 + - - . From the logarithms of these frac-
tions, we can find the logarithms of integers. From the nature of logarithms we
have log 3 + log 3 = log2, and log 2 + log2 = log3, and 2log2 = log 4. Fur-
thermore we have logg + log4 = log5, log2 + log3 = log 6, 31og2 = log3§,
2log3 =1log9,log2 + log5 = log 10. [12, §123]

Using these series and relationships, Euler was able to show how to begin constructing
a table of logarithms.

In the Introductio, Euler also exhibited series for other transcendental functions,
including the tangent, cotangent, and arctangent, and went on to show how to use
infinite products to compute the values of infinite sums. Using infinitesimal methods
similar to those described here, Euler factored the sine function 1nt0 an inﬁnite product
and used that factorization to deduce the celebrated formula 1 + +3 -|- s T 3 25 +

= %=. Both of these theorems can be rehabilitated, but the algebra turns out to be
more taxing.

THEOREM. For all finite x and infinite H,
H 2
X
sinx >~ x 1——.
,g < (kvr)2>

THEOREM. For all infinite H,

JT2

Mm

1N
k2

A careful analysis of Euler’s arguments for these two results is given in [37].
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The connection between standard and nonstandard notions

Our theorem saying that ¢* ~ ZLO %, for all finite x and infinite N, is conceptually
similar to the standard theorem that says

n

X §°° X
e = —',
n=0 n:

for all real x, but these theorems are not the same. The former refers to a hypernatur-
al summation within a proper extension of the real numbers while the latter refers to
something we have not yet discussed: the limit of a real sequence of partial sums. The
notion of /imit is usually taken to be the dividing line between algebra and analysis.
In this section we give a brief sketch of how to cross that line. Let us first recall the
standard definition of convergence for infinite series.

STANDARD DEFINITION OF CONVERGENCE OF SERIES. Let s be a real sequence
and let » be real. We say that s converges to r if and only if for each positive real €
there is a natural n such that for all natural m greater than n, |s,, — r| < €. We write
Y o oa, = to mean that a is a real sequence such that its sequence of partial sums
ag, ap + ay, ap + a; + az, . .. converges to the real number 7.

Except for our definition of the real number e given above, thus far we have not had
to distinguish between the closely related notions of real number and finite hyperreal
number. But we need this distinction if we are to convert our results about hyperreal
numbers to results solely about real numbers. The real numbers are distinguished from
other ordered fields by the Completeness Axiom. We will not prove this here but the
Standard Part Principle is actually a consequence of the Completeness Axiom for the
real numbers. (See Keisler [23, pp. 3640, 908-909].)

STANDARD PART PRINCIPLE. For every finite hyperreal b there is a unique real r
such that r >~ b. This real r is called the standard part of b, denoted °b.

Earlier we used the Standard Part Principle to define the real number e to be
°(1 +1/N)N, where N is infinite. This definition and (5) together with the assumption
that e* is a real function, imply that

ex=°if’—l (18)

for infinite N. Rather than assuming e* to be defined for all real numbers (as we did
above) one could instead take (18) to be the definition of the function ¢* and derive
the usual properties of exponentiation from this definition. We chose not to do that,
but it is a reasonable alternative. However, for complex exponentiation the synthetic
approach is all we have at our disposal, so we simply define e'* by the identity

eix_o 1_|_lx v
= N s

for real (and hyperreal) x, where °(a + bi) = (°a) + (°b)i. From this definition one
can deduce the Euler identities in their familiar form.

COROLLARY. Forall real x,

eix + e—ix ) eix _ e—ix
COSXx = —2—— and sinx = ———
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The connection between the infinite sum of a determinate hypersequence and the
convergence of a real sequence of partial sums is given by the following theorem,
which is a consequence of the Transfer Principle and the Least Counterexample Prin-
ciple. The proof, although somewhat technical, is within the scope of Keisler’s calculus
book.

THEOREM. Let 8 be a hypersequence such that By + B1 + B2 + - - - is determinate,
let b be a real sequence, and suppose that b, >~ B, for all natural n. Then the real
sequence of partial sums of b is convergent in the standard sense, and for all infinite

hypernatural N, Y% b, =° SN B,.

(Note that the convergence of b is a consequence, not a hypothesis.) This theorem
implies standard analogs of all the summations in this article.

COROLLARIES. For all real x,

=3 log(1+x) =Y (=1)**'—  for|x| <1,
par i k=1 k
00 2+l 00 2k
sinx = S cosx = —1)¥ ,

;( ) 2k + 1) ;( ) (2k)!
X\ rmkxk

1 min __ Yy 4 1.

(1+x) ;(n) ! for |x| <

Proof. For the first equation, let N be infinite. Then ¢* =© YN x — y~% &

n=0 pn! n=0 n!"*

The others are similar. |

Lessons from Euler

The Introductio was expressly intended as a precalculus textbook, that is, a book for
a course of study prior to differential and integral calculus. The point was not to give
short and slick derivations from an extensive body of knowledge, but rather to educate
beginners. Euler said,

Although all of these nowadays are accomplished by means of differential cal-
culus, nevertheless, I have here presented them using only ordinary algebra, in
order that the transition from finite analysis to analysis of the infinite might be
rendered easier.... At the same time I readily admit that these matters can be
much more easily worked out by differential calculus. [12, pp. ix—x]

We might take a lesson from Euler’s great textbook for our own courses. In the stan-
dard treatments, discrete mathematics is held disjoint from the calculus, and interesting
and useful series are studied only after Taylor’s Theorem is proved—usually at the end
of the lectures on convergence of sequences and series, well after the derivative is thor-
oughly studied. In Euler’s treatment, beginners get their hands on concrete examples
of sequences and series even before the derivative is defined. As rehabilitated here, this
approach might also give our own students practice with important topics from discrete
mathematics—induction, recursion, finite summations, and axiomatics—in the course
of proving elementary analogs of theorems of real analysis. But whether or not our
rehabilitation of Euler’s methods finds its way into the educational main stream, we
hope that by focusing our attention on the intellectual beauty of the underlying math-
ematics, we have convinced the reader that Euler’s insights and arguments, far from
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being reckless or nonsensical, are directly relevant to the understanding, appreciation,
and application of elementary mathematics even in our day.
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Letter to the Editor

Dear Editor:

In my paper, “Avoiding your spouse at a bridge party,” appearing in the February
2001 issue of this MAGAZINE, I calculated certain probabilities, associated with couples
playing bridge, b,, using the inclusion-exclusion principle. In an aside, I commented
that the fact that the probabilities could be expressed as a sum with decreasing terms
“is a consequence of our having formulated the expression for the b, using the inclusion-
exclusion principle.” Professor Lajos Takacs pointed out to me in a letter that this claim is
false. It is true that the terms in the sum are decreasing, but this fact is not a consequence
of the inclusion-exclusion principle.

Recall the inclusion-exclusion principle, which can be proved by doing the following
exercise from Probability Theory and Examples, 2nd Ed., by Richard Durrett (p. 22,
ex. 3.11):

Let A1, Aa, ..., Aybeeventsand A = (JI_; A;. Provethat 14 = 1 =[]/, (1 —14,).
Expand out the right hand side, then take expected value to conclude

P (,L:Jl A,») - gP(Ai) -y P (Ai ﬂAj)

i<j
+ 3 P A Ak) =+ (=P (ﬁA,»).
i<j<k i=1

In the preceding, 14 is the indicator function equal to 1 if x € A, and O otherwise.
A trivial example of a case for which my statement is false is where we have n events

Ai,...,A,suchthat Ay = A =--- = A,, and P(A;) = «; then
n
N<ip<-+<ij
In this case, then, the terms are just « times the binomial numbers 7, (g), el (Z R

n, 1 and this sequence is not decreasing. When n = 3, for example, the sequence is 3, 3, 1.
I regret the error.

Barbara H. Margolius
Cleveland State University
Cleveland, Ohio 44115
b.margolius @csuohio.edu




