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ABSTRACT

This paper examines the response of the U.S. labor market to a large and persistent job sep-

aration rate shock, motivated by the ongoing economic effects of the COVID-19 pandemic. We

use nonlinear methods to analytically and numerically characterize the responses of vacancy

creation and unemployment. Vacancies decline in response to the shock when firms expect

persistent job destruction and the number of unemployed searching for work is low. Quantita-

tively, under our baseline forecast the unemployment rate peaks at 19.7%, 2 months after the

shock, and takes 1 year to return to 5%. Relative to a scenario without the shock, unemploy-

ment uncertainty rises by a factor of 11. Nonlinear methods are crucial. In the linear economy,

the unemployment rate “only” rises to 9.2%, vacancies increase, and uncertainty is unaffected.

In both cases, the severity of the COVID-19 shock depends on the separation rate persistence.
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1 INTRODUCTION

Beginning in mid-March 2020, U.S. initial unemployment claims sky-rocketed to an unprece-
dented level due to the COVID-19 pandemic and ensuing “stay-at-home” policies implemented
throughout the country.1 The spike in unemployment claims has already led to a significant in-
crease in the unemployment rate and estimates indicate it will continue to rise and peak between
14.0% and 32.1% in 2020.2 In light of this novel shock, it is crucial to examine what the labor mar-
ket response might look like over the medium-term while tracing out the underlying mechanisms.

We use a nonlinear search and matching model similar to Hagedorn and Manovskii (2008) to
examine the economy’s response to a large positive shock to the job separation rate. The shock
is designed to capture the sharp increase in initial unemployment claims due to COVID-19. Our
analysis focuses on the short and medium-term dynamics of the unemployment rate and vacancies
along the economy’s response path to the shock. This exercise offers valuable insights into the
mechanisms behind COVID-19’s impact on the labor market, which is a key ingredient for any
policy that seeks to alter the longer-run evolution of the labor market in the post-pandemic world.

We begin by analytically characterizing the response of vacancies to a separation rate shock.
The shock affects vacancy creation through two distinct channels. First, a positive separation rate
shock lowers the expected duration and hence the marginal benefit of a new job, which weakens the
firm’s incentives to post vacancies. Second, an increase in the separation rate eventually causes an
increase in the number of unemployed workers searching for jobs. This increases the probability of
filling a new vacancy, which all else equal encourages the firm to post new vacancies in equilibrium.

Our analytical approach uses second-order approximations to cleanly derive these effects. This
shows the conditions under which the first effect dominates the second effect, causing vacancies
to decrease in response to a positive separation rate shock. Intuitively, vacancies fall when the
increase in number of unemployed workers searching for jobs is sufficiently small, so that the
reduction in worker profitability dominates the increase in the likelihood of filling a new vacancy.

Furthermore, we use our second-order approximation to study how higher order moments re-
spond to separation rate shocks. In particular, we show the conditional variance of future unem-
ployment (i.e., uncertainty) increases in response to a positive separation rate shock. This result is
driven by the convex response of equilibrium job creation (vacancies times the job-filling rate) to a
separation rate shock. Intuitively, convexity implies a positive separation rate shock increases both

1In February 2020 there were 211,000 initial unemployment claims on average, the lowest level since November
1969. For the week of March 15th, when the pandemic started to broadly affect the U.S., initial claims rose to 3.31
million. In total over the first month of the pandemic, unemployment claims increased by a staggering 22.03 million.
For perspective, “only” 9.07 million claims were filed during the Great Recession from December 2007 to June 2009.

2On average, panelists from the April 2020 Blue Chip Economic Indicators survey estimated the peak U.S. un-
employment rate in 2020 would reach 14.0%. An estimate from the Federal Reserve Bank of St. Louis found the
unemployment rate could hit 32.1% in the second quarter (Faria-e-Castro, 2020a). Despite the wide range, either value
would reflect the highest monthly unemployment rate on record. The previous peak was 10.8% in November 1982.
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the conditional mean and conditional variance of future job creation, and therefore unemployment.
Our quantitative analysis is based on simulations of the nonlinear model. The severity of the

COVID-19 shock depends on the separation rate persistence, which determines the speed of the re-
covery. In response to the shock in our baseline simulation, the unemployment rate peaks at 19.7%,
2 months after the shock, and takes 1 year to return to 5%. Furthermore, unemployment uncertainty
increases by a factor of 11, relative to a scenario without the shock. We interpret these results as
demonstrating the potentially large and long-lasting economic impact of the COVID-19 pandemic.

In line with our analytical insights, the large unemployment response is driven by a marked
decline in vacancy creation by firms. This in turn is driven by a large reduction in the profitability of
new matches that initially outweighs the increase in the number of unemployed workers searching
for a job. When the separation rate declines, profitability increases, and vacancy creation recovers.

We emphasize the importance of using nonlinear methods by comparing the nonlinear re-
sponses to those from a linear version of the model. In the absence of higher-order effects, the un-
employment rate increases to only 9.2%, well below current forecasts. Vacancies oddly increase on
impact. The muted predictions occur because the linear model does not account for the interaction
between the expected job separation rate and the expected job filling rate, which amplifies the equi-
librium decline in the marginal benefit of posting a vacancy. These results demonstrate the impor-
tant role that higher-order effects play in generating reasonable responses to a separation rate shock.

Related Literature There are two broad categories of the emerging literature that examines the
economic effects of the COVID-19 pandemic. The first category uses the Markov-switching SIR
(i.e., people are either susceptible to, infected by, or recovered from the disease) epidemiology
model (Atkeson, 2020). For example, Alvarez et al. (2020) study optimal lockdowns that reduce
fatalities while also minimizing the economic costs. In a similar model, Berger et al. (2020) also
study the policies of disease testing and case-dependent quarantines. Eichenbaum et al. (2020)
extend the model so the shock affects supply and demand and find the economic costs are 6 to 7

times larger. Alternatively, Jones et al. (2020) and Piguillem and Shi (2020) argue the congestion
and limited capacity of the health care system is an important consideration for optimal policy.3

The second category of papers employ a New Keynesian and/or multi-sector model to analyze
different policies. In a New Keynesian model, Fornaro and Wolf (2020) highlight how a negative
supply shock can create a “doom loop” that disrupts supply and leads to a pessimism trap with
low growth and high unemployment, where aggressive fiscal policy is needed to prevent economic
stagnation. In a multi-sector nonlinear New Keynesian model, Faria-e-Castro (2020b) shows that
the shutdown of contact-intensive service sectors can trigger a deep recession and then studies the

3Other papers examine the COVID-19 pandemic in a historical context. Jordà et al. (2020) compare the COVID-19
pandemic to past pandemics and wars and find longer-lasting economic effects of pandemics. Barro et al. (2020) study
the 1918 pandemic and argue the effects on GDP and consumption are an upper bound for the COVID-19 pandemic.
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effects of recent monetary and fiscal policies. Furthermore, Guerrieri et al. (2020) find an important
role for incomplete markets where firms shutdown and exit in response to aggregate supply shocks,
which has important policy implications for fiscal multipliers and preventing firms from exiting.

Our paper complements the existing literature in an important way. We examine the effects of
the COVID-19 pandemic through the lens of the labor market, which is a crucial element of the
pandemic’s transmission to the economy. To facilitate our analysis, we modify a textbook search
and matching model. Rather than shocking productivity, as others have done, the unprecedented
increase in initial unemployment claims is interpreted as a once-in-a-century job separation shock.

We also contribute to the literature that uses nonlinear methods to analyze search and matching
models. To our knowledge, we are the first to provide nonlinear analytical characterizations of key
variables such as vacancy creation, and higher order moments such as unemployment uncertainty.
These results are helpful in understanding the significant nonlinearities we numerically uncover.
Quantitatively, we build on Petrosky-Nadeau and Zhang (2017) and Petrosky-Nadeau et al. (2018),
who study the nonlinear responses to productivity shocks, by focusing on separation rate shocks.

The paper proceeds as follows. Section 2 introduces the economic environment, Section 3
contains our analytical results, and Section 4 presents our quantitative results. Section 5 concludes.

2 ENVIRONMENT

We situate our analysis in a textbook, infinite horizon search and matching model similar to Hage-
dorn and Manovskii (2008). A representative household and a representative firm interact in a
frictional labor market. In each period, members of the household are either employed or unem-
ployed. The mass of household members is normalized to unity so the number employed equals the
aggregate employment rate. Employed workers receive a wage determined by Nash Bargaining.

Search and Matching At the beginning of period t, the employment rate is nt−1. A fraction st of
employed workers then lose their jobs, where st is the exogenous separation rate, which follows

ln st+1 = (1− ρs) ln s̄+ ρs ln st + σsεt+1, ε ∼ N(0, 1). (1)

Therefore, the total number of unemployed people searching for work in period t is given by

ust = 1− nt−1 + stnt−1. (2)

If firms post vt vacancies, then the number of new matches is determined by the following function

mt = ustvt/((u
s
t)
ι + vιt)

1/ι, (3)
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where ι > 0 determines the curvature of the function. Define θt ≡ vt/u
s
t as labor market tightness

from the firm’s perspective. Then the job finding rate, ft, and job filling rate, qt, are given by

ft = mt/u
s
t = 1/(1 + θ−ιt )1/ι, (4)

qt = mt/vt = 1/(1 + θιt)
1/ι. (5)

The specification of the matching function follows Den Haan et al. (2000). Compared to a Cobb-
Douglas specification, (3) ensures the job-filling and job-finding rates remain between 0 and 1. This
distinction is particularly important when shocks drive the economy far away from steady state.

Following Blanchard and Galı́ (2010), we assume newly matched workers begin employment
in the same period they are matched with a firm, so aggregate employment evolves according to

nt = (1− st)nt−1 + qtvt. (6)

The unemployment rate, ut, is includes anyone who is not matched in period t, so

ut ≡ ust −mt = 1− nt. (7)

Firms A representative firm produces the final good by operating a constant returns to scale
technology that uses labor as the only input. Vacancies and labor demand {vt, nt} are chosen to
maximize the present value of dividends, Vt = nt−wtnt−κvt+βEt[Vt+1], subject to (6) and vt ≥ 0,
where κ > 0 is the vacancy posting cost, w is the wage rate, andEt is the mathematical expectation
operator condition on information at time t. Letting λt denote the Lagrange multiplier on the non-
negativity constraint and Sn,t the Lagrange multiplier on (6), the optimality conditions are given by

Sn,t = κ/qt − λt, (8)

Sn,t = 1− wt + βEt[(1− st+1)Sn,t+1], (9)

which imply

κ/qt − λt = 1− wt + βEt[(1− st+1)(κ/qt+1 − λt+1)]. (10)

This condition states that the marginal cost of posting an additional vacancy at time t equals the
marginal benefit of an additional worker. The benefit includes the time-t profit from the new match
plus the discounted expected value of the worker, net of the separations that occur at time t + 1.
Also note that Sn,t is interpreted as the marginal surplus value of a new match to the firm at time t.

Households Given paths for employment and unemployment, the household maximizes lifetime
utility, Jt = ct + βEtJt+1, subject to ct = wtnt + but − τt + dt, where b is the unemployment
benefit, τt is a lump-sum tax, and dt is dividends from ownership of the firm. Applying the envelope
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theorem, we obtain the marginal utilities of employment and unemployment given by

Jn,t = wt + βEt[((1− st+1(1− ft+1))Jn,t+1 + st+1(1− ft+1)Ju,t+1)],

Ju,t = b+ βEt[(ft+1Jn,t+1 + (1− ft+1)Ju,t+1)].

Hence, the marginal surplus of employment over unemployment is given by

Jn,t − Ju,t = wt − b+ βEt[(1− ft+1)(1− st+1)(Jn,t+1 − Ju,t+1)]. (11)

Wage Rate Wages are determined via Nash Bargaining between an employed worker and the firm.
The total surplus of a match is Λt = (Jn,t − Ju,t) + Sn,t. The equilibrium wage rate maximizes
(Jn,t − Ju,t)η(Sn,t)1−η, where η ∈ [0, 1] is the household’s bargaining weight. Optimality implies

Jn,t − Ju,t = ηΛt (12)

or, equivalently,

Sn,t = (1− η)Λt. (13)

To derive the equilibrium wage rate, first plug (11) into (12) to obtain

ηΛt = wt − b+ ηβEt[(1− st+1)(1− ft+1)Λt+1]. (14)

Then plug (9) in (13) and combine with (14) to obtain

wt = η(1 + κβEt[(1− st+1)θt+1]) + (1− η)b. (15)

The wage rate in period t is a weighted average of the representative firm’s value of a new match
and the representative household’s cost of working. The firm’s value of a new worker includes the
additional output produced plus the discounted expected value of the foregone vacancy cost net of
separations that occur in period t+ 1. The household’s cost is the foregone unemployment benefit.

Equilibrium Given the government budget constraint, τt = but, the resource constraint is given by

ct + κvt = nt. (16)

A competitive equilibrium is sequences of quantities {ct, nt, ut, ust , vt, qt}∞t=0, prices {wt}∞t=0, and
exogenous variables {st}∞t=1 that satisfy (1), (2), (5)-(7), (10), (15), and (16) given states {n−1, s0}.

3 ANALYTICAL RESULTS

The dynamics of the standard search and matching model are driven by the representative firm’s
vacancy creation decision. In our context, this choice is crucial in determining the response of the
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economy, in particular the unemployment rate, to the separation rate shock that occurs due to the
pandemic. This section combines simplifying assumptions with approximation techniques to shed
light on the determinants of vacancy creation at both the micro and macro levels. We also discuss
how vacancy creation drives endogenous fluctuations in uncertainty about the unemployment rate.

3.1 DRIVERS OF AGGREGATE VACANCY CREATION Substituting (15) into (10) implies4

κ/qt = (1− η)(1− b) + βEt[(1− st+1)(1− ηθt+1qt+1)κ/qt+1].

In our quantitative exercise, we set the bargaining weight close to zero following Hagedorn and
Manovskii (2008). Therefore, in order to simplify the qualitative analysis, we set η = 0 to obtain

κ/qt︸︷︷︸
mct

= 1− b︸ ︷︷ ︸
mbt

+ βEt[(1− st+1)κ/qt+1]︸ ︷︷ ︸
mbt+1

, (17)

which has a simple microeconomic interpretation. The left-hand side is the marginal cost of posting
a new vacancy—the flow cost of maintaining the posting multiplied by its expected duration. The
right-hand side captures the static and dynamic marginal benefits of a new vacancy. The static
benefit is the profit flow from a new match. The dynamic benefit captures the fact that, conditional
on the match surviving, the firm saves the marginal cost of posting a new vacancy in period t+ 1.

Total vacancies are given by vt = θt(1− (1− st)nt−1). Using (5) to substitute for θ, we obtain

vt =
(
κ−ι(κ/qt)

ι − 1
)1/ι

(1− (1− st)nt−1), (18)

which shows vacancies can be decomposed into two components. The first component is driven by
microeconomic considerations and is summarized by the firm’s marginal cost of vacancy creation.
All else equal, a higher marginal cost indicates the firm is creating more vacancies in equilibrium.
Greater vacancy posting drives down the job-filling rate and hence raises the firm’s marginal cost.

The second component is driven by the macroeconomic nature of the matching function. Recall
that ust = 1 − (1 − st)nt−1 is the number of unemployed workers searching for jobs in period t.
All else equal, when ust is higher, more matches are created and the job-filling rate increases. This
drives down the marginal cost of vacancy creation and results in an increase in vacancies created.

To understand how vacancies respond to separation rate shocks, we need to examine how each
component responds. The second component increases in response to a positive separation rate
shock. The higher separation rate causes ust to rise, which ceteris paribus leads to higher vacancies.

Now consider how the first component responds to a positive separation rate shock. To facilitate
the analysis, we use a second-order approximation of (17). Formally, let x̂t ≡ ln(xt/x) denote the

4For tractability, we assume the constraint vt ≥ 0 never binds when deriving our analytical results. Numerically,
the constraint only binds at extreme points in the state space, which we do not encounter in our quantitative exercise.
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log deviation of a variable xt from its deterministic steady-state value. We look for a solution where

q̂t = φq,1ŝt + 1
2
φq,2ŝ

2
t

for some coefficients φq,1 and φq,2.5 The firm’s marginal cost,mct = κ/qt, is then approximated by

m̂ct = −φq,1ŝt − 1
2
φq,2ŝ

2
t .

Lemma 1. Suppose q̂t = φq,1ŝt + 1
2
φq,2ŝ

2
t solves (17). Then φq,1 > 0 and φq,2 > 0.

Given the approximation to the vacancy creation equation, (17), this result says the job-filling
rate is increasing and convex in the separation rate ŝt, while the marginal cost is decreasing and
concave. We can also trace out the relation between m̂ct and ŝt by revisiting (17). Consider a
positive and persistent shock to the separation rate, which causes both ŝt and Etŝt+1 to increase.
To a first order, the increase in Etŝt+1 lowers the dynamic benefit of posting a vacancy in period t
since there is a larger chance that it gets destroyed in period t+ 1. In response, the firm chooses to
post fewer vacancies, the job-filling rate increases, and the marginal cost of vacancy creation falls.6

To see the concavity, note that when Etŝt+1 increases, the future job-filling rate also increases.
As a result, the future marginal cost of a vacancy falls, which exacerbates the reduction in the future
marginal benefit of creating a vacancy in period t. The second-order interaction of these effects am-
plifies the equilibrium decline in the marginal cost of a vacancy in period t. Hence the drop in the
firm’s marginal cost is larger when accounting for second-order effects of separation rate shocks.

The response of vacancies to a separation rate shock is determined by two opposing forces.
One, a positive shock lowers vacancy creation via the marginal cost channel—the future marginal
benefit of a vacancy declines so firms create fewer vacancies. Two, a positive shock increases the
number of unemployed workers searching for a job, which causes the job-filling rate and vacancies
to increase. To formalize the effects of these channels, we derive a second order approximation of
(18) in terms of ŝt and n̂t−1, since vacancies directly depend on the endogenous state variable nt−1.

Proposition 1. Suppose q̂t = φq,1ŝt + 1
2
φq,2ŝ

2
t solves (17). Then

v̂t = φv,1(n̂t−1)ŝt + 1
2
φv,2ŝ

2
t + ψv,1n̂t−1 + 1

2
ψv,2n̂

2
t−1,

where φv,1(n̂) is an affine function and all coefficients depend only on the deterministic steady state.

In order to highlight how the marginal cost of vacancy creation and the number of unemployed
workers searching for jobs create opposing effects of separation rate shocks on vacancy creation, it

5In general, we would approximate a function qt = q(st, nt−1) that also depends on the endogenous state variable.
However, it turns out the dependence of qt on nt−1 is numerically negligible compared to its dependence on st. There-
fore, we streamline the analysis by restricting attention to an approximate solution in which qt only depends on st.

6Appendix A defines the coefficients and provides detailed proofs of each lemma and proposition in this section.

7



BERNSTEIN, RICHTER & THROCKMORTON: COVID-19

is sufficient to focus on the function φv,1(n̂) in the first term of Proposition 1. Appendix A shows

φv,1(n̂t−1) = f̄(1 + n̂t−1/ū
s)− φq,1/(1− q̄ι),

where a bar denotes a steady-state value. The first term in this expression captures the positive
effect stemming a larger number of unemployed workers searching for jobs. It is increasing in
the employment rate at the start of the period, n̂t−1. All else equal, higher employment results in a
larger number of newly searching unemployed workers when the separation shock hits. The second
term captures the marginal cost channel. All else equal, this expression shows the marginal cost
channel will dominate when n̂t−1 is sufficiently small. In this case, the reduction in marginal cost
driven by a fall in the future marginal benefit of a vacancy dominates the rise in the job-filling rate.

3.2 UNEMPLOYMENT UNCERTAINTY An advantage of our nonlinear approach is that we can
study how shocks to the first moments of exogenous variables induce changes in the higher order
moments of endogenous variables. Given our application, we focus on the uncertainty surrounding
the unemployment rate, which we measure as the expected volatility of the 1-period ahead forecast
error following Plante et al. (2018). Specifically, for a generic variable x, uncertainty is given by

Uxt,t+1 =
√
Et[(xt+1 − Et[xt+1])2].

The same definition is also used in recent empirical work on uncertainty (e.g., Jurado et al. 2015).
Applying this definition to the unemployment rate, ut = 1− (1− st)nt−1− qtvt, together with

our approximations for the job-filling rate and vacancies, yields the following expression for Uut,t+1.

Lemma 2. If Lemma 1 and Proposition 1 hold, unemployment uncertainty is given by

Uut,t+1 = (q̄v̄(φq,1 + φv,1(n̂t−1)− 1 + (φq,2 + φ2
q,1 + φv,2 + φv,1(n̂t−1)2 − 1)ρsŝt))σs.

The more q̂t+1 and v̂t+1 respond to ŝt+1, the larger is φq,1 + φv,1(n̂t−1)− 1 > 0, and the larger
is the conditional variance of ut+1. Beyond these first-order considerations, Lemma 2 also shows
that a shock to the separation rate in period t affects uncertainty about period t+ 1. In other words,
first moment shocks to an exogenous variable affect the second moments of endogenous variables.

Proposition 2. Suppose Lemma 2 holds. Then

dUut,t+1/dŝt = q̄v̄(φq,2 + φ2
q,1 + φv,2 + φv,1(n̂t−1)2 − 1)ρsσs.

To streamline the exposition, we restrict our attention to the case in which dUut,t+1/dŝt > 0, so
unemployment uncertainty is increasing in the current separation rate. We focus on this particular
case because it is the most quantitatively relevant. Proposition 2 shows that this occurs when vacan-
cies and the job-filling rate are sufficiently convex in the separation rate so that φq,2 +φv,2−1 > 0.
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Why does the convexity of vacancies and the job-filling rate result in a positive response of
unemployment uncertainty to separation rate shocks? Consider the impact of a positive separation
rate shock in period t on the conditional distributions of ŝt+1, q̂t+1, and v̂t+1. While the mean of the
conditional distribution of ŝt+1 increases, the conditional variance is unaffected since the shocks
are exogenous. In contrast, the convexity of q̂t+1 and v̂t+1 with respect to ŝt+1 implies the increase
in the conditional mean of ŝt+1 increases their conditional means and conditional variances. As a
result, uncertainty about ut+1 increases in response to a positive separation rate shock in period t.

4 QUANTITATIVE ANALYSIS

In this section, we present our main numerical exercise and study the economy’s response to a
large positive separation rate shock. We view this exercise as informative of how frictions in the
U.S. labor market will affect the response of unemployment to a large increase in job separations.

Subjective Discount Factor β 0.9983 Vacancy Posting Cost κ 0.615
Nash Bargaining Weight η 0.052 Average Separation Rate s̄ 0.035
Unemployment Benefit b 0.955 Separation Rate Persistence ρs 0.7071
Matching Function Curvature ι 1.27 Separation Rate Standard Deviation σs 0.3533

Table 1: Baseline parameter values.

4.1 CALIBRATION Table 1 summarizes our baseline parameter values. A period in the model
corresponds to 1 month. The subjective discount factor implies an annual real interest rate of 2%.
The household’s bargaining weight, η, and flow value of unemployment, b, are set to the values in
Hagedorn and Manovskii (2008). The curvature in the matching function, ι, is consistent with the
value in Den Haan et al. (2000). The average separation rate, s̄, is 0.035, which is the average in
the Job Openings and Labor Turnover Survey (JOLTS) since the series began in 2001. The vacancy
cost, κ, implies an average unemployment rate of 6%, which equals the JOLTS sample average.

We calibrate the parameters of the exogenous separation rate process, (1), to reflect the effects
of the COVID-19 pandemic. The baseline persistence of the process is based on a half-life of 2

months, but we also show the results with half-lives of 1 and 3 months to consider different recov-
eries. The low persistence captures that the temporary increase in separations is likely to quickly
decline as state governments lift “stay-at-home” orders. We set the shock standard deviation so a
COVID-19-type pandemic occurs once every 100 years, since the COVID-19 pandemic is widely
considered the worst public health crisis since the 1918 influenza pandemic about 100 years ago.

The size of the COVID-19 shock is calibrated to unemployment claims data since the onset of
the pandemic. From March 15-April 11, 2020, initial unemployment claims increased 22,034,000.
In February 2020, there were 5,560,000 total separations, of which 1,755,000 were either layoffs or

9
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discharges, and 152,487,000 people employed. These values equate to a 3.7% separation rate. Us-
ing the increase in initial unemployment claims data over the last month as a proxy for the increase
in layoffs, we estimate the first month of the pandemic will increase the separation rate to 17.0%

(100×(3,805+22,034)/152,487), a staggering 13.3 percentage point increase from February 2020.

0 2 4 6 8 10 12 14 16 18
0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 1: Separation rate distribution in our model.

Based on this calibration, Figure 1 plots the separation rate distribution from the model, which
is asymmetric due to the log normality of the exogenous process. The COVID-19 shock appears far
in the right tail of the distribution, reflecting that disruptions to the labor market of this magnitude
are very rare and only affect the tail of the distribution of the household’s expectations in the model.

4.2 SOLUTION METHODS We compare the predictions of our model using both the log-linear
and fully nonlinear solutions. The linear version is solved using Sims’s (2002) gensys algorithm.
Using the linear solution as an initial conjecture, we solve the nonlinear model with the policy
function iteration algorithm described in Richter et al. (2014), which is based on the theoretical
work on monotone operators in Coleman (1991). Each iteration, the algorithm minimizes the
Euler equation errors on every node in the discretized state space. It then computes the maximum
distance between the policy functions on any node and iterates until that distance falls below the
tolerance criterion. We approximate the continuous separation rate processes with an N -state
Markov chain following Rouwenhorst (1995) and use piecewise linear interpolation to calculate
the period-t+ 1 policy functions.7 To ensure that vt does not violate the non-negativity constraint,
we introduce an auxiliary variable, µt, that is continuous in the state of the economy following
Garcia and Zangwill (1981). See Appendix B for a detailed description of the nonlinear algorithm.

7Petrosky-Nadeau and Zhang (2017) show the Rouwenhorst method is crucial to accurately capture nonlinearities.
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Figure 2: Impulse responses to a COVID-19 separation rate shock in deviations from a baseline simulation
without the shock. Each simulation is initialized at a 3.5% unemployment rate, the rate from February 2020.
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4.3 IMPULSE RESPONSES Figure 2 plots generalized impulse response functions (GIRFs) of
key macroeconomic variables to the COVID-19 shock using the nonlinear solution to the model
and compares them to traditional impulse responses using the linear solution. To compute a GIRF,
we follow the procedure in Koop et al. (1996). We first calculate the mean path from 10,000 sim-
ulations of the nonlinear model, conditional on random shocks in every quarter. We then calculate
a second mean from another set of 10,000 simulations, but this time the shock in the first quarter
is replaced with the COVID-19 shock. The GIRF reports the difference between two mean paths.
All of the simulations are initialized at a 3.5% unemployment rate, the rate from February 2020.

We begin by focusing on the solid-black curves in the left panel, which plot the responses to the
baseline shock conditional on the nonlinear solution and our baseline calibration. There has been
much speculation that the COVID-19 shock will result in a substantial increase in unemployment,
as workers are laid-off or furloughed in response to virus-containment precautions. Our model is
consistent with this prediction. Unemployment peaks at 19.7%, 16.2 percentage points above the
rate in February 2020 and 2 months after the start of the pandemic. Furthermore, the model shows
it takes 1 year for the unemployment rate to return to 5%. The large increase in separations caused
by COVID-19 has immediate and medium-term implications for the health of the labor market.

As we emphasized in the analytical section, the response of unemployment is driven by the
dynamics of vacancy creation, which is plotted in the second graph. In response to the shock, the
level of vacancies plummets on impact, before increasing and decaying back to its pre-shock level.

To understand the non-monotonic dynamics of vacancy creation, we rely on our analytical
results together with the third and forth panels of Figure 2, which show the responses of the two
components of vacancy creation: marginal cost and the number of unemployed workers searching
for jobs. In line with our analytical approximations, the marginal cost of vacancy creation drops
in response to the shock, while the number of searching workers increases before decaying back
to its pre-shock level. The fact that vacancies initially fall indicates that the drop in marginal cost
dominates the rise in searching workers. Intuitively, the large and persistent increase in separations
causes a severe decline in the marginal benefit of vacancy creation since firms do not expect new
matches to last. Therefore, they initially cut back on vacancy creation. As the separation rate
declines, however, the returns to vacancy creation increase, causing firms to create more vacancies.

There has been much debate over the severity of the job separations caused by COVID-19. In
our model, severity is captured by the persistence parameter ρs. To analyze the effects of persis-
tence, we compare the solid-black curves to the dashed-blue and dotted-red curves, which plot the
responses to a shock with an equal magnitude but half-lives of 1 and 3 months, respectively. Lower
persistence results in a smaller response of unemployment that peaks at “only” 13.7%, 1 month af-
ter the shock. The higher persistence leads to an alarming 26.9% unemployment rate, 3 months af-
ter the shock. Furthermore, the half-life affects when the economy normalizes. The unemployment
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rate returns to 5% after 8 months under a 1-month half-life and 17 months under a 3-month half-life.
The response of the unemployment rate is driven the by response of vacancies. With a 3-month

half-life, there is a larger decline in vacancies relative to the baseline calibration. With a 1-month
half-life, vacancies significantly increase on impact. Intuitively, the persistence of the shock affects
the marginal benefit of vacancy creation. With a lower persistence, the marginal benefit of vacancy
creation does not fall as much on impact, as captured by the muted response of marginal cost. As a
consequence, the response of vacancies is driven by the increase in unemployed workers searching
for a job, which generates a higher job-filling rate and causes firms to post additional vacancies.

Interestingly, adding the unemployment rate responses to the initial unemployment rate of 3.5%

results in a 13.7%-26.9% range of peak unemployment in second quarter 2020, which aligns with
the range of forecasts mentioned in Section 1. This suggests the persistence of job separations
caused by COVID-19 is a driving factor behind the uncertainty in the unemployment projections.

4.4 THE IMPORTANCE OF NONLINEARITIES Our analytical and numerical exercises examine
nonlinear responses of the macroeconomy to separation rate shocks. To demonstrate the value of
capturing these nonlinearities, we plot impulse responses using the log-linear solution in the right-
hand panels of Figure 2. Using linear solution methods, we find much smaller responses of all vari-
ables to the COVID-19 shock, even though its underlying magnitude is unprecedented. Unemploy-
ment increases but by at most 7.1 percentage points, which is well below the expectations of most
forecasters and policymakers. This makes sense, since linear solutions shut down higher-order am-
plification mechanisms by construction. For example, the response of the marginal cost is no longer
concave, so the effect of separation rate shocks is simply proportional to the size of the shock.

In addition to generating smaller responses, the linear solution predicts that vacancies rise in
response to the shock due to the rise in unemployed searching. This forecast is likely to be qualita-
tively counterfactual and is inconsistent with the existing evidence for the response of vacancies to
separation rate shocks (Shimer, 2005). To see why the qualitative response of vacancies changes,
consider the linear vacancy equation (dropping second order terms from Proposition 1), given by

v̂t = (f̄ − φq,1/(1− q̄ι))ŝt − n̄(1− s̄)n̂t−1/ū
s.

The response of vacancies to the separation rate shock balances two opposing forces: a decrease
driven by the decline in the marginal benefit (and hence marginal cost) of vacancy creation and an
increase in vacancies driven by more searching workers. The numerical response of vacancies indi-
cates that, using our standard calibration, the marginal cost channel is weak, and the coefficient on
ŝt is approximately zero. Therefore, the first-order response of vacancies is entirely driven by the
dynamics of employment. This result also highlights further the importance of accounting for non-
linearities, which qualitatively affect the response of vacancy creation to the separation rate shock.
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Figure 3: Impulse responses to a COVID-19 shock. Uncertainty is shown relative to the baseline simulation
without the shock. Each simulation is initialized at a 3.5% unemployment rate, the rate from February 2020.

4.5 ENDOGENOUS UNCERTAINTY We now turn to examining the quantitative response of un-
certainty to the COVID-19 pandemic. The top row of Figure 3 shows the response of the unem-
ployment rate and its uncertainty over the next month to the separation rate shock. The uncertainty
response is reported as a ratio relative to a baseline simulation without the shock, Ũxt,t+1. Following
the shock, Ũut,t+1 increases to 11, so uncertainty is 11 times larger than in the baseline simulation.

In the economy without the separation rate shock, unemployment uncertainty is only 0.05

percentage points. Given an actual unemployment rate of 3.5% (as reported in February 2020),
this implies there is a 95% chance that the 1-Month ahead unemployment rate forecast is between
3.4% and 3.6%. In contrast, when the separation rate shock hits the economy, Uut,t+1 increases to
0.6 percentage points. Given the realized unemployment rate of 19.7%, this level of uncertainty
implies that unemployment rate forecasts are between 18.5% and 20.9% 95% of the time, which is
a larger confidence interval than in the baseline simulation without the shock. This result indicates
the increase in uncertainty in the data is likely a reaction to the first moment effects of the pandemic.

We investigate the sources of the increase in uncertainty by examining the changes in uncer-
tainty for vacancy creation and the job-filling rate. These responses are shown in the bottom row of
Figure 3. The results provide clear evidence that uncertainty increases for vacancies and the job-
filling rate, reflecting the strong underlying convexities of their responses to separation rate shocks.
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Figure 4: Policy function contour plots in deviations from the deterministic steady state. The employment
grid is asymmetric to account for the COVID-19 shock but is shown symmetrically for illustrative purposes.
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4.6 BEYOND THE COVID-19 SHOCK While our main results are motivated by the ongoing
pandemic crisis, we find it useful to distill some broader insights from our analysis. To this end,
Figure 4 contains contour plots of the time-invariant policy functions for key macroeconomic vari-
ables. We compare the contours from the linear solution (top panel) to those obtained when we
solve the model nonlinearly (bottom panel). All units on the axes and contours are in log deviations
from the deterministic steady state to permit a direct comparison between the two approximations.

In both cases, an increase in the job separation rate causes unemployment to increase. However,
the presence of higher-order amplification results in a stronger response of unemployment in the
nonlinear model, as the impulse responses demonstrated. Comparing the vacancy plots highlights
the stark effect of nonlinearities. To a first order, vacancies do not respond to the separation rate
as the opposing effects of the shock cancel out. When we allow for higher-order terms, however,
the response of vacancies becomes highly nonlinear. Depending on the employment state, nt−1, a
rise in the separation rate may cause vacancies to increase or decrease. Thus, there are states of the
economy where the nonlinear model’s predictions are qualitatively different than the linear model.

The discrepancy in the behavior of vacancies is in turn driven by qualitative differences in the
responses of marginal cost. While marginal cost is generally unresponsive to employment, the
linear model misses significant concavity in its response to the separation rate. This concavity
plays a crucial role in ensuring that the falling marginal cost of hiring, which reduces vacancies,
dominates the increase in vacancies caused by the increase in the number of unemployed searching.

5 CONCLUSION

This paper examines the response of the U.S. labor market to a large and persistent job separation
rate shock, motivated by the ongoing economic effects of the COVID-19 pandemic. We use nonlin-
ear methods to analytically and numerically characterize the responses of vacancy creation and un-
employment. Vacancies decline in response to the shock when firms expect persistent job destruc-
tion and the number of unemployed searching for work is low. Quantitatively, under our baseline
forecast the unemployment rate peaks at 19.7%, 2 months after the shock, and takes 1 year to return
to 5%. In the linear economy, the unemployment rate “only” rises to 9.2% and vacancies increase.
This shows nonlinearities are crucial to obtain reasonable predictions for the effects of COVID-19.

While this paper is motivated by the ongoing COVID-19 pandemic, we do not claim to provide
a fully integrated analysis of the labor market in the presence of complex infection dynamics and
containment policies. Instead, our contribution is to use a standard model to develop insights into
the labor market’s short and medium-term response to an important dimension of the pandemic’s
economic impact—a large and persistent increase in the job separation rate. Eventually, the health
risks associated with the pandemic will subside and economic activity will resume. We believe our
analysis will serve as a useful input into policy discussions on the medium-term economic recovery.
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BLANCHARD, O. AND J. GALÍ (2010): “Labor Markets and Monetary Policy: A New Keynesian
Model with Unemployment,” American Economic Journal: Macroeconomics, 2, 1–30,
https://doi.org/10.1257/mac.2.2.1.

COLEMAN, II, W. J. (1991): “Equilibrium in a Production Economy with an Income Tax,”
Econometrica, 59, 1091–1104, https://doi.org/10.2307/2938175.

DEN HAAN, W. J., G. RAMEY, AND J. WATSON (2000): “Job Destruction and Propagation of
Shocks,” American Economic Review, 90, 482–498, https://doi.org/10.1257/aer.90.3.482.

EICHENBAUM, M. S., S. REBELO, AND M. TRABANDT (2020): “The Macroeconomics of
Epidemics,” NBER Working Paper 28882, https://doi.org/10.3386/w26882.

FARIA-E-CASTRO, M. (2020a): “Back-of-the-Envelope Estimates of Next Quarter’s
Unemployment Rate,” Federal Reserve Bank of St. Louis On the Economy Blog.

——— (2020b): “Fiscal Policy during a Pandemic,” Federal Reserve Bank of St. Louis Working
Paper 2020-006, https://doi.org/10.20955/wp.2020.006.

FORNARO, L. AND M. WOLF (2020): “Covid-19 Coronavirus and Macroeconomic Policy,”
Barcelona Graduate School of Economics Working Paper 1169.

GARCIA, C. B. AND W. I. ZANGWILL (1981): Pathways to Solutions, Fixed Points and

Equilibria, Prentice-Hall series in computational mathematics, Prentice-Hall.

GUERRIERI, V., G. LORENZONI, L. STRAUB, AND I. WERNING (2020): “Macroeconomic
Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?” NBER
Working Paper 26918, https://doi.org/10.3386/w26918.

HAGEDORN, M. AND I. MANOVSKII (2008): “The Cyclical Behavior of Equilibrium
Unemployment and Vacancies Revisited,” American Economic Review, 98, 1692–1706,
https://doi.org/10.1257/aer.98.4.1692.

17

https://doi.org/10.3386/w26981
https://doi.org/10.3386/w26867
https://doi.org/10.3386/w26866
https://doi.org/10.21034/sr.597
https://doi.org/10.1257/mac.2.2.1
https://doi.org/10.2307/2938175
https://doi.org/10.1257/aer.90.3.482
https://doi.org/10.3386/w26882
https://doi.org/10.20955/wp.2020.006
https://doi.org/10.3386/w26918
https://doi.org/10.1257/aer.98.4.1692


BERNSTEIN, RICHTER & THROCKMORTON: COVID-19

JONES, C. J., T. PHILIPPON, AND V. VENKATESWARAN (2020): “Optimal Mitigation Policies
in a Pandemic: Social Distancing and Working from Home,” NBER Working Paper 26984,
https://doi.org/10.3386/w26984.
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A PROOFS

Proof of Lemma 1 We insert our approximation for q̂t into (17) to obtain

(κ/q̄) exp(−φq,1ŝt − 1
2
φq,2ŝ

2
t ) = 1− b+ β(κ/q̄)Et[(1− st+1) exp(−(φq,1ŝt+1 + 1

2
φq,2ŝ

2
t+1))].

Substituting st+1 with s̄ exp(ŝt+1) yields

(κ/q̄) exp(−φq,1ŝt − 1
2
φq,2ŝ

2
t ) = 1− b+ β(κ/q̄)Et[exp(−(φq,1ŝt+1 + 1

2
φq,2ŝ

2
t+1))]

− βs̄(κ/q̄)Et[exp(ŝt+1 − (φq,1ŝt+1 + 1
2
φq,2ŝ

2
t+1))].

Now impose the separation rate process, ŝt+1 = ρsŝt + εs,t+1, to obtain

(κ/q̄) exp(−φq,1ŝt − 1
2φq,2ŝ

2
t ) = 1− b

+ β(κ/q̄)Et[exp(−φq,1(ρsŝt + εs,t+1)− 1
2φq,2(ρsŝt + εs,t+1)2)]

− βs̄(κ/q̄)Et[exp((1− φq,1)(ρsŝt + εs,t+1)− 1
2φq,2(ρsŝt + εs,t+1)2)].

We can then simplify to obtain

exp(−φq,1ŝt − 1
2φq,2ŝ

2
t ) = q̄(1− b)/κ

+ βEt[exp(−φq,1(ρsŝt + εs,t+1)− 1
2φq,2(ρ2

s ŝ
2
t + 2ρsŝtεs,t+1 + ε2

s,t+1))]

− βs̄Et[exp((1− φq,1)(ρsŝt + εs,t+1)− 1
2φq,2(ρ2

s ŝ
2
t + 2ρsŝtεs,t+1 + ε2

s,t+1))]

= q̄(1− b)/κ

+ β exp(−φq,1ρsŝt − 1
2φq,2ρ

2
s ŝ

2
t )

× Et[exp(−(φq,1 + φq,2ρsŝt)εs,t+1 − 1
2φq,2ε

2
s,t+1)]

− βs̄ exp(−φq,1ρsŝt − 1
2φq,2ρ

2
s ŝ

2
t ) exp(ρsŝt)

× Et[exp((1− φq,1 − φq,2ρsŝt)εs,t+1 − 1
2φq,2ε

2
s,t+1)].

To evaluate the expectations, note that if εt+1 ∼ N(0, σ2), then

Et[exp(aεt+1 − bε2
t+1)] = exp(1

2
a2σ2

1+2bσ2 ) 1√
1+2bσ2 .

Applying this result implies

exp(−(φq,1ŝt + 1
2
φq,2ŝ

2
t )) = q̄(1− b)/κ

+ β exp(−φq,1ρsŝt − 1
2
φq,2ρ

2
sŝ

2
t )

1√
1+φq,2σ2

s

exp(1
2

(φq,1+φq,2ρsŝt)2σ2
s

1+φq,2σ2
s

)

− βs̄ exp(−φq,1ρsŝt − 1
2
φq,2ρ

2
sŝ

2
t )

1√
1+φq,2σ2

s

exp(ρsŝt)

× exp(1
2

(1−φq,1−φq,2ρsŝt)2σ2
s

1+φq,2σ2
s

).
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To ensure that the approximation is valid, we apply the limit as σs → 0 to obtain

exp(−(φq,1ŝt + 1
2
φq,2ŝ

2
t )) = q̄(1− b)/κ+ β exp(−φq,1ρsŝt − 1

2
φq,2ρ

2
sŝ

2
t )(1− s̄ exp(ρsŝt)),

which is an identity in ŝt. To solve for the coefficients φq,1 and φq,2, we twice differentiate the
identity with respect to ŝ. The left-hand side has first and second derivatives given by

−(φq,1 + φq,2ŝt) exp(−(φq,1ŝt + 1
2
φq,2ŝ

2
t ))

and

−φq,2 exp(−(φq,1ŝt + 1
2
φq,2ŝ

2
t ))
κ̄

q̄
+ (φq,1 + φq,2ŝt)

2 exp(−(φq,1ŝt + 1
2
φq,2ŝ

2
t )).

When evaluated at ŝt = 0, these expressions become

−φq,1 and − φq,2 + φ2
q,1.

The right-hand side has derivatives

β(−φq,1ρs − φq,2ρ2
sŝt) exp(−φq,1ρsŝt − 1

2
φq,2ρ

2
sŝ

2
t )

−βs̄((1− φq,1)ρs − φq,2ρ2
sŝt) exp((1− φq,1)ρsŝt − 1

2
φq,2ρ

2
sŝ

2
t )

and

β(−φq,2ρ2
s) exp(−φq,1ρsŝt − 1

2
φq,2ρ

2
sŝ

2
t )

+β(φq,1ρs + φq,2ρ
2
sŝt)

2 exp(−φq,1ρsŝt − 1
2
φq,2ρ

2
sŝ

2
t )

−βs̄(−φq,2ρ2
s) exp((1− φq,1)ρsŝt − 1

2
φq,2ρ

2
sŝ

2
t )

+βs̄((1− φq,1)ρs − φq,2ρ2
sŝt)

2 exp((1− φq,1)ρsŝt − 1
2
φq,2ρ

2
sŝ

2
t ).

When evaluated at ŝt = 0, these expressions become

−βφq,1ρs − βs̄((1− φq,1)ρs)

and

β(−φq,2ρ2
s) + β(φq,1ρs)

2 − βs̄(−φq,2ρ2
s)− βs̄((1− φq,1)ρs)

2.

Equating the left-hand and right-hand sides for the first and second derivatives yields

φq,1 =
βρss̄

1− βρs(1− s̄)
> 0,

φq,2 =
βρ2

ss̄

1− βρ2
s(1− s̄)

βs̄(1− βρ2
s) + (1− βρs)2

(1− βρs(1− s̄))2
> 0.

Hence q̂t is increasing and convex in the separation rate.
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Proof of Proposition 1 Recall mct = κ/qt. Taking natural logs of (18) yields

ln vt = 1
ι

ln(κ−ιmcιt − 1) + ln(1− (1− st)nt−1).

Define m̃c ≡ κ−ιm̄cι and ñ ≡ 1− n̄+ s̄n̄. Then apply a second order Taylor expansion to obtain

1
ι

ln(κ−ιmcιt − 1) ≈ 1
ι

ln(m̃c− 1) + m̃c
m̃c−1

κ̂t − 1
2

ιm̃c
(m̃c−1)2

κ̂2
t

and

ln(1− nt−1 + stnt−1) ≈ ln ñ+ s̄n̄
ñ

(ŝt + 1
2
ŝ2
t )− 1

2
s̄2n̄2

ñ2 ŝ
2
t

− n̄(1−s̄)
ñ

(n̂t−1 + 1
2
n̂2
t−1) + 1

2
n̄2(1−s̄)2

ñ2 n̂2
t−1 + s̄n̄

ñ2 ŝtn̂t−1.

Combining the previous two approximations then yields

v̂t = ( s̄n̄
ñ

(1 + 1
ñ
n̂t−1)− m̃c

m̃c−1
φq,1)ŝt + 1

2
( s̄n̄(1−n̄)

ñ2 − m̃c
m̃c−1

(φq,2 + ι
m̃c−1

φ2
q,1))ŝ2

t

− n̄(1−s̄)
ñ

n̂t−1 + n̄(1−s̄)
2

2n̄(1−s̄)−1
ñ2 n̂2

t−1.

To simplify the expressions, we make use of the following deterministic steady-state relations:

θ̄ = (1− q̄ι)1/ι/q̄, f̄ = (1− q̄ι)1/ι, n̄ = q̄θ̄/(s̄+ q̄θ̄(1− s̄)),

ū = s̄(1− q̄θ̄)/(s̄+ q̄θ̄(1− s̄)), ūs = s̄/(s̄+ f̄(1− s̄)), f̄ = s̄n̄/ūs.

Using these conditions, we obtain

v̂t = φv,1(n̂t−1)ŝt + 1
2
φv,2ŝ

2
t + ψv,1n̂t−1 + 1

2
ψv,2n̂

2
t−1,

where

φv,1 = f̄(1 + n̂t−1/ū
s)− φq,1/(1− q̄ι)

φv,2 = f̄(1− f̄)− ((1− q̄ι)φq,2 + q̄ιιφ2
q,1)/(1− q̄ι)2

ψv,1 = −n̄(1− s̄)/ūs

ψv,2 = n̄(1− s̄)(2n̄(1− s̄)− 1)/(ūs)2

Proof of Lemma 2 First note ut = 1− nt, so it is sufficient to focus on employment:

nt = n(st, nt−1) = (1− st)nt−1 + qtvt.

Using second order Taylor expansions, we obtain

(1− st)nt−1 ≈ (1− s̄)n̄+ (1− s̄)n̄(n̂t−1 + 1
2
n̂2
t−1)− s̄n̄(ŝt + 1

2
ŝ2
t )
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and

qtvt ≈ q̄v̄ + q̄v̄(v̂t + 1
2
v̂2
t ) + q̄v̄(q̂t + 1

2
q̂2
t ).

Combining the previous two approximations then yields

nt ≈ (1− s̄)n̄+ (1− s̄)n̄(n̂t−1 + 1
2
n̂2
t−1)− s̄n̄(ŝt + 1

2
ŝ2
t ) + q̄v̄ + q̄v̄(v̂t + 1

2
v̂2
t ) + q̄v̄(q̂t + 1

2
q̂2
t ).

Using Lemma 1 and Proposition 1, this simplifies to

nt ≈ (1− s̄)n̄+ q̄v̄ + q̄v̄(φq,1 + φv,1 − 1 + (φq,2 + φ2
q,1 + φv,2 + φ2

v,1 − 1)ρsŝt−1)σsεs,t

+ q̄v̄(φq,1 + φv,1 − 1)ρsŝt−1 + 1
2
q̄v̄(φq,2 + φ2

q,1 + φv,2 + φ2
v,1 − 1)ρ2

sŝ
2
t−1

+ 1
2
q̄v̄(φq,2 + φ2

q,1 + φv,2 + φ2
v,1 − 1)σ2

sε
2
s,t + ((1− s̄)n̄− q̄v̄ψv,1)n̂t−1

+ 1
2
((1− s̄)n̄+ q̄v̄(ψv,2 + ψ2

v,1))n̂2
t−1.

The variance of nt, conditional on period t− 1 information and up to a second order is given by

Vart−1(nt) ≈ (q̄v̄(φq,1 + φv,1 − 1 + (φq,2 + φ2
q,1 + φv,2 + φ2

v,1 − 1)ρsŝt−1))2σ2
s .

Since Vart−1(ut) = Vart−1(nt), we obtain

Uut,t+1 = (q̄v̄(φq,1 + φv,1(n̂t−1)− 1 + (φq,2 + φ2
q,1 + φv,2 + φv,1(n̂t−1)2 − 1)ρsŝt))σs.

Proof of Proposition 2 Using Lemma 2 implies

Uut,t+1/dŝt = q̄v̄(φq,2 + φ2
q,1 + φv,2 + φv,1(n̂t−1)2 − 1)ρsσ

2
s .

B SOLUTION METHODS

Nonlinear Solution We begin by writing the equilibrium system asE[g(xt+1,xt, εt+1)|zt, ϑ] = 0,
where g is a vector-valued function, xt is a vector of variables, εt is a vector of shocks, zt is a vector
of states, and ϑ is a vector of parameters. There are many ways to discretize the exogenous state,
st. We use the Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010) show out-
performs other methods for approximating autoregressive processes. The bounds on the endoge-
nous state variable, nt−1, are set to [−50%,+6%] of the deterministic steady-state value, n̄, which
contain at least 99% of the ergodic distribution and minimize extrapolation for the COVID-19 sep-
aration rate shock simulations. We discretize the nt−1 and st into 101 and 11 evenly-spaced points,
respectively. The product of the points in each dimension, D, represents the total nodes in the state
space (D = 1,111). The realization of zt on node d is denoted zt(d). The Rouwenhorst method pro-
vides integration nodes, [st+1(m)], with weights, φ(m), for m ∈ {1, . . . ,M}. Since the separation
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rate evolves according to a Markov chain, the number of realizations of st+1 is the same as st (11).
Since vacancies vt ≥ 0, we introduce an auxiliary variable, µt, such that vt = max{0, µt}2

and λt = max{0,−µt}2, where λt is the Lagrange multiplier on the non-negativity constraint. If
µt ≥ 0, then vt = µ2

t and λt = 0. When µt < 0, the constraint is binding, vt = 0, and λt = µ2
t .

Therefore, the constraint on vt is transformed into a pair of equalities (Garcia and Zangwill, 1981).
The vector of policy functions and the realization on node d are denoted pf t and pf t(d), where

pf t ≡ µt(zt). The following steps outline our policy function iteration algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the log-linear model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’s csolve to find
pf t(d) to satisfy E[g(·)|zt(d), ϑ] ≈ 0. Guess pf t(d) = pf j−1(d). Then apply the following:

(a) Solve for all variables dated at time t, given pf t(d) and zt(d).

(b) Linearly interpolate the policy functions, pf j−1, at the updated state variables, zt+1(m),
to obtain pf t+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {pf t+1(m)}Mm=1, solve for the other elements of st+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 φ(m)g(xt+1(m),xt(d), εt+1(m)).

When csolve converges, set pf j(d) = pf t(d).

3. Repeat step 2 until maxdistj < 10−8, where maxdistj ≡ max{|pf j − pf j−1|}. When that
criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

Linear Solution We solve the following log-linear equilibrium system according to Sims (2002):

v̂t = 2µ̂t,

n̂t = (1− s̄)n̂t−1 − s̄ŝt + s̄(q̂t + v̂t),

θ̂t = v̂t − ûst ,

ūsûst = s̄n̄ŝt − (1− s̄)n̄n̂t−1,

ūût + n̄n̂t = 0,

c̄ĉt + κv̄v̂t = n̄n̂t,

q̂t = −θ̄ιθ̂t/(1 + θ̄ι),

w̄ŵt = βηκ(1− s̄)θ̄(Etθ̂t+1 − s̄Etŝt+1/(1− s̄)),

(κ/q̄)q̂t = w̄ŵt + β(1− s̄)(κ/q̄)(Etq̂t+1 + s̄Etŝt+1/(1− s̄)),

ŝt = ρsŝt−1 + σsεs,t+1.
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