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ABSTRACT

This appendix has three sections. First, it provides the derivation for the Nash bargaining

equation and the proofs to the propositions and corollaries in the paper. Second, it includes a

detailed description of our solution method. Third, it shows our results are robust to including

home production, which allows for an alternative calibration of the outside employment option.
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A DERIVATIONS AND PROOFS

A.1 WAGES To derive the wage rate under Nash bargaining, consider the household’s problem:

Jt = max
ct

c1−γ
t /(1− γ) + βEtJt+1

subject to

ct = wtnt + dt + but − τt,

nt = (1− s̄)nt−1 + ftut−1,

ut = ut−1 + s̄nt−1 − ftut−1,

where τt is a lump-sum tax and dt are lump-sum dividends from firm ownership. The marginal val-
ues of employment and unemployment relative to the marginal utility of consumption are given by

JH
n,t = wt + Et[xt+1((1− s̄)JH

n,t+1 + s̄JH
u,t+1)],

JH
u,t = b+ Et[xt+1(ft+1J

H
n,t+1 + (1− ft+1)J

H
u,t+1)].

Similarly, use the firm’s problem to define the marginal value of employment to the firm,

JF
n,t = at − wt + (1− s̄)Et[xt+1J

F
n,t+1] =

κ−λv,t

qt
.

Define the total surplus of a new match as Λt = JF
n,t + JH

n,t − JH
u,t. The equilibrium wage maxi-

mizes (JH
n,t−JH

u,t)
η(JF

n,t)
1−η. Optimality implies JH

n,t−JH
u,t = ηΛt and JF

n,t = (1−η)Λt. Combining
the optimality conditions with JH

n,t, J
H
u,t, and JF

n,t, and defining tightness as θt = vt/ut−1, we obtain

wt = η(at + κEt[xt+1θt+1]) + (1− η)b.

A.2 THE EFFICIENT ALLOCATION To solve for the efficient allocation, we imagine that the
frictional labor market is controlled by a central planner who posts vacancies on behalf of firms,
so it internalizes the two externalities associated with vacancy creation. The central planner solves

Wt = max
ct,nt,vt

c1−γ
t /(1− γ) + βEtWt+1

subject to

ct = atnt − κvt + b(1− nt)− τt,

nt = (1− s̄)nt−1 +M(1− nt−1, vt),

vt ≥ 0,

1



BERNSTEIN, RICHTER & THROCKMORTON: MATCHING FUNCTION

which imposes ut = 1− nt. The efficient allocation is characterized by (1), (8), (10), and

κ−λv,t

Mv(1−nt−1,vt)
= at − b+ Et[xt+1

κ−λv,t+1

Mv(1−nt,vt+1)
(1− s̄−Mu(1− nt, vt+1))], (A.1)

nt = (1− s̄)nt−1 +M(1− nt−1, vt). (A.2)

A.3 PROOFS Recall M(us
t , vt) is strictly increasing, strictly concave, and twice differentiable

in both arguments, and it exhibits constant returns to scale. We use the following standard results:

Lemma 1. Mvv(1, θt)θt = −Muv(1, θt).

Lemma 2. The elasticity of substitution has the equivalent representation

σ(θt) =
Mv(1, θt)Mu(1, θt)

Mvu(1, θt)M(1, θt)
.

Proposition 1 A constant returns to scale matching function, M(us
t , vt), has linear approximation

M(us
t , vt) ≈ M(ūs, v̄) +Mu(ū

s, v̄)(us
t − ūs) +Mv(ū

s, v̄)(vt − v̄),

where (ūs, v̄) is the point of approximation (e.g., a model’s deterministic steady state). By constant
returns to scale, Euler’s theorem implies m̄ ≡ M(ūs, v̄) = Mu(ū

s, v̄)ūs +Mv(ū
s, v̄)v̄. Combin-

ing these results and converting the steady-state partial derivatives into matching elasticities yields

M(us
t , vt) ≈ (1− ϵ̄) m̄

ūsu
s
t + ϵ̄ m̄

v̄
vt, (A.3)

where ϵ̄ is the matching elasticity evaluated at the approximation point. However, (A.3) is also
the first-order approximation of a Cobb-Douglas matching function M(us

t , vt) = ϕ(us
t)

αv1−α
t with

α = 1−ϵ̄. Thus, using the Cobb-Douglas specification is without loss of generality up to first order.

Proposition 2 Differentiating the matching elasticity function ϵ(θt) =
Mv(1,θt)θt
M(1,θt)

yields

ϵ′(θt) =

(
Mvv(1, θt)θt
Mv(1, θt)

+ 1− ϵ(θt)

)
Mv(1, θt)

M(1, θt)
.

Use Lemma 1 and Lemma 2 to obtain

ϵ′(θt) =

(
− 1

σ(θt)

Mu(1, θt)

M(1, θt)
+ 1− ϵ(θt)

)
Mv(1, θt)

M(1, θt)
.

Replace Mu(1,θt)
M(1,θt)

= 1− ϵ(θt) and rearrange to obtain

ϵ′(θt) =
σ(θt)− 1

σ(θt)
(1− ϵ(θt))

Mv(1, θt)

M(1, θt)
. (A.4)

Hence the sign of ϵ′(θt) has the same sign as σ(θt)− 1.
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Corollary 1 Combine Proposition 2 with the fact that σ(θt) = σ for all θt > 0.

Proposition 3 After imposing Assumption 1, (7) simplifies to

κ− λv,t

qt
= at − b+ β(1− s̄)Et

[
κ− λv,t+1

qt+1

]
.

We can guess and verify a unique solution of the form κ−λv,t

qt
= δ0 + δ1(at − ā), where

δ0 =
ā− b

1− β(1− s̄)
, δ1 =

1

1− β(1− s̄)ρa
.

If λv,t > 0 then vt = 0. Since mt = vt and qt = 1 for vt arbitrarily close to 0, we have qt = 1

when λv,t > 0 by continuity. Therefore, if productivity is such that κ/(δ0 + δ1(at − ā)) ∈ [0, 1),
then q(at) = κ/(δ0 + δ1(at − ā)) and λv,t = 0. Otherwise, qt = 1 and λv,t = κ− δ0 − δ1(at − ā).

Proposition 4 Differentiate µq(θ) = M(1, θ)/θ to obtain µ′
q(θ) = −1−ϵ(θ)

θ
M(1,θ)

θ
. Hence

θ′(at) = − q′(at)

1− ϵt

θ(at)
2

M(1, θ(at))
.

Use q′(at) = −q(at)
2δ1/κ and q(at)θ(at) = M(1, θ(at)), to obtain

θ′(at) =
δ1
κ

M(1, θ(at))

1− ϵt
> 0.

Differentiate and use (A.4) to obtain

θ′′(at) =
δ1
κ

2σt − 1

σt

Mv(1, θ(at))θ
′(at)

1− ϵt
. (A.5)

Hence the sign of θ′′(at) has the same sign as σt − 1/2.

Proposition 5 Differentiate f ′(at) = Mv(1, θ(at))θ
′(at) to obtain

f ′′(at) = Mvv(1, θ(at))θ
′(at)

2 +Mv(1, θ(at))θ
′′(at).

Use Lemma 1 and Lemma 2 to obtain

f ′′(at) =

(
θ′′(at)−

1

σ(θ)

Mu(1, θ)

M(1, θ)

θ′(at)
2

θ(at)

)
Mv(1, θ(at)).

Replace Mu(1,θt)
M(1,θt)

= 1− ϵ(θt) and use (A.5) to obtain

f ′′(at) =

(
δ1
κ

2σt − 1

σt

Mv(1, θ(at))

1− ϵt
− 1− ϵt

σt

θ′(at)

θ(at)

)
θ′(at)Mv(1, θ(at)).
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Use θ′(at) =
δ1
κ

M(1,θ(at))
1−ϵt

and ϵt =
Mv(1,θt)θt
M(1,θt)

to obtain

f ′′(at) =
2σtϵt − 1

σt

Mv(1, θ(at))(θ
′(at))

2

θ(at)
.

Hence the sign of f ′′(at) is the same as the sign of σtϵt − 1/2.

Corollary 2 Recall that q(at) ∈ (0, 1). When the matching function is CES, we have σt = σ and
ϵt = (1− ϑ)(ϕ/q(at))

(σ−1)/σ. By Proposition 5, the sign of f ′′(at) depends on whether

Ft ≡ 2σ(1− ϑ)(ϕ/q(at))
(σ−1)/σ ⋚ 1.

Case 1 (σ > 1): (ϕ/q(at))
(σ−1)/σ ∈

(
ϕ(σ−1)/σ,∞

)
, so Ft > 2σ(1 − ϑ)ϕ(σ−1)/σ for all feasible

q(at). Thus, σ > 1
2(1−ϑ)ϕ(σ−1)/σ ≥ 1 implies f ′′(at) > 0 for all at such that q(at) ∈ (0, 1).

Case 2 (σ < 1): (ϕ/q(at))
(σ−1)/σ ∈

(
0, ϕ(σ−1)/σ

)
, so Ft < 2σ(1 − ϑ)ϕ(σ−1)/σ for all feasible

q(at). Thus, σ < 1
2(1−ϑ)ϕ(σ−1)/σ ≤ 1 implies f ′′(at) < 0 for all at such that q(at) ∈ (0, 1).

Case 3 (σ = 1): σ = 2(1− ϑ) = 1 implies f ′′(at) = 0 for all at such that q(at) ∈ (0, 1).

Corollary 3 Given the Den Haan et al. (2000) matching function, we have σt = 1/(1 + ι) and
ϵt = q(at)

ι. By Proposition 5, the sign of f ′′(at) depends on whether

Ft = 2q(at)
ι/(1 + ι) ⋚ 1.

Since ι > 0, we have 2q(at)
ι/(1 + ι) < 2/(1 + ι) for all feasible q(at). Therefore ι > 1 implies

that f ′′(at) < 0 for all at such that q(at) ∈ (0, 1).

Proposition 6 Given wedges {τv,t, τn,t}, the firm’s optimal vacancy creation condition becomes

κ− λv,t

qt
=

1− η

1 + τv,t
(at − b) + Et

[
x̃t+1

κ− λv,t+1

qt+1

(
1− s̄− 1

1 + τv,t+1

qt+1

κ− λv,t+1
(κηθt+1 + τn,t+1)

)]
,

where x̃t+1 ≡ xt+1(1 + τv,t+1)/(1 + τv,t). Setting

τv(θt) = (1− η)/ϵ(θt)− 1,

τn(θt) = θt((κ− λv,t)τv(θt)− ηλv,t),

aligns the private optimality condition with the efficient condition (A.1). Differentiating yields

τ ′v(θt) = −(1− η)ϵ′(θt)/ϵ(θt)
2,

τ ′n(θt) = κ(θtτ
′
v(θt) + τv(θt)) = κ

[
1− η

ϵ(θt)
− 1− 1− η

ϵ(θt)2
θtϵ

′(θt)

]
.
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Since (A.4) implies ϵ′(θt)θt/ϵ(θt) = (σt − 1)(1− ϵ(θt))/σt, we obtain

τ ′v(θt) = −
(
1− η

θt

)(
σt − 1

σt

)(
1− ϵ(θt)

ϵ(θt)

)
,

τ ′n(θt) = κ

[
1− η

ϵ(θt)
− 1− (1− η)

(
σt − 1

σt

)(
1− ϵ(θt)

ϵ(θt)

)]
.

Hence, τ ′v(θt) > 0 when σt < 1 and τ ′n(θt) > 0 when σt <
1−η
η

1−ϵt
ϵt

for all θt > 0.

B SOLUTION METHOD

The equilibrium system of the model is summarized by E[g(xt+1,xt, εt+1)|zt,P ] = 0, where g is a
vector-valued function, xt is a vector of variables, ε is a vector of productivity shocks, zt is a vector
of states, and P is a vector of parameters. There are many ways to discretize the productivity pro-
cess. We use the Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010) show out-
performs other methods for approximating autoregressive processes. The bounds on the state vari-
able nt−1 are set to [0.85, 0.98], which contains over 99% of the ergodic distribution. We discretize
at and nt−1 into 7 and 21 evenly-spaced points, respectively. The product of the points in each
dimension, D, is the total nodes in the state space (D = 147). The realization of zt on node d is de-
noted zt(d). The Rouwenhorst method provides integration weights, ϕ(m), for m ∈ {1, . . . ,M}.

Since vacancies vt ≥ 0, we introduce an auxiliary variable, µt, such that vt = max{0, µt}2 and
λ0,t = max{0,−µt}2, where λv,t is the Lagrange multiplier on the non-negativity constraint. If
µt ≥ 0, then vt = µ2

t and λv,t = 0. When µt < 0, the constraint is binding, vt = 0, and λv,t = µ2
t .

Therefore, the constraint on vt is transformed into a pair of equalities (Garcia and Zangwill, 1981).
The following steps outline our nonlinear policy function iteration algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the linearized model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’s csolve to find
µt(d) to satisfy E[g(·)|zt(d),P ] ≈ 0. Guess µt(d) = µj−1(d). Then apply the following:

(a) Solve for all variables dated at time t, given µt(d) and zt(d).

(b) Linearly interpolate the policy function, µj−1, at the updated state variables, zt+1(m),
to obtain µt+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {µt+1(m)}Mm=1, solve for the other elements of xt+1(m) and compute

E[g(xt+1,xt(d), εt+1)|zt(d),P ] ≈
∑M

m=1 ϕ(m)g(xt+1(m),xt(d), εt+1(m)).

Set µj(d) = µt(d) when csolve converges.
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3. Repeat step 2 until maxdistj < 10−7, where maxdistj ≡ max{|µj − µj−1|}. When that
criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

The algorithm is programmed in Fortran with Open MPI and run on the BigTex supercomputer.

C HOME PRODUCTION

In the baseline model, we set b to target the standard deviation of unemployment in our sample.
This section shows we can equivalently set b externally as an unemployment benefit, and instead
use home production to target unemployment volatility by following Petrosky-Nadeau et al. (2018).

The household derives utility from the consumption of the final market good cm,t and home
production ch,t. It has log utility over composite consumption ct = (ωcem,t+(1−ω)ceh,t)

1/e, where
ω ∈ (0, 1) is the preference weight on the final market good and e ≤ 1 governs the elasticity of sub-
stitution 1/(1− e). The home production technology is ch,t = ahut, where ah > 0 is productivity.

Household optimization yields the pricing kernel xt+1 = β(cm,t/cm,t+1)
1−e(ct/ct+1)

e. The flow
value of unemployment becomes zt = ah((1−ω)/ω)(cm,t/ch,t)

1−e + b, so the Nash wage satisfies

wt = η((1− α)yt/nt + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)zt.

The other equilibrium conditions are unchanged from the baseline model described in Section 3.
We set b = 0.4 to reflect the value of unemployment benefits (Shimer, 2005), and set ah = 1

to steady-state labor productivity in final good production. We then set e = 1, in line with existing
calibrations and estimates (Benhabib et al., 1991; Petrosky-Nadeau et al., 2018). In this case, zt =
(1−ω)/ω+ b, so ω determines the level of z, and hence the volatility of unemployment following
the fundamental surplus arguments in Ljungqvist and Sargent (2017). Thus, we can set ω in each
model to generate the same unemployment volatility and quantitative results as the baseline model.

REFERENCES

BENHABIB, J., R. ROGERSON, AND R. WRIGHT (1991): “Homework in Macroeconomics:
Household Production and Aggregate Fluctuations,” Journal of Political Economy, 99,
1166–1187, https://doi.org/10.1086/261796.

DEN HAAN, W. J., G. RAMEY, AND J. WATSON (2000): “Job Destruction and Propagation of
Shocks,” American Economic Review, 90, 482–498, https://doi.org/10.1257/aer.90.3.482.

GARCIA, C. B. AND W. I. ZANGWILL (1981): Pathways to Solutions, Fixed Points and
Equilibria, Prentice-Hall series in computational mathematics, Prentice-Hall.

KOPECKY, K. AND R. SUEN (2010): “Finite State Markov-Chain Approximations to Highly
Persistent Processes,” Review of Economic Dynamics, 13, 701–714,
https://doi.org/10.1016/j.red.2010.02.002.

LJUNGQVIST, L. AND T. J. SARGENT (2017): “The Fundamental Surplus,” American Economic
Review, 107, 2630–2665, https://doi.org/10.1257/aer.20150233.

6

https://doi.org/10.1086/261796
https://doi.org/10.1257/aer.90.3.482
https://doi.org/10.1016/j.red.2010.02.002
https://doi.org/10.1257/aer.20150233


BERNSTEIN, RICHTER & THROCKMORTON: MATCHING FUNCTION

PETROSKY-NADEAU, N., L. ZHANG, AND L.-A. KUEHN (2018): “Endogenous Disasters,”
American Economic Review, 108, 2212–2245, https://doi.org/10.1257/aer.20130025.

ROUWENHORST, K. G. (1995): “Asset Pricing Implications of Equilibrium Business Cycle
Models,” in Frontiers of Business Cycle Research, ed. by T. F. Cooley, Princeton, NJ: Princeton
University Press, 294–330.

SHIMER, R. (2005): “The Cyclical Behavior of Equilibrium Unemployment and Vacancies,”
American Economic Review, 95, 25–49, https://doi.org/10.1257/0002828053828572.

SIMS, C. A. (2002): “Solving Linear Rational Expectations Models,” Computational Economics,
20, 1–20, https://doi.org/10.1023/A:1020517101123.

7

https://doi.org/10.1257/aer.20130025
https://doi.org/10.1257/0002828053828572
https://doi.org/10.1023/A:1020517101123

	A Derivations and Proofs
	A.1 Wages
	A.2 The Efficient Allocation
	A.3 Proofs

	B Solution Method
	C Home Production

