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A NASH BARGAINING

To derive the wage rate under Nash bargaining, define the total surplus of a new match as Λt =

λn,t + JHN,t − JHU,t. J
H
N,t and JHU,t satisfy the employment and unemployment envelope conditions,

JHN,t = wt + Et[xt+1((1− s̄(1− χft+1))J
H
N,t+1 + s̄(1− χft+1)J

H
U,t+1)],

JHU,t = b+ Et[xt+1(ft+1J
H
N,t+1 + (1− ft+1)J

H
U,t+1)],

which are derived from the household’s optimization problem given the following laws of motion:

nt+1 = (1− s̄(1− χft+1))nt + ft+1ut,

ut+1 = s̄(1− χft+1)nt + (1− ft+1)ut.

The equilibrium wage rate maximizes (JHN,t − JHU,t)
ηλ1−η

n,t , where η ∈ [0, 1] is the household’s
bargaining weight. Optimality implies JHN,t − JHU,t = ηΛt and λn,t = (1 − η)Λt. After combining
the optimality conditions with JHN,t, J

H
U,t, and (12), and defining tightness as θt = vt/u

s
t , we obtain

wt = η((1− α)yt/nt + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)b.

The household’s wage rate in period t is a weighted average of the firm’s value of a new match and
the worker’s outside option b. The firm’s value of a new worker includes the additional output pro-
duced plus the discounted expected value of the worker net of separations that occur in period t+1.

B EMPLOYMENT UNCERTAINTY DERIVATION

Under the assumptions in Section 4, the model collapses to

ust = 1− (1− χs̄)nt−1, (B.1)

mt = ξ(ust)
ϕv1−ϕt , (B.2)

nt = (1− s̄)nt−1 +mt, (B.3)

qt = mt/vt, (B.4)

λn,t = at − b+ β(1− s̄)Et[λn,t+1], (B.5)

λn,t = κ/qt, (B.6)

at = (1− ρa)ā+ ρaat−1 + σa,t−1εa,t, (B.7)

σa,t = (1− ρsv)σ̄a + ρsvσa,t−1 + σsvεsv,t. (B.8)

Note that the TFP processes are written in levels rather than logs to permit a closed-form solution.
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Guess a solution of the form λn,t = δ0 + δ1(at − ā). Equating coefficients in (B.5) implies

δ0 =
ā− b

1− β(1− s̄)
> 0, δ1 =

1

1− β(1− s̄)ρa
> 0.

Therefore, match value uncertainty,
√

Vt[λn,t+1] = δ1σa,t. From (B.2), (B.4), and (B.6), we obtain

qt = ξ(ust/vt)
ϕ = κ/λn,t → vt = ust(ξλn,t/κ)

1/ϕ.

Therefore, the job finding rate is given by

ft = mt/u
s
t = qtvt/u

s
t = (ξλn,t/κ)

1/ϕ(κ/λn,t) = ξ1/ϕ(λn,t/κ)
(1−ϕ)/ϕ.

If we further assume ϕ = 0.5, then uncertainty surrounding the job finding rate is given by√
Vt[fn,t+1] = (ξ2/κ)δ1σa,t.

From (B.3), employment uncertainty is then given by√
Vt[n̂t+1] =

1
nt
ust+1

√
Vt[ft+1] =

1
nt
ust+1(δ1ξ

2/κ)σa,t,

where the number of unemployed searching is predetermined according to (B.1).

C DATA SOURCES AND TRANSFORMATIONS

We use the following time-series from 1963-2019 provided by Haver Analytics (2021):

1. Civilian Noninstitutional Population: 16 Years & Over
Not Seasonally Adjusted, Quarterly, Thousands (LN16N@USECON)

2. Gross Domestic Product: Implicit Price Deflator
Seasonally Adjusted, Quarterly, 2012=100 (DGDP@USNA)

3. Gross Domestic Product
Seasonally Adjusted, Quarterly, Billions of Dollars (GDP@USECON)

4. Personal Consumption Expenditures: Nondurable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CN@USECON)

5. Personal Consumption Expenditures: Services
Seasonally Adjusted, Quarterly, Billions of Dollars (CS@USECON)

6. Personal Consumption Expenditures: Durable Goods
Seasonally Adjusted, Quarterly, Billions of Dollars (CD@USECON)
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7. Private Fixed Investment
Seasonally Adjusted, Quarterly, Billions of Dollars (F@USECON)

8. Output Per Person, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, 2012=100 (LXNFS@USNA)

9. Labor Share, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, Percent (LXNFBL@USNA)

10. Unemployed, 16 Years & Over
Seasonally Adjusted, Monthly, Thousands (LTU@USECON)

11. Civilian Labor Force: 16 yr & Over
Seasonally Adjusted, Monthly, Thousands (LF@USECON)

12. Civilians Unemployed for Less Than 5 Weeks
Seasonally Adjusted, Monthly, Thousands (LU0@USECON)

13. Job Openings, Job Openings and Labor Turnover Survey,
Seasonally Adjusted, Monthly, Thousands (LJJTLA@USECON)

14. SPF Forecast Dispersion: Real GDP Growth,
Quarterly, 1-Quarter Ahead Growth Rate (ASAQ1GC@SURVEYS)

15. CBOE Market Volatility Index: VIX, Monthly, Index (SPVIX@USECON)

16. Net Stock: Private Fixed Assets, Annual, Billions of Dollars (EPT@CAPSTOCK)

17. Net Stock: Durable Goods, Annual, Billions of Dollars (EDT@CAPSTOCK)

18. Depreciation: Private Fixed Assets, Annual, Billions of Dollars (KPT@CAPSTOCK)

19. Depreciation: Durable Goods, Annual, Billions of Dollars (KDT@CAPSTOCK)

We also used the following data from other sources:

1. Help Wanted Advertising Index (HWI), based on Barnichon (2010). The series is avail-
able at https://sites.google.com/site/regisbarnichon/ (Barnichon, 2020).

2. Real Uncertainty, 3-month horizon, based on Ludvigson et al. (2021). The series is avail-
able at https://www.sydneyludvigson.com/ (Ludvigson and Ng, 2022). The
monthly series is averaged to a quarterly frequency.

3. FRED-MD, Monthly Databases for Macroeconomic Research. The data is available at
https://research.stlouisfed.org/econ/mccracken/fred-databases/

(McCracken, 2021). Under Monthly Data, we use the June 2021 vintage.

4. Fama-French, Data Library. The data is available at https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html (Fama and French, 2021).
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5. WRDS, Stock Market Indexes and Fama-Bliss Discount Bonds. Data is available at https:
//wrds-www.wharton.upenn.edu (Wharton Research Data Services, 2021).

We applied the following transformations to the above data sources:

1. Per Capita Real Output: Yt = GDPt/(DGDPt × LN16Nt).

2. Per Capita Real Consumption: Ct = (CNt + CSt)/(DGDPt × LN16Nt).

3. Per Capita Real Investment: It = (Ft + CDt)/(DGDPt × LN16Nt).

4. Unemployment Rate: Ut = 100(LTUt/LFt).

5. Vacancy Rate: HWI from 1963M1-2000M12 and LJJTLA/LF from 2001M1-2019M12.

6. Short-term Unemployed (U s): The redesign of the Current Population Survey (CPS) in
1994 reduced ust . To correct for this bias, we follow Elsby et al. (2009) and scale ust by the
time average of the ratio of ust/ut for the first and fifth rotations groups to ust/ut across all
rotation groups. Using IPUMS-CPS data (Flood et al., 2022), we extract EMPSTAT (“Em-
ployment Status”), DURUNEMP (“Continuous weeks unemployed”) and MISH (“Month in
sample, household level”). Unemployed persons have EMPSTAT equal to 20, 21, or 22.
Short-term unemployed are persons who are unemployed and have DURUNEMP equal to
4 or less. Incoming rotation groups have MISH equal to 1 or 5. Using the final weights,
WTFINL, we calculate unemployment rates conditional on the appropriate values of MISH
and DURUNEMP. We then apply the X-12 seasonal adjustment function in STATA to the
time series for the ratio. Finally, we take an average of the seasonally adjusted series from
1994-2019. This process yields an average of 1.1725, so U s equals LU0 prior to 1994 and
1.1725× LU0 after 1994.

7. Job-Finding Rate: Following Shimer (2005), ft = 1− (LTUt+1 − U s
t+1)/LTUt.

8. Job Separation Rate: Following Shimer (2012), st = 1− exp(−s̃t), where s̃t satisfies

LTUt+1 =
(1− exp(−f̃t − s̃t))s̃tLFt

f̃t + s̃t
+ exp(−f̃t − s̃t)LTUt, f̃t = − log(1− ft).

9. Real Wage: Following Hagedorn and Manovskii (2008), wt = LXNFBLt × LXNFSt.

10. Wage Elasticity: Slope coefficient from regressing wt on an intercept and LXNFSt.

11. Depreciation Rate: δ = (1 + 1
T/12

∑T/12
t=1 (KPTt +KDTt)/(EPTt−1 +EDTt−1))

1/12 − 1.

12. Capital Share of Income: α = 1− 1
T/3

∑T/3
t=1 LXNFBL.

13. Inflation Rate: π̄ = 1
T/3

∑T/3
t=1(1 + log(DGDPt/DGDPt−1))

1/3.

All monthly time series are averaged to a quarterly frequency. The data is detrended using a
Hamilton filter with an 8 quarter window. All empirical targets are computed using quarterly data.
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D SOLUTION METHOD

The equilibrium system of the model is summarized by E[g(xt+1,xt, εt+1)|zt, ϑ] = 0, where g is
a vector-valued function, xt is a vector of variables, εt is a vector of shocks, zt is a vector of states,
and ϑ is a vector of parameters. There are many ways to discretize the TFP level shock and volatil-
ity process. We use the Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010)
show outperforms other methods for approximating autoregressive processes. For our estimated
model, the bounds on at and kt−1 are set to ±8% of their deterministic steady states, while nt−1

ranges from 0.88 to 0.98. These bounds ensure that simulations contain at least 99% of the ergodic
distribution. We specify 9 states for σa,t, 9 states for εa,t+1, and discretize at, kt−1, and nt−1 into
13, 9, and 9 evenly-spaced points, respectively.1 The product of the points in each dimension, D,
is the total nodes in the state space (D = 9,477). The realization of zt on node d is denoted zt(d).
The Rouwenhorst method provides integration nodes, [εa,t+1(m), σa,t+1(m)], with weights, ϕ(m),
for m ∈ {1, . . . ,M}. The realizations of σa,t+1 are the same as σa,t because it is a Markov chain.

Since vacancies vt ≥ 0, we introduce an auxiliary variable, µt, such that vt = max{0, µt}2

and λt = max{0,−µt}2, where λt is the Lagrange multiplier on the non-negativity constraint. If
µt ≥ 0, then vt = µ2

t and λt = 0. When µt < 0, the constraint is binding, vt = 0, and λt = µ2
t .

Therefore, the constraint on vt is transformed into a pair of equalities (Garcia and Zangwill, 1981).
The vector of policy functions and the realization on node d are denoted by pf t and pf t(d),

where pf t ≡ [µv,t(zt), ct(zt)]. The following steps outline our policy function iteration algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the log-linear model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’s csolve to find
pf t(d) to satisfy E[g(·)|zt(d), ϑ] ≈ 0. Guess pf t(d) = pf j−1(d). Then apply the following:

(a) Solve for all variables dated at time t, given pf t(d) and zt(d).

(b) Linearly interpolate the policy functions, pf j−1, at the updated state variables, zt+1(m),
to obtain pf t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {pf t+1(m)}Mm=1, solve for the other elements of st+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 ϕ(m)g(xt+1(m),xt(d), εt+1(m)).

When csolve converges, set pf j(d) = pf t(d).

3. Repeat step 2 until maxdistj < 10−6, where maxdistj ≡ max{|pf j − pf j−1|}. When that
criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

1We also tried using a grid that was more than 10 times denser, but it had very little effect on our quantitative results.
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E ESTIMATION METHOD

The estimation procedure has two stages. The first stage estimates moments in the data using a 2-
step Generalized Method of Moments (GMM) estimator with a Newey and West (1987) weighting
matrix with 5 lags. The second stage is a Simulated Method of Moments (SMM) procedure that
searches for a parameter vector that minimizes the distance between the GMM estimates in the
data and short-sample predictions of the model, weighted by the diagonal of the GMM estimate of
the variance-covariance matrix. The second stage is repeated for many different draws of shocks
to obtain the standard errors on the parameter estimates. The following steps outline the algorithm:

1. Use GMM to estimate the targets, Ψ̂D
T , and the diagonal of the covariance matrix, Σ̂D

T .

2. Use SMM to estimate the nonlinear DMP model. Given a random seed, h, draw a B + T

period sequence for each shock in the model, where B = 1,000 is a burn-in period and T =

687 is the length of the monthly time series. Denote the shock matrix by Es = [εsa, ε
s
sv]

B+T
t=1 ).

For shock sequence s ∈ {1, . . . , Ns}, run the following steps:

(a) Evaluate the loss function for i ∈ {1, . . . , Nm} random draws in the parameter space.

i. Draw a vector of parameters P̂i from a multivariate normal distribution centered
at a specified mean parameter vector, P̄ , with diagonal covariance matrix, Σ0.

ii. Solve the model using the algorithm in Appendix D given P̂i. Return to step i if
the linear solution does not exist or the nonlinear algorithm does not converge.

iii. Given Es(r), simulate the model R times for B+T periods. We draw initial states
from the ergodic distribution by burning off the first B periods and aggregate to a
quarterly frequency. For each repetition r, calculate the moments ΨM

T (P̂i, Es(r)).
iv. Calculate the mean moments Ψ̄M

R,T (P̂i, Es) = 1
R

∑R
r=1Ψ

M
T (P̂i, Es(r)) and the fit

Ji = [Ψ̂D
T − Ψ̄M

R,T (P̂i, Es)]′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (P̂i, Es)].

(b) Find a guess, P̂0, for the Np estimated parameters and the covariance matrix, Σ0:

i. Find the parameter draw P̂0 that corresponds to min{Ji}Nm
i=1.

ii. Find all Ji below the median, stack the corresponding draws in a Nm/2 × Np

matrix, Θ̂, and define the (i, j) element as Θ̃i,j = Θ̂i,j −
∑Nm/2

i=1 Θ̂i,j/(Nm/2).
iii. Calculate Σ0 = Θ̃′Θ̃/(Nm/2).

(c) Minimize J with simulated annealing. For i ∈ {0, . . . , Nd}, repeat the following steps:
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i. Draw a candidate vector of parameters, P̂cand
i , where

P̂cand
i ∼

P̂0 for i = 0,

N(P̂i−1, c0Σ0) for i > 0.

We set c0 to target an average acceptance rate of 50% across seeds.
ii. Repeat steps 2a, ii-iv.

iii. Accept or reject the candidate draw according to

(P̂i, Ji) =


(P̂cand

i , J candi ) if i = 0,

(P̂cand
i , J candi ) if min(1, exp(Ji−1 − J candi )/c1) > û,

(P̂i−1, Ji−1) otherwise,

where c1 is the temperature and û is a draw from a uniform distribution.

(d) Find P̂up
0 and Σup

0 following step 2b.

(e) Repeat steps 2c-d NSMM times, initializing at P̂0 = P̂up
0 and Σ0 = Σup

0 . Gradually
decrease the temperature. Across all NSMM stages, find the lowest J value, denoted
Jguess, and the corresponding draw, Pguess.

(f) Minimize the same loss function with MATLAB’s fminsearch starting at Pguess.
The minimum is P̂min with a loss function value of Jmin. Repeat, each time updating
the guess, until Jguess − Jmin < 0.001. The parameter estimates correspond to Jmin.

Given {P̂s}Ns
s=1, we report the mean, P̄ =

∑Ns

s=1 P̂s/Ns and standard errors of the estimates.
The reported moments are then based on the mean parameter estimates, Ψ̄M

T = Ψ̄M
R,T (P̄ , E).

We set Ns = 200, R = 1,000, NSMM = 3, Nm = 1,000, Nd = 500, and Np = 10. For each
simulated annealing stage, c0 is 0.1, 0.7, and 1.0, and c1 is 1.0, 0.5, and 0.25, respectively. The
algorithm was programmed in Fortran and executed with Open MPI on the BigTex supercomputer.

F HOME PRODUCTION

This section shows our results are robust to alternative sources of unemployment volatility. To
demonstrate this, we extend our baseline model to include home production following Petrosky-
Nadeau et al. (2018). The representative household derives utility from the consumption of both
the final market good cm,t and home production ch,t. It has log utility over composite consumption
ct = (ωcem,t + (1 − ω)ceh,t)

1/e, where ω ∈ (0, 1) is the preference weight on the market good
and e ≤ 1 governs the elasticity of substitution 1/(1 − e). The home production technology is
ch,t = ahut, where ah > 0 is productivity. The rest of the model is identical to the baseline model.
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Household optimization yields the pricing kernel xt+1 = β(cm,t/cm,t+1)
1−e(ct/ct+1)

e. The flow
value of unemployment becomes zt = ah((1−ω)/ω)(cm,t/ch,t)

1−e+ b, so the Nash wage satisfies

wt = η((1− α)yt/nt + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)zt.

The remaining equilibrium conditions are unchanged from the baseline model shown in Section 3.
We set b = 0.4 to reflect the value of unemployment benefits (Shimer, 2005). The remaining

baseline parameters are set to their estimated values shown in Table 2a. We set ah to the steady-
state marginal product of labor in final good production. We then calibrate ω = 0.7 and e = 0.9 to
target the standard deviations of unemployment and final good output in the baseline DMP model.

Moment Baseline Home Production

SD(U) 6.06 5.84
SD(ỹ) 3.65 3.64
SD(ũ) 21.14 21.29
Corr(U , ỹ) −0.62 −0.59

Table F.1: Key Moments

Contribution Output Uncertainty

Level Total 100.00 36.72
Volatility Total 0.19 63.50
Level Direct 99.81 36.50
Volatility Direct 0.00 63.28

Table F.2: Home production variance decomposition

Results Table F.1 compares the moments from the home production model to the baseline model
and Table F.2 shows the variance decomposition. The model continues to generate a strong nega-
tive correlation between output and uncertainty and similar business cycle moments. Level shocks
continue to explain almost all of the output variance and about 40% of the uncertainty variance.
Crucially, these results stem from a much lower value of b that only reflects unemployment benefits,
as in Shimer (2005). This shows our mechanism is robust to other sources of labor market volatility.

G EFFECT OF CAPITAL ADJUSTMENT COSTS

Given the importance of the employment law of motion, this section studies the effect of adjustment
costs in the capital law of motion using textbook Real Business Cycle and New Keynesian models.

G.1 REAL BUSINESS CYCLE MODEL A representative household chooses {ct, nt, kt}∞t=0 to

maximize expected lifetime utility, E0

∑∞
t=0 β

t[ln ct − ϑ
n1+γ
t

1+γ
], where ϑ determines steady-state

labor hours and 1/γ is the Frisch elasticity of labor supply. The household’s choices are constrained
by ct + it = wtnt + rkt kt−1 and the law of motion for capital in (9). Optimality implies (10) and

wt = ϑnγt ct. (G.1)
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The representative firm produces output with the following technology,

yt = atk
α
t−1n

1−α
t , (G.2)

where α is the capital share of income. The firm chooses {nt, kt−1} to maximize current profits,
yt−wtnt− rkt kt−1, subject to the production function. The two optimality conditions are given by

wt = (1− α)yt/nt, (G.3)

rkt = αyt/kt−1. (G.4)

The aggregate resource constraint is given by

ct + it = yt. (G.5)

A competitive equilibrium consists of infinite sequences of quantities {yt, kt, ct, nt, it}∞t=0, prices
{wt, rkt }∞t=0, and exogenous variables {at, σa,t}∞t=0 that satisfy (1), (2), (9), (10), and (G.1)-(G.5),
given the state of the economy {k−1, a−1, σa,−1} and the sequences of TFP shocks {εa,t, εσa,t}∞t=1.

G.2 NEW KEYNESIAN MODEL The production sector now consists of a continuum of monop-
olistically competitive intermediate firms and a representative final good firm. Intermediate firm
f ∈ [0, 1] produces a differentiated good, yf,t = atk

α
f,t−1n

1−α
f,t , where nft and kf,t−1 are the labor

and capital inputs used by firm f . The final good firm purchases output from each intermediate firm
to produce the final good, yt ≡ [

∫ 1

0
y
(θ−1)/θ
f,t df ]θ/(θ−1), where θ > 1 is the elasticity of substitution.

Profit maximization by the final good firm determines the demand for intermediate good f ,
yf,t = (pf,t/pt)

−θyt, where pt = [
∫ 1

0
p1−θf,t df ]

1/(1−θ) is the price level. Following Rotemberg (1982),
intermediate firms pay a price adjustment cost, Λpf,t ≡ φ(pf,t/(π̄pf,t−1) − 1)2yt/2, where φ > 0

scales the cost and π̄ is the steady-state inflation rate. Given this cost, the value of firm f satisfies

Vf,t = max
nf,t,kf,t−1,pf,t

pf,tyf,t/pt − wtnf,t − rkt kf,t−1 − Λpf,t + Et[xt+1Vf,t+1],

subject to yf,t = atk
α
f,t−1n

1−α
f,t and yf,t = (pf,t/pt)

−θyt. In a symmetric equilibrium where pf,t =

pt, optimality implies the input demand schedules and New Keynesian Phillips curve are given by

wt = (1− α)mctyt/nt, (G.6)

rkt = αmctyt/kt−1, (G.7)

φ(πt/π̄ − 1)(πt/π̄) = 1− θ + θmct + φEt[xt+1(πt+1/π̄ − 1)(πt+1/π̄)yt+1/yt], (G.8)

where πt = pt/pt−1 is the gross inflation rate. If φ = 0, then the real marginal cost of producing a
unit of output, mct, equals (θ−1)/θ, which is the inverse of the markup of price over marginal cost.
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In addition to capital, the household has access to a one-period nominal bond, so the budget
constraint is ct+ it+ bt = wtnt+ rkt kt−1 + rt−1bt−1/πt+ dt, where rt is the gross nominal interest
rate and dt is dividends from ownership of firms. The optimality conditions imply (10), (G.1), and

1 = Et[xt+1(rt/πt+1)]. (G.9)

The bond is in zero net supply and the central bank sets the nominal interest rate according to

rt = r̄(πt/π̄)
ϕπ , (G.10)

where r̄ is the nominal interest rate target and ϕπ governs the strength of the response to inflation.
A competitive equilibrium consists of infinite sequences of quantities {yt, kt, ct, nt, it,mct}∞t=0,

prices {wt, rkt , rt, πt}∞t=0, and exogenous variables {at, σa,t}∞t=0 that satisfy (1), (2), (9), (10), (G.1),
(G.2), and (G.5)-(G.10), given the state {k−1, a−1, σa,−1} and sequences of shocks {εa,t, εσa,t}∞t=1.

Parameter RBC NK Calibration Target

Frisch Elasticity (1/γ) 0.5 0.5 Chetty et al. (2012)
Capital Adjustment Cost (ν) 20 20 Investment Standard Deviation
Elasticity of Substitution (θ) − 11 10% Price Markup
Monetary Response to Inflation (ϕπ) − 1.5 Leduc and Liu (2016)
Price Adjustment Costs (φ) − 1, 296 Leduc and Liu (2016)
Steady-State Hours (n̄) 0.33 0.33 Standard Value
Steady-State Inflation Rate (π̄) − 1.0028 Average Inflation Rate
Level Shock Persistence (ρa) 0.95 0.95 Output Autocorrelation
Volatility Shock Persistence (ρsv) 0.87 0.87 Leduc and Liu (2016)
Level Shock SD (σ̄a) 0.0079 0.0078 Output Standard Deviation
Volatility Shock SD (σsv) 0.0309 0.0307 Uncertainty Standard Deviation

Table G.1: Real Business Cycle and New Keynesian model calibrations.

G.3 CALIBRATION Both models are calibrated at a monthly frequency. Table G.1 summarizes
the parameter values. We set the level shock persistence (ρa) and standard deviation (σ̄a) to match
the autocorrelation and volatility of detrended output. We calibrate the volatility shock standard
deviation (σsv) to match the volatility of real uncertainty and the capital adjustment cost parameter
(ν) to target the volatility of investment. Other parameters are calibrated in line with the literature.

G.4 RESULTS Table G.2 shows that neither model generates countercyclical uncertainty, as the
correlation between output and uncertainty is slightly positive in both models. This holds even
though both models match the volatility of uncertainty and generate realistic investment dynamics.
Thus, capital adjustment costs are too weak to generate endogenous fluctuations in uncertainty. In-
stead, Table G.3 shows uncertainty dynamics are mostly driven by the exogenous volatility shocks.
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Model

Moment Data RBC NK

SD(U) 5.93 5.93 5.93
SD(ỹ) 3.15 3.15 3.15
SD(̃ı) 8.68 7.36 7.80
Corr(U , ỹ) −0.60 0.01 0.11

Table G.2: Key Moments

Output Uncertainty

Contribution RBC NK RBC NK

Level Total 100.00 100.00 0.03 1.43
Volatility Total 0.38 0.37 99.97 98.58
Level Direct 99.62 99.63 0.03 1.42
Volatility Direct 0.00 0.00 99.97 98.57

Table G.3: Variance decompositions

H HOSIOS CONDITION

The equilibrium of a search and matching model is generally inefficient due to two externalities in
the matching process (Hosios, 1990). First, when a firm posts a new vacancy, it imposes a positive
externality on unemployed workers who face a higher job finding rate. Second, the vacancy posting
imposes a negative externality on other firms who face lower job filling rates and a higher marginal
cost of vacancy creation today and in the future. The Hosios (1990) condition restores efficiency.

Social Planner Problem The social planner maximizes

Wt = ln ct + βEtWt+1

subject to

ct ≤ atk
α
t−1n

1−α
t − κvt − it + but − τt,

nt ≤ (1− s)nt−1 + ξ(1− nt−1 + χs̄nt−1)
ϕv1−ϕt ,

kt ≤ (1− δ)kt−1 +

(
a1 +

a2
1− 1/ν

(
it

kt−1

)1−1/ν
)
kt−1,

ut = 1− nt, vt ≥ 0.

The optimality conditions for job creation and investment are given by

κ− λv,t
(1− ϕ)qt

= (1− α)
yt
nt

− b+ Et

[
xt+1

(
κ− λv,t+1

(1− ϕ)qt+1

)
(1− s− ϕ(1− χs̄)ft+1)

]
, (H.1)

1

a2

(
it

kt−1

)1/ν

= Et

[
xt+1

(
α
yt+1

kt
+

1

a2

(
it+1

kt

)1/ν

(1− δ + a1) +
1

ν − 1

it+1

kt

)]
, (H.2)

where λv,t is the multiplier on the non-negativity constraint for vt, and xt+1 ≡ β(ct/ct+1).

Competitive Equilibrium In competitive equilibrium, the job creation condition is given by

κ−λv,t
qt

= (1− α)yt/nt − wt + (1− s̄)Et

[
xt+1

κ−λv,t+1

qt+1

]
, (H.3)
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while (H.2) is unchanged. The wage rule resulting from Nash bargaining is given by

wt = η((1− α)yt/nt + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)b. (H.4)

Note that labor market tightness is θt = vt/ut−1 = ft/qt. Combine (H.3) and (H.4) to obtain

κ−λv,t
qt

= (1− η)
(
(1− α) yt

nt
− b
)
+ Et

[
xt+1

(
κ−λv,t+1

qt+1

)(
1− s̄− ηκ(1− χs̄) ft+1

κ−λv,t+1

)]
(H.5)

Hosios Condition If vt+1 > 0, then λv,t+1 = 0. If vt+1 = 0, then mt+1 = ft+1 = 0. In either case,
(H.5) is equivalent to (H.1) when the Nash bargaining weight equals the matching elasticity, η = ϕ.

I VAR ESTIMATES UNDER RECURSIVE IDENTIFICATION

Recursive identification schemes are often used to identify the effect of uncertainty shocks on real
activity. To show the implications of our theoretical results, consider the following bivariate VAR,

Yt =
∑L

l=1AlYt−l + vt, (I.1)

where Yt is a vector of output and uncertainty, vt is a vector of reduced-form shocks, and {Al}Ll=1

are parameter matrices. Suppose uncertainty is ordered first in Yt and a Cholesky decomposition
is used to identify the structural shocks. Under these assumptions, uncertainty shocks can affect
uncertainty and output on impact, while output shocks can only affect output contemporaneously.

To test whether this recursive identification scheme can identify the true structural output re-
sponses, we estimate the VAR model on quarterly actual and simulated data from our estimated
DMP model and compare the identified responses. The number of lags L = 3 is based on the
Akaike Information Criterion. We simulate our model 1,000 times to produce artificial data series
with 228 quarterly (684 monthly) observations, the same number used for our structural estimation.

Figure I.1 reports the responses to an uncertainty shock using actual and simulated data at a
quarterly frequency under recursive identification. The responses with actual data are similar to
those in the literature: a positive uncertainty shock raises uncertainty and lowers output on impact.
We obtain similar responses using our simulated data VAR even though the model violates the
identification assumption. Only the level shock affects output on impact in the simulated data, so
the identified “structural” shock must be correlated with the level shock from the DMP model. We
confirm this intuition by estimating the VAR model on simulated monthly data (i.e., the frequency
of the model) and correlating the identified structural shocks with the true structural shocks. While
the identified uncertainty shock has a correlation of 0.84 with the true structural uncertainty shock,
it also has a correlation of −0.47 with the true structural level shock, confirming it is contaminated.

Alternatively, when uncertainty is ordered last in the VAR, the identified output shock has a
correlation of 0.99 with the true level shock and 0 with the true uncertainty shock. The identified
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(a) Responses based on actual data. Shaded regions are 68% confidence intervals.
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(b) Responses based on simulated data. Shaded regions are [16%, 84%] credible sets.

Figure I.1: Bivariate VAR responses to an uncertainty shock when uncertainty is ordered first.

uncertainty shock has a correlation of 0.96 with the true uncertainty shock and 0 with the level
shock. These correlations show the recursive identification scheme properly identifies the structural
shocks under this ordering because uncertainty is almost entirely endogenous in the DMP model.
Figure I.2 shows the impulse responses to an uncertainty shock using actual and simulated data in
this case. Consistent with the impulse responses from the DMP model, there is almost no real effect
of uncertainty using the simulated data VAR. Using actual data, the real effects are smaller than
when uncertainty is ordered first, but there is still a statistically significant decline in output. One
potential explanation is that uncertainty in the data has meaningful endogenous and exogenous
components. In this setting, neither recursive ordering will properly identify the structural shocks.
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(a) Responses based on actual data. Shaded regions are 68% confidence intervals.
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(b) Responses based on simulated data. Shaded regions are [16%, 84%] credible sets.

Figure I.2: Bivariate VAR responses to an uncertainty shock when uncertainty is ordered last.

J VARIABLE SEARCH INTENSITY MODEL

This section shows our results are robust to adding search effort to the baseline DMP model fol-
lowing Leduc and Liu (2020). Define zt as average search intensity, so new matches are given by

Mt = ξ(ztu
s
t)
ϕv1−ϕt .

The household chooses consumption, investment, capital, and search intensity to solve

JHt = max
ct,it,kt,zt

ln ct + βEt[J
H
t+1]

subject to (6), (9), and

ct + it = wtnt + rkt kt−1 + b(1− nt)− h(zt)u
s
t − τt,

where h(zt) is the resource cost of search effort, which is increasing and concave. For a worker

14



BERNSTEIN, PLANTE, RICHTER & THROCKMORTON: ONLINE APPENDIX

with search effort zit, the job finding rate is f(zit) = zitmt/(ztu
s
t), so the marginal effect of raising

search intensity is ∂f(zit)/∂zit = ft/zt. The optimality and envelope conditions produce (10) and

h′(zt) =
ft
zt

(
wt − b+ Et

[
xt+1(1− ft+1 − s̄(1− χft+1))J̃n,t+1

])
, (J.1)

J̃n,t = wt − b+ Et[xt+1(1− ft+1 − s̄(1− χft+1))J̃n,t+1] + h(zt)
1− χs̄

1− ft − s̄(1− χft)
, (J.2)

where J̃Hn,t ≡ JHn,t/µt is the employment surplus and µt is the multiplier on the budget constraint.
The firm’s problem is unchanged, but the Nash bargaining problem maximizes (J̃n,t)η(λn,t)1−η,

which implies J̃n,t = ηλn,t/(1− η). After combining with (12) and (J.1), the wage rate is given by

wt = η((1− α)yy/nt + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)

(
b− (1− χs̄)h(zt)

1− ft − s̄(1− χft)

)
, (J.3)

which replaces (15). Finally, the aggregate resource constraint becomes ct+it+κvt+h(zt)u
s
t = yt.

Moment Baseline Search Effort

SD(U) 6.06 5.94
SD(ỹ) 3.65 3.77
SD(ũ) 21.14 24.14
Corr(U , ỹ) −0.62 −0.59

Table J.1: Key Moments

Contribution Output Uncertainty

Level Total 100.00 39.23
Volatility Total 0.20 61.01
Level Direct 99.80 38.99
Volatility Direct 0.00 60.77

Table J.2: Search effort variance decomposition

We assume h(zt) = ζ0 + ζ1zt+ ζ2z
2
t /2, where ζ0 and ζ1 are set so steady-state search intensity,

z̄ = 1 and there are no search costs in steady state (h(z̄) = 0). We set ζ2 to match the standard
deviation of detrended search intensity (2.15), where the time series is constructed by following the
approach in Leduc and Liu (2020). This implies ζ2 = 4, given the parameter estimates in Table 2.

Table J.1 compares moments from this model to the baseline model and Table J.2 shows the
variance decomposition. The model continues to generate a strong negative correlation between
output and uncertainty and similar business cycle moments. Level shocks still explain almost all of
the output variance and about 40% of the uncertainty variance. Therefore, the countercyclical fluc-
tuations in uncertainty remain endogenous and volatility shocks continue to have small real effects.
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K IMPULSE RESPONSES: EXTENDED DMP MODELS
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Figure K.1: Generalized impulse responses to 2 standard deviation shocks in the extended DMP models.
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L ENDOGENOUS JOB SEPARATIONS MODEL

The following summarizes the equilibrium system for the model with endogenous job separations:

vt = max{0, µt}2

λv,t = max{0,−µt}2

nt = (1− F (zt))((1− s̄)nt−1 +mt)

ut = 1− nt

ust = ut−1 + χs̄nt−1

θt = vt/u
s
t

Mt = ξ(ust)
ϕv1−ϕt

mt = min{Mt, u
s
t , vt}

qt = mt/vt

wt(zt) = η(wf,tzt + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)b

λn,t =
∫∞
zt
(wf,tzt − wt(zt))dF (zt) + (1− F (zt))(1− s̄)Et[xt+1λn,t+1]

wf,tzt − wt(zt) + (1− s̄)Et[xt+1λn,t+1] = 0

qtλn,t = κ− λv,t

ℓt = ((1− s̄)nt−1 +mt)
∫∞
zt

ztdF (zt)

yt = atk
α
t−1ℓ

1−α
t

ct + it + κvt = yt

1
a2

(
it
kt−1

)1/ψ
= Et

[
xt+1

(
rkt+1 +

1
a2

(
it+1

kt

)1/ψ
(1− δ + a1) +

1
ψ−1

it+1

kt

)]
kt = (1− δ)kt−1 +

(
a1 +

a2
1−1/ψ

(
it
kt−1

)1−1/ψ
)
kt−1

rkt = αyt/kt−1

wf,t = (1− α)yt/ℓt

ln at = (1− ρa) ln ā+ ρa ln at−1 + σa,tεa,t

lnσa,t = (1− ρsv) ln σ̄a + ρsv lnσa,t−1 + σsvεsv,t

When z → 0, F (zt) = 0 and
∫∞
zt

ztdF (zt) = 1, so the model collapses to our baseline DMP model.
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