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By a real algebraic number is generally understood a real numerical quantity
ω that satisfies a nontrivial equation of the form:

a0ω
n + a1ω

n−1 + · · · + an = 0, (1)

where n, a0, a1, . . . an are integers; we can take the numbers n and a0 to be
positive, the coefficients a0, a1, . . . an to have no common factor, and the equa-
tion (1) to be irreducible; with these restrictions, the equation (1) that a real
algebraic number satisfies will be completely determined, according to the well-
known laws of arithmetic and algebra; conversely, it is well-known that to an
equation of the form (1) there belong at most as many real algebraic numbers
ω that solve it as its degree n indicates. In their totality, the real algebraic
numbers form a class of numerical quantities that will be denoted (ω); it itself
has the property, which follows from simple observations, that in each neigh-
borhood of an arbitrarily chosen number α there are infinitely many numbers
from (ω); at first glance this might make all the more striking the observation
that the class (ω) can be put in clear correspondence with the class of all posi-
tive integers ν (which we denote with the symbol (ν)), so that to each algebraic
number ω there corresponds a distinct positive integer ν and, conversely, to each
positive integer ν there corresponds a distinct real algebraic number ω, that, in
other words, the class (ω) can be thought of in the form of an infinite rule-based
sequence

ω1, ω2, . . . ων , . . . , (2)

in which all individuals of (ω) occur and each one of them is to be found in
a certain position in (2), given by the corresponding index. Once a rule has
been found according to which such an assignment can be performed, it can
be modified arbitrarily; it will therefore suffice if I share in §1 that method of
assignment which, it appears to me, demands the least background.

In order to give an application of this property of the class of all real algebraic
numbers, I supplement §1 with §2, in which I show that, given any sequence
of real numerical quantities of the form (2), one can determine numbers η in
any given interval (α . . . β) that are not contained in (2); if one combines the
contents of both of these sections, a new proof is given of the theorem first
proved by Liouville, that in any given interval (α . . . β) there are infinitely many
transcendentals, i.e. non-algebraic real numbers. Furthermore, the theorem in
§2 represents the reason why classes of real numerical quantities that form a
so-called continuum (for instance all the real numbers that are ≥ 0 and ≤ 1),
can’t be correlated with the class (ν); thus, I found the clear difference between
a so-called continuum and a class of the type of the totality of all real algebraic
numbers.
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§1.

If we go back to equation (1), which an algebraic number ω satisfies and
which, according to our restrictions, is completely determined, we can call the
sum of the absolute values of the coefficients and the number n − 1 (where n

is the degree of ω) the height of the number ω and denote it with N ; using
now-common notation, we therefore have

N = n − 1 + |a0| + |a1| + · · · + |an|. (3)

According to this, the height N is for each real algebraic number a specified
positive integer; conversely, for each positive integer value of N there are only a
finite number of algebraic real numbers with height N ; let the number of these
be ϕ(N); for example, ϕ(1) = 1; ϕ(2) = 2; ϕ(3) = 4. The numbers in the
class (ω) (i.e., all algebraic real numbers) can then be ordered in the following
way: take as the first number ω1 the one number with height N = 1; after it,
let the ϕ(2) = 2 algebraic real numbers with height N = 2 follow in ascending
order, and denote them ω2, ω3; after these, let the ϕ(3) = 4 numbers with height
N = 3 follow in ascending order; in general, once all numbers from (ω) up to a
certain height N = N1 have been enumerated and given a specific place in this
manner, let the real algebraic numbers with height N = N1 + 1 follow, again in
ascending order; thus, one obtains the class (ω) of all real algebraic numbers in
the form:

ω1, ω2, . . . ων , . . .

and with reference to this ordering can speak of the νth real algebraic number,
without omitting a single member of the class (ω).

§2.

If an infinite sequence of distinct real numerical quantities

ω1, ω2, . . . ων , . . . (4)

(obtained according to whatever rule) is given, then in each prespecified interval
(α . . . β) a number η (and consequently infinitely many such numbers) can be
specified, which does not occur in the sequence (4); this will now be proven.

To this end, we start with the interval (α . . . β), which is arbitrarily given to
us, with α < β: the first two numbers in our sequence (4) that lie in the interior
of this interval (with the endpoints being excluded) may be denoted α′, β′, with
α′ < β′; likewise, the first two numbers in our sequence that lie in the interior
of (α′ . . . β′) may be denoted α′′, β′′, with α′′ < β′′, and by the same method we
can form a subsequent interval (α′′′ . . . β′′′), etc. Therefore, according to the def-
inition, α′, α′′ . . . are here specific numbers in our sequence (4) whose indices are
in increasing order, and the same holds for the numbers β′, β′′ . . .; furthermore,
the numbers α′, α′′, . . . are getting bigger and bigger, and the numbers β′, β′′, . . .

are getting smaller and smaller; the intervals (α . . . β), (α′ . . . β′), (α′′ . . . β′′), . . .
each include all that follow. —Here are now two cases possible.
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Either the number of intervals constructed in this way is finite; let the last of
them be (α(ν) . . . β(ν)); since in the interior of this interval at most one number
of the sequence (4) can lie, there can be assumed to be a number η in this
interval that is not contained in (4), and with that the theorem is proven for
this case. —

or the number of the intervals constructed in this way is infinitely large;
then the numbers α, α′, α′′, . . ., because they are continuously increasing in size
without growing to infinity, have a specific limit value α∞; the same holds for
the numbers β, β′, β′′, . . ., since they are continuously decreasing in size, so let
their limit value be β∞; if α∞ = β∞ (a case that always arises with the class (ω)
of all real algebraic numbers), then one can easily convince oneself, simply by
looking back at the definition of the intervals, that the number η = α∞ = β∞

cannot be contained in our sequence1; however, if α∞ < β∞, then every number
η in the interior of the interval (α(∞) . . . β(∞)) or even on its boundary satisfies
the requirement not to be contained in the sequence (4). —

The theorems proved in this paper admit extensions in various directions,
only one of which may be mentioned here:

“If ω1, ω2, . . . ωn, . . . is a finite or infinite sequence of linearly independent
numbers (so that no equation of the form a1ω1 + a2ω2 + · · · + anωn = 0 with
integer coefficients that don’t all vanish is possible) and if one considers the
class (Ω) of all those numbers Ω that can be represented as rational functions
with integer coefficients of the given numbers ω, then there is in each interval
(α . . . β) infinitely many numbers that are not contained in (Ω).”

In fact, one convinces oneself through reasoning similar to that in §1 that
the class (ω) can be conceived in the sequence form

Ω1, Ω2, . . . Ων , . . . ,

from which follows the correctness of this theorem, in consideration of §2.
A very special case of the theorem stated here (in which the sequence

ω1, ω2, . . . ωn . . . is a finite one and the degree of the rational functions that
generate the class (Ω) is provided) was proved by Mr. B. Minnigerode by reduc-
tion to Galois principles. (See Math. Annalen, Vol, 4, p. 497.)

1If the number η were contained in our sequence, we’d have η = ωp, where p is a specific
index; this, however, is impossible, because ωp does not lie in the interior of the interval
(α(p) . . . β(p)), while the number η lies in the interior of this interval according to its definition.
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