CYCLICAL NET ENTRY AND EXIT

Joshua Bernstein Indiana University

Alexander W. Richter Federal Reserve Bank of Dallas

Nathaniel A. Throckmorton William & Mary

The views expressed in this presentation are our own and do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.

MOTIVATION

· Fluctuations in net entry and exit can be significant

MOTIVATION

· Number of establishments move with unemployment rate

Source: BLS, Business Employment Dynamics; Current Population Survey; NBER

MOTIVATION

- Many business cycle models abstract from net entry and exit of firms, especially those with labor market frictions
- Data show infrequent but severe episodes of net exit that are highly correlated with labor market dynamics
- What are the effects of cyclical net entry and exit?

CONTRIBUTIONS

Methods:

- Extend RBC model with endogenous net entry and exit and unemployment à la Diamond-Mortensen-Pissarides
- Highlight the key mechanisms driven by their interaction
- Quantify the effects on macroeconomic dynamics

Results:

- Cyclical net entry and exit generates a 20% increase in volatility and a 40% increase in skewness
- Generates fast-slow unemployment dynamics in bad times
- Leads to a 55% higher welfare cost of business cycles
- Model endogenously matches the volatility of uncertainty

RELATED LITERATURE

- RBC labor search and matching without entry and exit (Merz, 1995; Andolfatto, 1996; Den Haan et al., 2000)
- Cyclical entry and exit without labor search (Campbell, 1998; Jaimovich and Floetotto, 2008; Bilbiie, Ghironi, and Melitz, 2012)
- Explanations of non-normal labor market dynamics (McKay and Reis, 2008; Ilut et al., 2018; Ferraro, 2018; Dupraz et al., 2019)
- Empirical departures from normality (Neftci, 1984; Sichel, 1993; Acemoglu et al., 2017)

- Environment
- Mechanisms
- Quantitative Results

ENVIRONMENT

- Textbook search and matching model with capital
- Introduce decreasing returns to scale, profits, and endogenous net entry and exit
- Agents in the model:
 - Risk averse representative household
 - Z perfectly competitive incumbent firms
 - Representative employment agency

INCUMBENT FIRM PRODUCTION

• Productivity (TFP):

 $\ln a_{t+1} = (1 - \rho_a) \ln \bar{a} + \rho_a \ln a_t + \sigma_a \varepsilon_{a,t+1}, \ \varepsilon_a \sim \mathbb{N}(0, 1)$

• Profit maximization for firm $j \in [0, Z_t]$:

 $J_{A,j,t}^{F} = \max_{k_{j,t}, n_{j,t}} y_{j,t} - w_{t} n_{j,t} - r_{k,t} k_{j,t} - \psi_{y} + E_{t} \left[x_{t+1} J_{X,j,t+1}^{F} \right]$

$$y_{j,t} = a_t \left(k_{j,t}^{\alpha} n_{j,t}^{1-\alpha} \right)^{v}$$
$$J_{X,j,t}^F = \max\{J_{A,j,t}^F, 0\}$$

• Symmetry with $K_{t-1} = Z_t k_t$ and $N_t = Z_t n_t$ implies:

$$Y_t = a_t Z_t^{1-\vartheta} (K_{t-1}^{\alpha} N_t^{1-\alpha})^{\vartheta}$$
$$w_t = (1-\alpha) \vartheta Y_t / N_t$$
$$r_{k,t} = \alpha \vartheta Y_t / K_{t-1}$$

FIRM ENTRY AND EXIT

Value of an active firm:

$$J_{A,t}^{F} = (1 - \vartheta)Y_{t}/Z_{t} - \psi_{y} + E_{t}[x_{t+1}J_{X,t+1}^{F}]$$

• Value of an inactive firm ($\psi_n \ge 0$, entry cost):

$$J_{I,t}^F = \max\{0, J_{A,t}^F - \psi_n\}$$

Free entry and exit implies:

$$J_{A,t}^F \le \psi_n, J_{A,t}^F \ge 0, \quad \to \quad J_{I,t}^F = 0, J_{A,t}^F \in [0, \psi_n]$$

Fraction of incumbents that remain active:

$$\xi_t = \mathbb{I}(J_{A,t}^F > 0) + (Z_t/Z_{t-1})\mathbb{I}(J_{A,t}^F = 0)$$
$$J_{X,t}^F = \xi_t J_{A,t}^F$$

EMPLOYMENT DYNAMICS

• Job separation rate:

$$s_t = \bar{s} + (1 - \bar{s})(1 - \xi_t)$$

• Unemployed searching for work:

$$U_t^s = U_{t-1} + \chi s_t N_{t-1}$$

Labor market tightness:

$$\theta_t \equiv V_t / U_t^s$$

• Job-filling Rate:

$$q_t = 1/(1 + \theta_t^{\iota})^{1/\iota}$$

• Employment:

$$N_t = (1 - s_t)N_{t-1} + q_t V_t$$

EMPLOYMENT AGENCIES

- Post vacancies and sell labor to active firms at w_t
- Representative agency solves

$$J_t^E = \max_{N_t, V_t} (w_t - w_t^n) N_t - \kappa V_t + E_t [x_{t+1} J_{t+1}^E]$$

subject to $N_t = (1 - s_t)N_{t-1} + q_tV_t$ and $V_t \ge 0$

• Optimal vacancy creation decision:

$$\frac{\kappa - \lambda_{V,t}}{q_t} = w_t - w_t^n + E_t [x_{t+1}(1 - s_{t+1}) \frac{\kappa - \lambda_{V,t+1}}{q_{t+1}}]$$

WAGES AND MARKET CLEARING

- w_t^n determined by Nash Bargaining
 - b and η denote worker outside option and bargaining power
 - Calibrate to match labor market volatility and the elasticity of wages with respect to productivity (Ljungqvist and Sargent, 2017; Bernstein et al., 2020)
- Workers' wage rate:

$$w_t^n = \eta(w_t + \kappa E_t[x_{t+1}(1 - \chi s_{t+1})\theta_{t+1}]) + (1 - \eta)b$$

Aggregate resource constraint:

$$C_t + I_t + \kappa V_t = Y_t$$

UNDERSTANDING THE MECHANISM

- Special case: $K_t = \bar{K}$ and $\psi_n = 0$, so $J^F_{A,t} \equiv 0$
- The number of active firms is increasing in output:

$$Z_t = (1 - \vartheta)Y_t/\psi_y$$

• Output (and hence profit) is increasing in Z_t

$$Y_t = a_t Z_t^{1-\vartheta} (\bar{K}^\alpha N_t^{1-\alpha})^\vartheta$$

- Positive feedback between Z_t and the real economy
- Intuition: Lower Z increases inputs used by each firm, lowering productivity and output due to decreasing returns

OUTPUT AMPLIFICATION

• Differentiate and combine expressions for Z_t and Y_t :

$$d\log Y_t = (1/\vartheta)d\log a_t + (1-\alpha)d\log N_t$$

• Without entry and exit (denoted NE):

$$d\log Y_t^{NE} = d\log a_t + \vartheta(1-\alpha)d\log N_t$$

- Entry and exit causes output to respond more to changes in productivity and employment under decreasing returns
- Mechanism: $a_t \uparrow \Rightarrow Y_t \uparrow \Rightarrow \Pi_t \uparrow \Rightarrow Z_t \uparrow \Rightarrow Y_t \uparrow$

LABOR MARKET AMPLIFICATION

• Labor market dynamics are governed by wages:

$$d\log w_t = d\log Y_t - d\log N_t$$

• Substitute for Y and Y^{NE} :

$$d\log w_t = (1/\vartheta) d\log a_t - \alpha d\log N_t$$
$$d\log w_t^{NE} = d\log a_t - (1 - \vartheta(1 - \alpha)) d\log N_t$$

- · Wages inherit the amplified dynamics of output
- Wage dynamics govern the payoff from vacancy creation
- Amplifies labor market frictions in tandem with other sources of nonlinearities (e.g., gross complementarity in the matching function, law of motion for unemployment)

OUTPUT ASYMMETRY

• Firm exit causes endogenous separations:

$$ds_t = -(1-\bar{s})\frac{Z_t}{Z_{t-1}}\mathbb{I}\left\{d\log Z_t < 0\right\}d\log Z_t$$

· Combine with employment law of motion:

$$d\log N_t = (1 - \bar{s}) \frac{n_{t-1}}{n_t} \mathbb{I}\{d\log Z_t < 0\} d\log Z_t + \frac{d(q_t V_t)}{N_t}$$

• Combine with the production function:

$$d\log Y_t = \frac{(1/\vartheta)d\log a_t + (1-\alpha)d(q_t V_t)/N_t}{1 - (1-\alpha)(1-\bar{s})(n_{t-1}/n_t)\mathbb{I}\{d\log Z_t < 0\}}$$

• Mechanism: $a_t \downarrow \Rightarrow Y_t, \Pi_t \downarrow \Rightarrow Z_t \downarrow \Rightarrow s_t \uparrow \Rightarrow N_t \downarrow \Rightarrow Y_t \downarrow$

SUMMARY OF KEY MECHANISMS

- Amplifies output via input reallocation
- Skews output via endogenous separations

NUMERICAL METHODS

- Two innovations to standard policy function iteration
- Recall:

$$\begin{cases} J_{A,t}^F \in (0,\psi_n), & \text{if } \Delta Z = 0\\ J_{A,t}^F = \psi_n, & \text{if } \Delta Z \ge 0\\ J_{A,t}^F = 0, & \text{if } \Delta Z \le 0 \end{cases}$$

• Introduce auxiliary variable $\mu_{A,t}$ to impose these conditions

$$J_{A,t}^{F} = \min \{ \max\{0, \mu_{A,t}\}, \psi_{n} \}, \quad \Delta Z_{t} = \mu_{A,t} - J_{A,t}^{F}$$

• Introduce second auxiliary variable $\mu_{V,t}$ to ensure $V_t \ge 0$

$$V_t = \max\{0, \mu_{V,t}\}^2, \quad \lambda_{V,t} = \max\{0, -\mu_{V,t}\}^2.$$

BERNSTEIN, RICHTER & THROCKMORTON: CYCLICAL NET ENTRY AND EXIT

BERNSTEIN, RICHTER & THROCKMORTON: CYCLICAL NET ENTRY AND EXIT

MONTHLY CALIBRATION

Parameter		Value	Target	Data	Model
Returns to Scale	θ	0.87	Avg. Profit Share	13.44	13.44
Capital Share	α	0.29	Avg. Labor Share	61.55	61.55
Search Duration	χ	0.52	Avg. Unemployment	5.89	5.93
Vacancy Cost	κ	0.11	Avg. Finding Rate	42.15	42.38
Exog. Sep. Rate	\bar{s}	0.032	Avg. Sep. Rate	3.27	3.25
Bargaining Weight	η	0.100	Wage-TFP Elasticity	0.60	0.59
Outside Option	b	0.970	Unemployment SD	22.28	22.20
Matching Curvature	ι	0.69	Vacancies SD	23.03	22.76
Inv. Adj. Cost	ν	7.11	Inv. Growth SD	2.13	2.48
Entry Cost	ψ_n	0.068	Entry Share of JC	35.92	35.94
Fixed Cost	ψ_y	0.206	Exit Share of JD	33.38	33.76
TFP Persistence	ρ_a	0.947	Output Growth AC	0.31	0.22
Shock SD	σ_a	0.004	Output Growth SD	0.86	0.95

Note: Discount rate, $\beta = 0.9983$, is set to imply a 2% annual real interest rate. $\delta = 0.0077$.

Entry-Exit moments

VALIDATION OF FIRM DYNAMICS

	Qua	Quarterly		Annual	
Moment	BED	Model	BDS	Model	
$\overline{Corr(Z,U)}$	-0.76	-0.91	-0.84	-0.92	
Corr(Z, Y)	0.67	0.89	0.66	0.91	
Corr(Z, s)	-0.33	-0.13	-0.05	-0.19	
$SD(\Delta \tilde{Z})$	0.35	0.43	1.41	1.05	
$Skew(\Delta \tilde{Z})$	-0.58	-0.62	-0.10	-0.25	

Note: Business Employment Dynamics, 1992-2019; Business Dynamics Statistics, 1978-2018

SIMULATED MOMENTS

	Da	ta	Model		
Moment	Mean	SE	No Entry/Exit	Entry/Exit	
$\overline{SD(Y)}$	3.17	0.26	2.20	2.67	
SD(C)	2.00	0.16	1.37	1.71	
SD(I)	8.92	0.77	5.21	6.22	
SD(U)	22.28	1.85	18.01	22.20	
$SD(\Delta \ln U)$	5.56	0.57	6.17	7.37	
$\overline{Skew(Y)}$	-0.59	0.20	-0.31	-0.49	
Skew(C)	-0.42	0.16	-0.30	-0.41	
Skew(I)	-0.81	0.21	-0.38	-0.69	
Skew(U)	0.60	0.20	0.45	0.64	
$Skew(\Delta \ln U)$	1.30	0.26	-0.02	0.51	

IMPULSE RESPONSES: STEADY STATE

IMPULSE RESPONSES: RECESSION STATE

ERGODIC DISTRIBUTIONS

BERNSTEIN, RICHTER & THROCKMORTON: CYCLICAL NET ENTRY AND EXIT

WELFARE COST OF BUSINESS CYCLES

 What % λ of monthly consumption would households require to make them indifferent between stochastic and non-stochastic paths of consumption?

	No Entry/Exit	Entry/Exit	
Welfare Cost ($\lambda,\%$)	0.27	0.42	

- Entry/exit increases the cost of fluctuations by 55%
- About 8 times larger than $\lambda=0.05\%$ in Lucas (2003), which assumes consumption is Gaussian
- Driven by additional skewness imparted by cyclical net entry and exit

ENDOGENOUS UNCERTAINTY

• Jurado et al. (2015) Macro Uncertainty Index:

$$\mathcal{U}_{t,t+h}^{Y} = \sqrt{E_t[(\Delta \log Y_{t+h} - E_t[\Delta \log Y_{t+h}])^2]}$$

	Da	ta	Mode	əl
Moment	Mean	SE	No Entry/Exit	Entry/Exit
$SD(\mathcal{U}^Y)$	5.68	0.51	3.10	6.94
$AC(\mathcal{U}^Y)$	0.84	0.04	0.93	0.78
$Corr(\Delta \ln Y, \mathcal{U}^Y)$	-0.37	0.09	-0.17	-0.42

- Driven by state-dependence of shock transmission
- Net exit creates more uncertainty in bad times

SUMMARY

- This paper studies the effects of cyclical net entry and exit
- Important source of asymmetry and amplification
- Quantitatively the model generates empirically consistent skewness and uncertainty dynamics
- Next steps: introducing heterogeneous firms