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SUMMARY

In this chapter the Aquatic Ape Theory is evaluated according to epistemological criteria
and its explanative value is compared with that of what AAT proponents call the
Savannah Theory. To that purpose, the fossil record is reviewed, while employing the
strictest ‘functional’ explanations for the morphological characters of the fossils. The
known stages of human evolution are found to form an uninterrupted sequence of
functional adaptations to arboreal, semi-arboreal/terrestrial and cursorial modes of
locomotion. In many cases the adaptive value can be defined semi-quantitatively as
mechanical advantages for a given type of locomotion. Our comparison made it necessary
to develop some testable hypotheses about the locomotor behaviour of presumed aquatic
ancestors, something that so far has not been proposed by AAT advocates. The
morphological adaptations advantageous for some possible aquatic forms of locomotion
do not exist.

We find that the Aquatic Ape Theory:

— does not explain more findings than do the more traditional ideas;

— does not allow a more complete integration of accepted but unassociated facts;

— does not contain fewer contradictions, nor leave fewer gaps;

— does not allow more parsimonious explanations;

— does not allow for more precise or more correct predictions of new findings;

— does not yield hypotheses that can be tested in a more reliable, simpler or morc
convincing way than those deduced within the framework of the Savannah Theory.
In fact, the weakest point of the new theory seems to be that its proponents do not
develop hypothetical explanations that can be tested on the basis of known natural
laws, or even on the basis of empirically well established rules.

It has to be admitted, though, that the promotion of the new AAT has stimulated 2
thor(.)ugh reconsideration of what we believe to know, to investigate new facts, and to
acquire new knowledge.

INTRODUCTION

The .Aquatic Ape Theory was designed to explain morphological and
physiological characteristics of man, and to contrast with what AAT
proponents call the Savannah Theory. By emphasising the latter term,
they refer to the widespread belief that the evolutionary steps which le
to the present human body shape took place in woodland or gallery
forests in savannah-like landscapes, and later in grasslands scattered with
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trees. In fact, the proponents of the Aquatic Ape Theory ascribe more
uniformity and homogeneity to other current ideas on hominid
evolution than we — and others — had attributed to them before. The
traditional savannah scenario fits in fairly well with a laree number of
assumptions about the origins of important human traitsb(see p. 161),
though admittedly it does not yield plausible explanations for all the
features of our species.

The AAT postulates that human evolution has raken place in a
completely different ecological scenario: namely, in or close to water.
Consequently, the selective pressures assumed to have been responsible
for the development of traits that distinguish human from non-human
primates are different from those proposed by the majority of previous
researchers. Therefore, we are confronted with two theories competing
to offer better explanations of the same, uniquely human, features.
Scientific seriousness demands an impartial judgement on the value of
both theories. This is what is attempted in this chapter. Instead of trying
to reach a decision on which theory is ‘true’ or ‘false’, we prefer to
evaluate them on the basis of the following critena:

. — explanative value: the better theory is able to explain more findings
than the other one;

— integrative value: the better theory allows for a more complete
integration of commonly accepted but formerly unassociated facts;

— extension and absence of contradictions: a good theory does not imply
contradictions and leaves few or no gaps between the partial
explanations provided by 1t;

— parsimony: those explanations are to be preferred which are less
complicated with respect to the causal mechanisms implied and the
theoretical concepts referred to. A'theory that embodies such
explanations 1s more ‘beautiful’, or more ‘elegant’;

— prognostic value: the theory to be preferred is superior in its ability to
make correct predictions of new findings;

— testability: to judge the prognostic value of a theory it must be
possible to deduce testable hypotheses from that theoretical

framework;
stimulus value: a good theory should stimulate new approaches and

= research projects.

SURVEY OF THE FOSSIL RECORD

e ruled out that important stages of

Although the possibility cannot b tag ‘
d, we should work within the

hominid evolution remain to be discovere
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framework offered by the fossi
reconstruct our ancestry, at least as long as we €
essentially empirical methods of natural science.

The evolution of man is now thoroughly documented (Vogel, 1974;
Pilbeamn, 1972; National Geographic, 1985; Johanson and Edey, 1982). Wé
can trace back our ancestry through the stages of anatomically modern
man of the Upper Palaeolithic (going back at least 40,000 years, perhaps
even 80,000) and Neanderthal man of the middle Palaeolithic (about
150,000 years ago), to Homo erectus of the Early Palaeolithic (from
260,00Q or 300,000 back to 1.6 million years ago; se¢ Figure 9.1). The
evo!utlon‘of almost the entire skeleton is known, and there are few
obvious differences that distinguish the body shape of Neanderthal man
or H. erectus from that of modern man. Fossils of these forms have been
found in Europe, Asia and Africa.

The pr.obab.le ancestors of H. erectus were hominids called
Aust-ralopli:.hec1nes. In this context, it is not relevant to discuss the
possible existence of a separate taxon, H. habilis. That discussion boils
gown to the question of whether there is a distinct evolutionary stage
Aetweeg H. erectus and Australopithecus. Certainly, the genus

ustralopithecus is split into robust and gracile forms and perhaps even into
more than two species. Most parts of their skeletons are known, though
unfortunz-itely-not all from the same sites. A conclusive analysis of
austra.loplthecme morphology is further hampered by the fact that
essential skeletal- parts are missing. At many sites remains of both forms
EOb:I;S;S an.ill .gracﬂes, occur side by side. Australopithecine fossils date back’

& 2
Py 1;1:) nll(énhz’)iir;izgﬁkin? sefm ;o be confined to East and South

x o ~ ossils o t 1
taxonomical positions are not certain. greater age are known, but thelr
] Those ancestors of the Australopithecines that we know are hominoids
rom .the Miocene (more than 5.5 million years ago). They show
ﬁentmons and skull shapes very similar to those of mgde;n ap?sl They
ave been f i ites 1 : '
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— deabd ;) glomih W - -
“euch as the relatively slender trunk, the long hindlimbs gnd the extremely
long forelimbs. Becausc of the similarity in their d_evn‘Flltions, but not in
4 their body shapes, to those of modern pongids, the Miocene forms have
¢ —  been called ‘dental apes’. We conclude. that the bodily characteristics of
both, lesser and great apes, are the result of more recent adaptations

which have taken place roughly within the Jast 6 million years. :

According to recent chronologies, the Miocene ended about 5.5
million years ago. That means that there is no longer a large gap in the
known evolutionary history of hominids, as assumed until recently by
palaeoanthropologists,' who believed that the Miocene ended 10 million
years ago. In fact, there are only some 2.5 or 3.5 million years that are
without fossil records of our ancestry (see Figure 9.1). Hence, the .
starting-point for further considerations should be the known hominoids
of the middle Miocene. e _ |

The environment in which the earliest of these evolutionary processes
took place was, according to palaeo-ecological research (Pickford, 1986;
Retallak, Dugas and Bestland, 1990), something between woodland and
cavannah, with gallery ‘forests along rivers and freshwater lakes. The
commonly used hypotheses imply a shift to bipedal Jocomotion and to a
new diet because of the progressively dry, open grasslands which
expanded during the late Miocene and early Pliocene. There arc no
known fossil documents to support the assumption - that seashores WeTe

the habitats of these forms.

e .«:-\Aqvwr T

A SELECTION OF HOMINOID CHARACTERS THAT CAN BE
EXPLAINED FUNCTIONALLY o

General remarks on functional explanations of morpholbgical
characters ‘ '

It is purely speculative to create, as do the AAT proponents, a system of
presumed functional needs believed to be advantageoud under
hypothetical ecological conditions which have perhaps never existe
amoNng our ancestors. In order not to unduly restrict the chances ©
finding positive answers, one should avoid focusing exclusively on.
human traits which scem to be enigmatic. Instead, features should be
considered which can be readily understood acCordi,ng to current idcas,
or whi‘ch. can be traced through our known ancestry. Bearing this 11
mind, it is reasonable to concentrate on dentition, skull shap¢, trunk
shape, pelvis, hindlimbs, feet, fingers and toes. o

In the present era of neo-Darwinian thinking, it has bccdmc

© 'rcf'c;- by the term ‘adaptation’ to both the c-l;arqctéi' and the us¢ made¢
f’f it = that is, its ‘function’. If we use the term ‘tudapt.;tion' we have ©
, indicate precisely what a given trait is ‘good for’, or which traits arc
| advantageous for fulfilling a given ‘function’. E’xpln'nntionis or the

customary
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Miocone Apes

The remains of Proconsul africanis from
one individual (Figure 9.2), Forelimbs
which indicates quadrapedal locomoti
strong relative to the slender trunk,

monkeys as well, and relate to the pre ,
monkey locomotion (Vilensky, 1083, Reynolds, 1985a, 1985b) in

contrast to other, more specialised, cursorial ’qn.ulrum'('ls. The ll;n‘u'la and
feet are of an elongate and slender form., ‘Their prehensile propensitics arc
shown by the length of the metapodials andd the Tength and curvature of
the phalanges, as well as by (he positions and the s'ln:npvs of l,h,c joints,
According to Preuscholl (1970, 197 1a, 1971b, 1973a, 1973b), the

R um‘o&‘ 0”{’(/":&(_( ,(\)
(;’]u bm‘j G furrtD  0ny

"U, )l}:l) ,,-‘('.(" 'l""4‘/ 5" j,)/ }'{

Iusinga Island probably belong to
and hindlimbs are of cqual length,
on. The limbs are long, and rather
Both traits are typical of modern
at step lengehs dha characterise
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Figure 9.2 Reconstruction of Proconsul africanus, the best known among
the potential forerunners of hominids (from Walker and Teaford, 1989).

curvature of the phalanges is an adaptation for grasping slim objects such
as twigs. A phalanx (Figure 9.3) is exposed to bending moments caused
by the action of the distal and proximal joint forces on one side, and_ to
the pull of the flexor tendons and the force resulting from the redirection
of the tendons running through the annular part of the tendon sheath. A
curvature reduces bending moments by bringing the bone axis closer t0
the resultant force, which thus exerts more compression than bc‘ndlllg-'
This alone gives strong evidence for an arboreal adaptation, as dctmlc'd b)i
Preuschoft (1971b) for subfossil Madagascan lemuroids. The functiond
adaptation of other traits of Proconsul have been investigated bY
Preuschoft (1973b; see also Morbeck, 1972, for a different argument)-

Australopithecines

Most features which characterise Australopithecines
hominids and distinguish them from Miocene apes are
between modern great apes and modern man.

The most intriguing trait, the relatively large brain, Yi? Jution
evidence about the environment in which australopithecin¢ CV" ately
took place. In gracile Australopithecines, which were of “ppr?‘\l;l)l the
the same size as modern chimpanzees (30-40 kg: Jungers: "~ = ' irs
braincase volume is estimated to be 380-600 cm®, but for clml‘l’nnfn furt
volume is only 360-450 cm® (own data on Pan troglodytes vers '

collection). In this context, it is important to recall that a

as the earliest
intcrmcdmtc

lds no direct



149

Epistemological and Palacoanthropological View

-jutof [eaSuereydodres

~HIU Y U0 o' YOIy ‘Y uEmsaz € 01 Julquiod pauonuaw s3310j [y (utod 231y e s33105 [ersed da1y se patensnp) xuereyd 3 jo
wred € 1340 panquustp st rym 8 3210 © SUIX3 21021941 pue ‘uondaxp st 25ueyd 03 YIEdYs UOPU] Y JO $IIQY JE[NUUE Yl AqQ Pad10] §1 § 210§
uopua1 3y, “rewrxoxd ays asurede xuefeyd appprur sy saysnd yorgm ury 210§ Jueansas e unoy 03 urof [eafuereydiaiur sy3 38 SuUIqUIOd $3310§ YPOg
'SUOpUS] 10X3p 3 uo 3310 dpsnw = § (3y) xuereyd rewnxoxd ay 10 (w4ay) xuepeyd appprw snid [euruua sy surede aensqns yy Aq pauaxs
$35103 uoOnoEAl = Y :53uU0Qq 133Uy Y3 UO 108 YOIYM $II10§ AEJIPUI smowe Y] "sutol papuaixa azow ‘xuereyd paand (3) ‘siurof paxop ‘xuereyd
paamd (q) ‘xueeyd 1yJrens (e) -Buiquurpd 03 uoneidepe ue paIdpIsuod 3q ued sny3 pue ‘sassans Surpusq saonpax saduereyd Sy3 jo armearnd Syj

“urquuirp ut pasn se ‘dud 1omod e Suunp juasaid srewd e jo sauoq 1a3uy ur sassang ¢6 2ndig

$32J0) s8210)
$83.J04 aaissesdwod
aAlssasdwod JAISSIdwWed
$2910} —
s82.0} Buoeys Buuoeys
bulioays .
sjuswouw
sjuawouw Buipuaq sjuswow
6uipuaq Bupueq




150 The Aquatic Ape: Fact or Fiction ?

particular the monkeys and apes, possess large brains relat%ve to thei‘_r
body size; and within these large brains, the neocortex is the most |
progressively developed part (Stephan, 1967; Starck, 1982). Recently, the
assumption has gained ground that brain size as well as the elaborate
cognitive abilities of monkeys and apes are related to the fact that all of
them are group-living animals with very complicated social systems.
Thus, a progressive coevolution of the brain and the cognitive abilities
necessary for living in these social systems is assumed. The evolution of
the cognitive capacities is very likely to be closely tied to the develop-
ment of a sophisticated communication system. _

The sensory capabilities of humans are very similar to those of other
higher primates. All diurnal primates are ‘characterised by elaborate visual
capacities, ‘and to a large extent their communication relies on visual
signals of subtle gradation and short-lasting quality. This also holds true
for modern humans. It would be a waste of energy and a source of error
to develop visual communicative systems and sensory organs of this
quality under the conditions of poor visibility typical of an aquatic

- environment. In addition, the vocal communication of modern man
lacks the elements and features of vocalisation and sound reception
typical of aquatic animals. - S |
The entire configuration of the skull and dentition changed in the

. period between the pongid-like forms of the Miocene and the early

- hominids of the Pliocene. Whereas in the former the long, narrow, U-
shaped dental arcade (Figure 9.4) was situated in Sront of a fairly small
braincase, the latter had a shorter, rather parabolic dental arch below an
enlarged braincase (Figure 9.5). Simultaneously, a reduction in the size of
the canines as well as an enlargement of the molars occurred, plus a

change in the cusp shape. Traditional considerations of biological roles

converged. on the idea that large canines became superfluous because

hand-use replaced them as ‘weapons’, and hands replaced the mouth as
- tools for the intake of food (small-object-feeding, hunting). In a recent
paper, Preuschoft (1989a) has traced a direct mechanical interdependence
that must have existed between the evolution of these traits: the
reduction in size of the front teeth indicates changes in diet, leading to
'small object feeding * (Jolly, 1970). The dome-shaped cusps are adapted
to breaking down brittle and hard food items, like seeds and nuts — but
also mollusc shells. According ‘to Lucas, Corlett and Luke (1986a,
1986b), enlargement of the molar surfaces permits mastication of an
e_quivalcn; amount of food if body size increases, but leads at the same
time to a reduction in bite pressure. But the hardness of food items
required an increase in bite pressure. Consequently, the muscles had to
become enlarged and the load arms of the bite forces shortened. The
latter was achieved by reducing snout length and increasing facial height.

th cha}'actgristically flat or even concave face of robust
ustralopithecines (Robinson, 1972), or the pillar-like structures in
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(a) Upper jaws

Chimpanzee ~ Australopithecus ' Man
. from Hadar,

(b) Lower jaws

Chimpanzee Australopithecus Man
from Hadar

narrow dental arcade of Miocene (and modern)

Figurec 9.4 The long _
hominid evolution into a short,

apes has been transformed during

parabolic dental arcade without large canines. o o
(2) Upper jaws: the arrows show the gap between the lateral incisor and the canine;
. (b)- Lower jaws: the broken lines indicate the angle of the tooth rows and the greatest
diameter of the anterior premolar. (Not to the same scale; from Johanson and Edey, .

1982.)
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graciles (Rak, 1983), served to give the upper jaw the strength necessary
to sustain the increased bite forces (Preuschoft, 1989a).

This line of reasoning does not support the theory that
Australopithecines were scavengers or hunters (as 1s assumed in other
contributions to this volume), because the dentition of a meat-eater is
exposed to different selective pressures. Rather, it favours the idea that
carly hominids tended towards open country and towards eating grass
seeds or other hard objects. It would seem attractive (although it is not
attempted here) to fit our argument into a scenario of hominids
exploiting marine, coastal or benthic resources.

In non-human primates the head, which has its centre of gravity far in
front of the condyles, must be balanced by considerable muscle force
(Figure 9.5). The foramen magnum and the occipital condyles face
backward in order to be perpendicular to the resulting force, as shown by
Demes (1985). Given the short neck, so characteristic of primates, this
seems to be inevitable for animals in the pronograde posture, because
there is simply. no possibility of moving the head above the level of the
back. A major prerequisite for saving energy by balancing the head closer
to its centre of gravity seems to be, in view of the short neck, upright
posture of the trunk. Any enlargement of the brain, accompanied by
increased vault height, moves the centre of gravity upward, in a cranial
direction. This is not a disadvantage as long as the head is carried like
humans carry it. The reduction of snout length contributes to shifting the
centre of gravity of the head backward, in pronograde as well as
orthograde posture. This reduces the load arm while increasing the
power arms, thus reducing the muscular force necessary to keep the head
balanced. The condyles, and with them the plane of the foramen
magnum, tilt forward, following the swing of the resulting join_t f"orce.

Australopithecines apparently possessed a pronou'nced lordosis in a long
lumbar spine of not less than six vertebrae (Robinson, 1972). This has
been interpreted as evidence for upright body posture. Preusc.h'oft,
Hayama and Giinther (1988) have investigated the mechanical conditions
existing in long, slender-bodied Japanese macaques as a consequence of
their acquisition of upright body posture (Figure 9.6). Under the
influence of gravity (that is, without the help (?f buoyancy when
submerged in water), a lordosis appears to offer an important advantage
for an animal in an orthograde posture. It provides the erector spinae
muscles with a longer lever arm, and moves the vcrte‘t')ra'l column
towards the gravity vertical of the upper body. If a lordosis is present,
shortening of the trunk is not necessary to keep the expenditure of
muscle force low. Widening of the trunk in the .fronta.l plane and a
reduction of its dorso-ventral diameter are further traits which .reduce the
Waste of energy connected with permanent, strong contraction of the
erector spinae muscles. In fossils, the existence of these traits can be
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feduced from the shape of the ribs (Schmid, 1983.) The shallow trunk of
modern man implies a dorsal position of the centre of gravity: that is, it is

closer to the vertebral column as the supporting structure. The same .
result is achieved by the shoulder blades having moved dorsally from

their original position, which is lateral to the thorax in pronograde

animals. ‘

Figure 9.6 In upright trunk postures, a lordosis reduces the loadarm
length of the more cranial sections of the body, while providing long
power arms for the dorsal muscles. -

In (a) the lordosis is shifted caudally into the pelvic region (i.e., to the iliac neck), so

that the energy-saving effect is maximal (see also Preuschoft, Hayama and Giinther,
1988). '

The australopithecine pelvis (Figure 9.7) is commonly interpreted as
bcing adapted ‘to some degree’ to an upright stance (Napier, 1967;
Ro'bmson, 1972; Preuschoft, 1971a; Lovejoy, 1973, 1975; Lovejoy,
?-!cnplc and Burstein, 1973). With regard to one detail, the length of the
1le1c neck, we can confirm this conclusion: the rearward shifting of the
‘kink’ i'n. the trunk (shown in Figures 9.6 and 9.7) is limited by the length
of the ilium. If its ‘neck’, the part between hip joint and ilio-sacral joint,
1s shortened, additional energy can be saved. This shortened iliac neck is
one of the most characteristic features of the australopithecine pelvis as
compared with the long ilium of modern pongids and the short one of
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Australopithecus afric. Homo sap.

Australopithecus afric. Homo sap.

Pan trogl.

Figure 9.7 Side view of various primates’ pelves to show the
shortening and ‘lordosising’ of the iliac neck during hominid

evolution.
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modern humans. This will be worked out in detail by Preuschoft,
Schmid and Berge in a forthcoming paper (in preparation).

In standing on one leg, or in the stance phase of walking, the human
hindlimb is exposed to bending moments in the frontal plane (Figure 9.8
(2)). The well known valgus position of the knee joint causes a reduction
of these bending moments at the knee joint and along the lower leg.
This valgus position is apparent in the laterally open angle between the
vertical and the femoral shaft, if placed upright on its condyles (Figure
9.9 (b)). The same trait already existed in Australopithecines (Preuschoft,
1971a), but is not present in modern pongids (Figure 9.8 (b)). As a
consequence of this valgus position of the knee (Figure 9.9 (b)), the force
produced by the quadriceps muscle and the force transmitted by the
patellar ligament to the tibia also form a blunt, laterally open angle. This
means that a laterally directed resultant acts on the patella. To prevent the
patella from sliding, the lateral margin of the patellar facet (Figure 9.9(d))
is higher than the medial in Awustralopithecus and in later hominids
(Lovejoy and Heiple, 1970; for additional details see Preuschoft, 1971a).
In contrast, the knees of quadrupeds necessarily have a varus or neutral
position, even in cases where an upright posture is assumed occasionally.
Pongids (Figures 9.8 (b), 9.9 (a)) show the morphological characteristics
favourable for climbing — namely, a marked varus position of the knee
which allows strong abduction of the hip (see also Preuschoft, 1961,
-1970) without placing the foot lateral to the gravity vertical.

Preuschoft (1971a) has shown that the metatarsals and the talus of the
Australopithecine-like foot from Olduvai (OH-8) possess the shape
characteristics of a rather rigidly built ‘ground plate’, well suited for
walking on the ground (Figure 9.10). In this they resemble the respective
elements in the human foot more closely than those in the foot of
pongids (Figure 9.11). The anatomy of the australopithecine foot is
known only incompletely (Davis, Day and Napier, 1964), but the toes
are long and strong compared to those of modern man, and short
compared to the toes of pongids. Stern and Susman (1983) have
emphasised this in combination with other traits, and have argued that at
least A. afarensis retained marked adaptations for climbing,

On the other hand, the conclusion that Australopithecines were
bipedal is convincingly supported by the footprints and tracks found at
Laetoli (Leakey, 1978, 1979; White, 1980). These documents of bipedal
walking in a hominid are about 3.5 million years old and belong to the
oldest known hominid fossils.

A lot of ‘reasons’ for the evolution of upright posture and locomotion

- in terms of biological role have been proposed: for instance, hunting,
carrying of food or infants, use and transport of tools; better view over
high grass, and higher speed (the latter seems doubtful). To these
Interpretations we can hardly contribute anything new. But all these traits
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make sense only if we imagine an animal which shifted from mot

habitats similar to those of arboreal macaques or the versatile grev Jan u?g
(in forest areas) to bi_pc_zdal travelling in more open landscapes.glt r}:)ay \%:/ell
be that the two—mﬂhon—years’ history of australopithecine bipedalism
stretches from a still partly arboreal lifestyle to bipedal walking (Stern and
Susman, 1983). The incompleteness of individual finds of early

‘Gp ‘Gp :

—mecscem=.

(b)

Figure 9.8 Right hindlimb under full body weight seen in frontal
view, |
(2) Human. The pulling forces of the quadriceps muscle (

(lbgamC"F (P) combine to form a laterally directed resultant (R1). . ,
) Gorilla. The resultant Rm applied to the patella is directed medially. Gp 1s the

Weight of the body above the pelvis; A is the ground reaction force. Note the
i 3
¢rence of bending moments in both'species.

M) and of the patellar
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. known fossil documents nor to interpret them in terms of their
differences and similarities. Instead, they focus on the explanation of
modern man’s peculiarities as.compared to modern apes and other
mammals. ‘ : S ' , -

Among the features emphasised by the AAT are (1) some which are
not at all peculiar to man, and (2) others which can be explained more
satisfactorily within the framework of conventional ideas, which by no
means imply an aquatic stage. Here, we will briefly discuss some
examples of both categories.

1 Low hair-density is also found among modern large apes. According
to Schultz (1936), gorillas, chimpanzees and orang-utans have about

~ 300-500 hairs per cm? — in contrast to the lesser apes and some monkeys
which possess 2000-3000. The arrangement of body hair, as well as the
importance of sweat glands for a primate who exposes himself to full
sunshine, is discussed by Wheeler (chapter 13, this volume). Also, it
should be noted that all primates in tropical regions usually avoid direct.
sunshine. Subcutaneous fat is arranged in similar deposits in many
mammals, including primates (Pond, this volume, chapter 12). '

2 Bipedality should be considered in connection with the fact that

" most primates are ‘hindlimb-dominated’ and show a tendéncy to sit
upright when resting or investigating things closely. While standing or
walking, most primates. carry a larger part. of their body weight on the
hindlimbs than on the forelimbs (Figure 9.12). This has been found
experimentally by Kimura, Okada and Ishida (1979) in Japanese
macaques, and was later confirmed in chimpanzees by Kimura (1985,
1987). The animals put their hindlimbs forward, close to their gravity
vertical (see also Reynolds, 1985a, 1985b). In addition, primates possess
short necks, so that their centre of gravity is shifted caudally 1n
comparison with other, cursorial mammals like dogs and hooved animals.
As a consequence, the amount of body weight resting on the hindlimbs
is increased, and the forelimbs are relieved (Preuschoft, 1990; see also
Figure 9.12). For leapers among the primates the same holds true (Peters
and Preuschoft, 1984; sce also Giinther, 1989; Demes and Giinther,
1989a, 1989b). If a primate: puts its feet slightly forward — that is, exactly
beneath its centre of gravity — it can lift its hands from the ground,
because its full weight rests on the hindlimbs. In fact, a variety of bipedal’
postures is readily assumed by many non-human primates, often for

- extended periods. The mechanical requirements of permanent bipedality
under terrestrial conditions, and the resulting selective pressures, have
been discussed above. .

" The biological role of upright sitting and bipedal standing in non-
human primates is not completely understood. So it is not surprising that

the biological role of bipedality in carly hominids is so much discussed.
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Figure 9.12 All primates carry a larger proportion of their body
ngght» on the hindlimbs than other, cursorial, mammals do;
primates are ‘hindlimb-dominated’, or ‘preadapted’ to bipedal
posture and locomotion. The dots show the approximate
ppsitions of the' centres of gravity, the broken arrows the
d}rcction. of the weight force. The heavy arrows indicate the
_ direction and sizes of the reaction forces to body weight.
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promising new approach is contained in Wheeler’s contribution to this
volume (chapter 13). Undoubtedly, however, the tendency to carry
much weight on the hindlimbs 1s related to the primates’ characteristic
mode of investigating and handling objects: they examine objects first by
means of their hands, in contrast to most other mammals which use their
lips, teeth, tongues and noses for exploration.

Interestingly, a mechanical investigation of bipedalism provides us with
a hypothesis about the origin of another feature stressed by AAT
adherents — namely, the ‘diving reflex’. Experimental results
(Nachemson, 1959, 1966: Nachemson and Elfstrom, 1970; Morris, Lucas
and Bresler, 1961) indicate that the trunk is kept in equilibrium at the
intervertebral discs not only by muscle contractions, but also by making
use of the ‘pneu’ formed by the intestines in the abdomen and thorax,
which are enclosed by the abdominal and thoracic wall muscles (see also
Preuschoft, Fritz and Niemitz, 1979). Compression of the lungs requires
the existence of a valve in the airways — that is, the larynx. Possibly this is
the origin of the closing mechanism discussed by proponents of the AAT

in the context of the ‘diving reflex’.

Besides the features already emphasised, the AAT leaves open some
important questions:

— When (in the chronological framework of Figure 9.1) would the
pronounced aquatic phase of evolution have occurred?

— Which fossils in fact indicate an aquatic life?

— Which traits must be present in an aquatic primate to fulfil its
immediate functional needs?

While the first and the second questions can be postponed until future
finds provide us with the information that is lacking, the third requires ;
the formulation of precise hypotheses that can be tested. The basis of any (
functional explanations of the morphological facts outlined above 1s .
empirical data, or at least precise hypotheses formulated in terms of o
biomechanics. Testable hypotheses of this kind, however, are usually '
missing in the AAT advocates’ suggestions. Our attempts to obtain
“information from them about which of the evolutionary settings
described below fits best with their theory, were unsuccessful. Apparently,
they prefer raising questions to answering them. So, since testable
hypotheses proposed by AAT defenders are lacking, we have ourselves
tried to pin down the possibilities that exist for an ‘aquatic’ lifestyle.
Conccn.trating on considerations discussed at the Valkenburg meeting,
we can imagine only three variants that may serve as testable hypotheses:

(1) The aquatic stage of hominid evolution took place along seashores.
The ancestral hominids waded — searching for food, or avoiding
predators — in shallow water (imarsh waders).
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(2) Our aquatic ancestors lived in somewhat deeper waters, either 2 )
swimming close to the surface or diving (shallow-water swimmers), b ;

(3) Our ancestors were active, endurant swimmers, able to move 1
rapidly in deep waters (deep-water divers). .

3
Let us now try to investi

. gate, for these three scenarios, the functional
demands and their mechanical consequences.

7
l ¥
If we assume variant (1), the marsh wader (Figure 9.13), we should

expect the aquatic ape to have been e

quipped with long hindlimbs
(which we indeed find in humans). Sin

ce water resistance will unduly
slow down the forward swing of the limb, it is

essential to raise the hind-
limbs above the surface. This means that the wader has to avoid water

more than knee-deep. Adaptation to wading will inevitably produce !
short femora and long tibiae. The locomotor mode shown in Figure 9.13 T

is admittedly expensive from an energetic point of view, but still more K
cfficient than moving the swinging leg against water resistance. The
proportions of femur to tibia as shown in Figure 9.13 are not present in
the fossil record.

Regardless of the limb proportions, long extremities protect the trunk
against becoming wet, which would lead to loss of body heat. The hind-
limbs are immersed in water, which reduces their weight. Even partial
immersion of the trunk, however, would greatly increase water resistance
and make locomotion energetically very expensive and fleeing slow. In
addition, the buoyancy of the trunk would relieve the vertical ground E'“‘"-‘»
foot force to such an extent that wading became difficult because ground [

r
,

contact would be lost.

In humans and other primates the ratio of length of thigh to length of B
lower leg plus foot is commonly 1:1. This ratio leads to mymml angle ‘
displacement in walking movements, since the necessary lifting of the
body’s centre of gravity is combined with the smallest possible angle of

excursion of the knee joint. Because mechanical work W is defined not |
only by

W = F .5, but also by W =M. phi

(where F is the force, s the distance covered, M the x‘nuscu’lar for.cc,ia;.ld
phi the excursion of the knee joint in degrees), the ‘work’ requirec or
these movements is also minimised. Thcrcforc,.thc 1:1_ lcng(tl(x ratio
Minimises the energy required for terrestrial walking (Witte, 1{)1)&)‘. In
addition, soft substrates — as found fquu'cntly on the bottoxlnl .of.:\l L"S[‘]Ol:
s¢a — favour a large area of support, which means long, wide uti' ! )’L
‘Tolling-off’ of the human foot under thesc C()ll(lltlf(;lll)s 1m‘p ics la

isadvantage, since it begins (heel strike) and ends (push-o yl tOL?) w;t 1
2 load concentration on a reduced area of support. Everybody who has
walked on soft ground knows its encrgy-consuming effect.
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Variant (2), the shallow-water swimmer, and (even more) variant (3), the
deep-water diver, require the body density to be similar to that of water
(Figure 9.14). This seems to hold true for most mammals, depending on
the volume of air in their lungs and fur (Wind, 1976). One problem is
the intake of air. The nostrils in all known primates are positioned
frontally in the mid-face. So it is difficult for them to raise their nostrils
above the water level, particularly since the neck is so short that head
movements are limited.

The weight of a swimming body becomes negligible, and the forces
that have to be exchanged between the body and its environment in
order to cause propulsion are distributed over large areas of the body’s
surface. In animals not suspended in a dense, heavy: fluid, body weight
Jeads to a reaction force concentrated on the contact areas between body
and ground. While swimming, all tetrapods maintain their usual
pronograde orientation of the trunk axis, and their limbs move forwards
and backwards as they do on the ground. The backward movements of
the limbs serve to propulsion. In anteversion of the same limbs (recovery
stroke), a smaller surface must be exposed to the resistance of the water
to make the locomotion efficient (Wind, 1976). In the backward-
directed power stroke, water resistance against the moving limb causes, as
1 side effect, a moment that rotates about the body’s centre (Figure
9.14(a)). This increases with arm length. As long as the swimming animal
remains at the surface, the backward rotation contributes to keeping the
head above the water level. As soon as the animal starts diving, the
ventral position of the limbs (the arms in Figure 9.14) below the trunk,
which is inevitable for terrestrials, becomes a disadvantage. In fact, most
tetrapods adapted to swimming have reduced limb length and the limbs
are laterally placed or ‘sprawled’, so that (horizontal) rotation caused by
one side is compensated for by the other. Enlargement of hands and feet
provides them with larger paddles to make propulsion more efficient.
These traits have never been found in fossil hominids. Neither in fossil
nor in living primates do we find the shortened stylopodia or the
broadened, elongated feet and hands which are the most obvious
adaptations of habitually swimming tetrapods. Wide excursions, which
include abduction to assume a ‘sprawling’ position, are admittedly
possible in the shoulder and hip joints of many primates. But this is more
probably connected with their climbing habits. Webs between the fingers
and toes, which increase the surface in the power stroke while being
folded in the recovery stroke, may have occurred in fossil forms — we just
cannot recognise them on the skeleton. But they exist also in the
indisputably non-aquatic modern apes, where they are even better
developed than in humans.

Let us imagine that already orthograde hominoids took to a swimming
mode of life — as shown in Figure 9.14. Because of the position of the
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lower limbs behind rather than ventral of the trunk, the balance of l
propulsive external forces would have posed no problem. But this b -

presupposes what AAT proponents claim to explain: why these ancestors

changed their body position from pronograde to orthograde on land

before colonising the water. ;
Anyway, the body shape of modern humans is poorly adapted to :

swimming. The length of the hindlimbs as well as that of the forelimbs !

increases load-arm length without yielding more propulsion during

swimming. This trait, therefore, clearly implies a waste of energy and

hence a disadvantage. The existence of few joints between long segments

leads to a disturbance of the water flow along the propulsive extremity,

which results in a disadvantageous drag. This holds true not only for the

thigh and the lower leg, but also for the metapodia and phalanges. A ‘

simple means often employed to increase the efficiency of a imb as a %

propulsive organ in water is to use it as a hydrofoil in both directions, up

and down. This is only possible if joint excursions are possible in both

directions, and if the segments are largely symmetrical. As emphasised by

?
!
Wind (1976; this volume, chapter 17), in most or even all primates this ‘

!
B

holds true for the shoulder and carpal movements, but not at all for the

elbow and finger joints, nor for the joints of the hindlimbs. In living as

well as fossil primates, movements of the knee and ankle joints and finger

and toe joints are limited at full extension, and at least the phalanges, and

sometimes also the tibia, are curved, which makes them asymmetrical. '
On the level of biological roles, we believe that the human affect'ixon f

for water depends on fashion. Today everybody seems fond of bathing, 1

but a hundred years ago this was far less common. Another argument, E

just as attractive as the affectionate relationship of humans'to water, ‘

should not be ignored: from the early stages of human hlSthI‘y, on

through all centuries, the wealthy classes have chosen to buxld' their

homes in places that exhibit a clear preference for open, diverse

landscapes, with grassland interspersed with Patches of woodland or

individual trees, often embellished by flowing water or lakes: the

parkland savannah. Man's evident dislike of dense forest may be

illustrated by the extent of its intended total destruction.

CONCLUSION

Current palaeoanthropological explanations do n>0t .satlsf)lr Az;’ll‘
proponents. This is because current ideas do not (yet?) Y‘Cld. plamsitle
reasons for all human characteristics, and AAT proponents. insist that
other questions about hominisation have to bdc raised. Therefore, the -
current ideas : iected and new ones proposec. " .

A final L\::Zl:qucnrocx{ of the AAT is impeded by the fact that it is vagxf]_c ]"1
several respects. It leaves open the relative and absolute dating of the
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presumed aquatic phase. It stresses some arbitrarily selected ‘enigmatic’
features of Homo sapiens and provides purely hypothetical explanations for
them — without any attempt to give detailed, causal explanations for the
origins of these traits. Because hitherto the AAT has been discussed only
‘at the level of biological roles, not at the level of the mechanical
functions fulfilled by the morphological structures that are found in
fossils, the theory suffers from a lack of precision. The reason for, as well
as the consequence of, this flaw is the absence of testable hypotheses and
predictions deduced from them.

If not only the enigmatic characteristics, but others as well, are taken
into account, it becomes evident that the AAT contains large gaps; its
proposals are insufficiently integrated and by no means free from
contradictions. Also, the parsimony of the AAT has to be questioned,
because of the lack of explanations for less conspicuous traits. In its
present form, the AAT is not able to produce satisfying hypotheses that can
be tested empirically. One of its few predictions postulates the extension of
the search for fossils into areas which have not yet yielded any finds. To
be sure, by refusing to accept common opinions, the AAT has stimulated

. a reconsideration of ideas already available. Unfortunately, the AAT does
not provide us with a more complete understanding of the facts about
human evolution than we have got already. '

On the other hand, detailed investigations of the mechanical function
of several traits of modern humans, as well as of our fossil precursors,
have been carried out. The results of these studies fit together, and are in
accordance with, or even support, the traditional palacoanthropological
ideas which assume the evolution of hominids in a terrestrial, savannah-
like habitat.

Although we feel attracted and, more so, challenged by some of the
arguments derived from the Aquatic Ape Theory, we regret to conclude
that we cannot offer any support to it. We do not agree that there is a
need to postulate an aquatic phase in the evolution of man.

/!
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